
S PAD PAGE 1

USB Keyboard mouse using PDIUSBD11

Application Notes

Introduction

The PDIUSBD11 (D11) is a high speed USB interface device. It can be interfaced to a
micro-controller using a minimum of 3 I/O lines, a pair of I2C lines and an interrupt line. It
offers 2 configuration, either a single device or three embedded devices.

There is a total of 4 endpoints for a single device configuration. Endpoint 0, the default
Control endpoint and endpoint 1-3 are generic, which can be used as either interrupt, bulk
or control endpoints. Each endpoints have a buffer size of 8 bytes.

In the 3 embedded function configuration, Embedded function 1 consists of 2 endpoints, a
default Control endpoint 0 and generic endpoint 1. Similarly, for embedded function 2-3.

The D11 can be used as a HID device (though not restricted to a HID), which, this
application notes shows how a keyboard with PS2 mouse can be implemented.

Hardware description

This firmware uses the hardware configuration of the Philips keyboard hub. As the PCB is
a general release for a keyboard hub, the use of it just as a keyboard with PS2 mouse does
not require the use of the downstream ports. The ports can be safely ignored because they
do not contribute nor affect the performance of the USB Keyboard cum PS2 mouse.

Firmware description

Files description

The firmware implements software I2C to control the D11. All the routines are contained in
the main kbms1_7.asm file. Along with the assembly language file, a file named
transctn.typ defines the transaction codes used to passed between the Control OUT
endpoint routine to the Control IN endpoint routine. In another file, H11.cmd, contains the
I2C commands of the D11, it is a subset of the H11/H11A commands, functionally
equivalent.

USB Class description

The firmware implements a HID compliant composite device. It is a USB device with a
single configuration but two different interfaces. Each interface defines it’s own interrupt
endpoint and report descriptor. Interface 0 defines a USB keyboard with endpoint 1 used
as the interrupt endpoint for key-pressed data while Interface 1 defines a USB mouse using
endpoint 2 as the interrupt endpoint for tracking the movements of the mouse.

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 2

Flow Chart

The main loop polls for USB interrupt from the D11 as well as running a routine to detect
key-press events and mouse movement.

a) Main loop

The D11 firmware can be used on a H11A because both are software compatible. Hence,
the main interrupt routine points to a Hub interrupt as well. However, the interrupt is never
called.

Under the condition that the interrupt pin was activated without a source from byte 1 of the
Interrupt register, this indicates that a BUS reset condition has occurred as endpoint index 8
and 9 is not used in the current configuration. Bus-resets can also be determined by
reading the 6th bit of the 2nd byte of the Interrupt register.

Start

Initialise

MAIN

WRITE_LED

USB_INTERRUPT

KEYBOARD_ROUTINE

EMBED_CONFIG?

Y

N

Main Routine

Update
LED Status

Check if
embedded

function has
been

configured

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 3

b) USB Interrupt

USB_INTERRUPT

Is Interrupt pin
low ?

Y

Interrupt
source from Hub

Control Out ?

Interrupt source
from Hub Control

In ?

Interrupt source from
embedded function

Control Out ?

Interrupt source
from embedded

function Control In ?

Interrupt source from
function Interrupt 0 ?

Interrupt source
from function
Interrupt 1 ?

Y

N

Y

N

Y

N

Y

N

Y

N

Y

N

Other interrupt
sources ?

Y

N

RESTART_H11
(Bus reset
condition
occurred)

Return

NO_ACTION

FN_INT1_P

FN_INT0_P

FN_CTRL_IN_P

FN_CTRL_OUT_P

HUB_CTRL_IN_P

HUB_CTRL_OUT_P

N
Active low

interrupt

c) Hub Control IN and OUT routine

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 4

HUB_CTRL_OUT_P

Return

HUB_CTRL_IN_P

Return

d) Function Control OUT routine

The deciphered SETUP token is kept as a transaction code described in the file
transctn.typ. The actual data transfer is performed by the Function Control IN routine.

FN_CTRL_OUT_P

Read last
endpoint

status

To clear
Interrupt

flag

Read endpoint
status

Is Buffer
full ?

Is it a Setup
Token ?

FN_ACK_DATA_RCV

Check if it is a Set
Report Data

packet,
Acknowledge data
receipt using zero

packet data

FN_SETUP

USB Chap 9 and
class routines.
Decipher Setup

packet and store it's
appropriate

transaction code.

Return

Y

N

Y

N

e) Function Control IN

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 5

FN_CTRL_IN

Use transaction
code to send the
USB handshake

and data to the Host

Is the end of
USB transaction

?

Reset
transaction

code

Return

N

Y

For every IN token,
the H11/H11A can
send only 8 bytes,
hence, data over 8

bytes are broken into
several transfers.l

f) Function Interrupt 1. The mouse interrupt routine is called for each IN token for endpoint
2.

FN_INT1 For mouse
interrupt

Read Last
endpoint

Status

To clear
interrupt

flag

Is buffer
still full ?

Write to Interrupt
Endpoint buffer

Select Int1
Endpoint

Return

Write the mouse
data from internal
registers to the
USB outgoing

buffer

Y

N

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 6

g) Function interrupt routine. With the Debug Mode on, this is called whenever there is an
IN token arriving on the Endpoint described by the endpoint descriptor. In this case, this is
the keyboard interrupt IN token.

FN_INT0
For

keyboard
interrupt

Read Last
endpoint

Status

To clear
interrupt

flag

Is buffer
still full ?

Write to Interrupt
Endpoint buffer

Select Int0
Endpoint

Return

Write the
keypressed data

from internal
registers to the
USB outgoing

buffer

Y

if last keypressed
information was all

zero, set
LAST_ZERO_SENT

Is Idle time
up ?

Was
LAST_ZERO_SENT

?

N

Y

Y

N

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 7

h) The keyboard routine

KEYBOARD_
ROUTINE

SCAN_OUT

Keypressed ?

Pull a scan line
down, the scan

pin to pull is
indicated by
ROW_NUM

START_OF_G
HOST_ROUTI

NE

Checks for
ghost keys

Is there any
ghostkeys ?

GHOST_KE
Y_FOUND

KEYPRESSED

Y

Y

N

reset
LAST_ZERO_SENT.
Check if device is in

suspended state, if so,
send resume to

upstream.

Is
ROW_NUM

over 8 ?

increment
ROW_NUM

Return

Mouse Routines

N

i) The mouse routine

Philips Semiconductors D11 USB Keyboard with PS2 Mouse Application Notes Rev 1

S PAD PAGE 8

Mouse
Routines

CHECK_MOUSE

Is Mouse
attached ?

Return

PREPARING_PS2
_READ

Reading 3
bytes from

mouse

Is PS2
communication

successful ?

Keep counts of
failure through
decrementing
mouse status

Successive PS2
failure (of 6

times) ?

RESET_MOUSE
resets value of
mouse status

Write PS2 data to
internal registers

N

Y

NY

Y

N

