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USB Keyboard mouse using PDIUSBD11

Application Notes

Introduction

The PDIUSBD11 (D11) is a high speed USB interface device.  It can be interfaced to a
micro-controller using a minimum of 3 I/O lines, a pair of I2C lines and an interrupt line.  It
offers 2 configuration, either a single device or three embedded devices.

There is a total of 4 endpoints for a single device configuration.  Endpoint 0, the default
Control endpoint and endpoint 1-3 are generic, which can be used as either interrupt, bulk
or control endpoints.  Each endpoints have a buffer size of 8 bytes.

In the 3 embedded function configuration, Embedded function 1 consists of 2 endpoints, a
default Control endpoint 0 and generic endpoint 1.  Similarly, for embedded function 2-3.

The  D11 can be used as a HID device (though not restricted to a HID), which, this
application notes shows how a keyboard with PS2 mouse can be implemented.

Hardware description

This firmware uses the hardware configuration of the Philips keyboard hub.  As the PCB is
a general release for a keyboard hub, the use of it just as a keyboard with PS2 mouse does
not require the use of the downstream ports.  The ports can be safely ignored because they
do not contribute nor affect the performance of the USB Keyboard cum PS2 mouse.

Firmware description

Files description

The firmware implements software I2C to control the D11.  All the routines are contained in
the main kbms1_7.asm file.  Along with the assembly language file, a file named
transctn.typ defines the transaction codes used to passed between the Control OUT
endpoint routine to the Control IN endpoint routine.  In another file, H11.cmd, contains the
I2C commands of the D11, it is a subset of the H11/H11A commands, functionally
equivalent.

USB Class description

The firmware implements a HID compliant composite device.  It is a USB device with a
single configuration but two different interfaces.  Each interface defines it’s own interrupt
endpoint and report descriptor.  Interface 0 defines a USB keyboard with endpoint 1 used
as the interrupt endpoint for key-pressed data while Interface 1 defines a USB mouse using
endpoint 2 as the interrupt endpoint for tracking the movements of the mouse.
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Flow Chart

The main loop polls for USB interrupt from the D11 as well as running a routine to detect
key-press events and mouse movement.

a) Main loop

The D11 firmware can be used on a H11A because both are software compatible.  Hence,
the main interrupt routine points to a Hub interrupt as well.  However, the interrupt is never
called.

Under the condition that the interrupt pin was activated without a source from byte  1 of the
Interrupt register, this indicates that a BUS reset condition has occurred as endpoint index 8
and 9 is not used in the current configuration. Bus-resets can also be determined by
reading the 6th bit of the 2nd byte of the Interrupt register.
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b) USB Interrupt
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d) Function Control OUT routine

The deciphered SETUP token is kept as a transaction code described in the file
transctn.typ.  The actual data transfer is performed by the Function Control IN routine.
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f) Function Interrupt 1.  The mouse interrupt routine is called for each IN token for endpoint
2.
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g) Function interrupt routine.  With the Debug Mode on, this is called whenever there is an
IN token arriving on the Endpoint described by the endpoint descriptor.  In this case, this is
the keyboard interrupt IN token.
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h) The keyboard routine
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