
September 1997

8x931AA, 8x931HA
Universal Serial Bus

Peripheral Controller
User’s Manual

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-764

or call 1-800-879-4683

Copyright © Intel Corporation 1997. Third-party brands and names are the property of their respective owners

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY .. 1-3
1.3 RELATED DOCUMENTS .. 1-6

1.3.1 Data Sheet ..1-6
1.3.2 Application Notes ..1-6

1.4 APPLICATION SUPPORT SERVICES.. 1-6
1.4.1 World Wide Web ...1-7
1.4.2 FaxBack Service ...1-7
1.4.3 Bulletin Board System (BBS) ..1-8

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.1 PRODUCT OVERVIEW... 2-2
2.1.1 8x931AA Features ..2-3
2.1.2 8x931HA Features ..2-3
2.1.3 Keyboard Control Interface ...2-4
2.1.4 MCS® 51 Architecture Features ..2-5

2.2 MICROCONTROLLER CORE... 2-6
2.2.1 CPU ..2-6
2.2.2 Clock and Reset Unit ..2-7

2.2.2.1 State Time and Machine Cycles ..2-8
2.2.2.2 USB Operating Rate ..2-8
2.2.2.3 Low-clock Mode ...2-8
2.2.2.4 Reset Unit ..2-8

2.2.3 Interrupt Handler ...2-11

2.3 8x931 MEMORY.. 2-11
2.4 UNIVERSAL SERIAL BUS MODULE.. 2-11

2.4.1 USB Operation ..2-12
2.4.2 Hub Interface ..2-13
2.4.3 Hub Repeater ..2-13
2.4.4 Serial Bus Interface Engine (SIE) ...2-13
2.4.5 Hub Interface Unit (HIU) ...2-13
2.4.6 Hub FIFOs ..2-13

2.5 ON-CHIP PERIPHERALS.. 2-14
2.5.1 Timer/Counters ...2-14
2.5.2 Serial I/O Port ...2-14

2.6 OPERATING CONDITIONS .. 2-14
iii

8x931AA, 8x931HA USER’S MANUAL
CHAPTER 3
ADDRESS SPACES

3.1 MEMORY ORGANIZATION IN 8x931 DEVICES .. 3-1
3.1.1 Logical Separation of Program and Data Memory ..3-1
3.1.2 Program Memory ..3-1
3.1.3 Data Memory ..3-3

3.2 SPECIAL FUNCTION REGISTERS (SFRS) ... 3-5

CHAPTER 4
PROGRAMMING CONSIDERATIONS

4.1 THE MCS® 51 INSTRUCTION SET.. 4-1
4.1.1 Program Status Word ...4-1
4.1.2 Addressing Modes ..4-3

4.1.2.1 DIRECT ADDRESSING ...4-3
4.1.2.2 INDIRECT ADDRESSING ..4-3
4.1.2.3 REGISTER INSTRUCTIONS ...4-3
4.1.2.4 REGISTER-SPECIFIC INSTRUCTIONS ...4-4
4.1.2.5 IMMEDIATE CONSTANTS ..4-4
4.1.2.6 INDEXED ADDRESSING ...4-4

4.1.3 Arithmetic Instructions ...4-5
4.1.4 Logical Instructions ...4-7
4.1.5 Data Transfers ..4-8

4.1.5.1 Internal RAM ..4-8
4.1.5.2 External RAM ...4-10
4.1.5.3 Lookup Tables ..4-11

4.1.6 Boolean Instructions ...4-12
4.1.6.1 Relative Offset ..4-13

4.1.7 Jump Instructions ..4-14

CHAPTER 5
INTERRUPT SYSTEM

5.1 OVERVIEW ... 5-1
5.2 INTERRUPT SOURCES.. 5-5

5.2.1 External Interrupts ...5-6
5.2.2 Timer Interrupts ...5-7
5.2.3 Keyboard Scan Interrupt ...5-7
5.2.4 Serial Port Interrupt ...5-8
5.2.5 USB Function Interrupt ...5-8
5.2.6 USB Start-of-frame Interrupt ...5-11
5.2.7 USB Hub Interrupt ...5-15
5.2.8 USB Global Suspend/Resume Interrupt ...5-17

5.2.8.1 Global Suspend ..5-17
5.2.8.2 Global Resume ..5-17
5.2.8.3 USB Remote Wake-up ...5-17

5.2.9 USB Reset Separation ..5-17
iv

CONTENTS
5.2.9.1 Initialization Required for USB Reset ...5-18
5.2.9.2 USB Reset Hardware Operations ..5-21
5.2.9.3 USB Reset ISR ..5-21
5.2.9.4 Main Routine Considerations ...5-22

5.3 INTERRUPT ENABLE ... 5-24

5.4 INTERRUPT PRIORITIES... 5-26
5.5 INTERRUPT HANDLING... 5-30
5.6 RESPONSE TIME ... 5-32

CHAPTER 6
USB FUNCTION

6.1 FUNCTION INTERFACE... 6-1
6.1.1 Function Endpoint Pairs ..6-1
6.1.2 Function FIFOs ...6-1
6.1.3 Endpoint-indexed SFRs ..6-5
6.1.4 Endpoint Selection ..6-5

6.2 USB FUNCTION SFRS ... 6-7
6.3 TRANSMIT FIFOS... 6-14

6.3.1 Transmit FIFO Registers ...6-15
6.3.2 Transmit FIFO Data Register (TXDAT) ...6-16
6.3.3 Transmit FIFO Byte Count Register (TXCNTL) ..6-16
6.3.4 Transmit Data Set Management ...6-17

6.4 RECEIVE FIFOs .. 6-24
6.4.1 Receive FIFO Registers ..6-25

6.4.1.1 Receive FIFO Data Register (RXDAT) ...6-25
6.4.1.2 Receive FIFO Byte Count Registers (RXCNTL) ..6-26

6.4.2 Receive FIFO Data Set Management ...6-27
6.5 SIE DETAILS ... 6-34
6.6 SETUP TOKEN RECEIVE FIFO HANDLING.. 6-34

6.7 ISO DATA MANAGEMENT ... 6-35
6.7.1 Transmit FIFO ISO Data Management ...6-35
6.7.2 Receive FIFO ISO Data Management ..6-36

CHAPTER 7
USB HUB

7.1 HUB FUNCTIONAL OVERVIEW... 7-1
7.1.1 Port Connectivity States ..7-4
7.1.2 Per-packet Signaling Connectivity ..7-6

7.1.2.1 Connectivity to Downstream Ports Attached With Full-speed Devices7-6
7.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices7-7

7.2 BUS ENUMERATION.. 7-7
7.2.1 Hub Descriptors ..7-7
7.2.2 The Hub Address Register (HADDR) ..7-8
v

8x931AA, 8x931HA USER’S MANUAL
7.3 HUB STATUS .. 7-9
7.4 USB HUB ENDPOINTS... 7-10

7.4.1 Hub Endpoint Indexing Using EPINDEX ...7-11
7.4.2 Hub Endpoint Control ..7-11
7.4.3 Hub Endpoint Transmit and Receive Operations ..7-12

7.5 USB HUB PORTS.. 7-14
7.5.1 Controlling a Port Using HPCON ..7-14
7.5.2 Examining a Port’s Status Using HPSTAT ..7-17
7.5.3 Monitoring Port Status Change Using HPSC ..7-20
7.5.4 Hub Port Indexing Using HPINDEX ..7-23
7.5.5 Embedded Function ..7-24

7.5.5.1 Embedded Function Reset ...7-24
7.5.5.2 Embedded Function Remote Wake-up ..7-25

7.6 SUSPEND AND RESUME... 7-25
7.6.1 Hub Global Suspend and Resume ...7-25
7.6.2 Remote Connectivity ...7-25

7.6.2.1 Resume Connectivity ...7-25
7.6.2.2 Connectivity Due to Physical Connect/Disconnect ...7-26
7.6.2.3 Embedded Function Suspend and Resume ..7-26

7.7 HUB POWER DISTRIBUTION .. 7-27
7.7.1 Port Power Switching ..7-27
7.7.2 Overcurrent Detection ...7-29
7.7.3 Ganged Power Enable ..7-29

7.8 HUB DEVICE SIGNALS .. 7-30

CHAPTER 8
USB PROGRAMMING MODELS

8.1 OVERVIEW OF PROGRAMMING MODELS .. 8-1
8.1.1 Enumeration ..8-2
8.1.2 Idle State ...8-3
8.1.3 Transmit and Receive Routines ..8-3
8.1.4 USB Interrupts ..8-4

8.2 TRANSMIT OPERATIONS.. 8-4
8.2.1 Overview ...8-4
8.2.2 Pre-transmit Operations ..8-7
8.2.3 Post-transmit Operations ..8-8

8.3 RECEIVE OPERATIONS... 8-10
8.3.1 Overview ...8-10
8.3.2 Post-receive Operations ...8-11

8.4 SETUP TOKEN ... 8-14
8.5 START-OF-FRAME (SOF) TOKEN... 8-16

8.6 HUB OPERATION ... 8-17
8.6.1 Hub Status and Configuration ...8-17
vi

CONTENTS
8.6.2 Port Status Change Communication ...8-23
8.6.3 Hub Firmware Examples ...8-24

8.6.3.1 GetPortStatus Request Firmware ..8-25
8.6.3.2 SetPortFeature (PORT_SUSPEND) Firmware ..8-26
8.6.3.3 SetPortFeature (PORT_RESET) Firmware ..8-27

CHAPTER 9
INPUT/OUTPUT PORTS

9.1 INPUT/OUTPUT PORT OVERVIEW... 9-1
9.2 I/O CONFIGURATIONS... 9-2
9.3 PORT 1 AND PORT 3 ... 9-2

9.4 PORT 0 AND PORT 2 ... 9-2
9.5 READ-MODIFY-WRITE INSTRUCTIONS... 9-5
9.6 QUASI-BIDIRECTIONAL PORT OPERATION.. 9-6
9.7 PORT LOADING.. 9-7

9.8 EXTERNAL MEMORY ACCESS... 9-7

CHAPTER 10
TIMER/COUNTERS

10.1 TIMER/COUNTER OVERVIEW... 10-1
10.2 TIMER/COUNTER OPERATION... 10-1
10.3 TIMER 0... 10-4

10.3.1 Mode 0 (13-bit Timer) ...10-4
10.3.2 Mode 1 (16-bit Timer) ...10-4
10.3.3 Mode 2 (8-bit Timer With Auto-reload) ..10-5
10.3.4 Mode 3 (Two 8-bit Timers) ..10-5

10.4 TIMER 1... 10-6
10.4.1 Mode 0 (13-bit Timer) ...10-9
10.4.2 Mode 1 (16-bit Timer) ...10-9
10.4.3 Mode 2 (8-bit Timer with Auto-reload) ...10-9
10.4.4 Mode 3 (Halt) ..10-9

10.5 TIMER 0/1 APPLICATIONS... 10-9
10.5.1 Auto-reload Setup Example ..10-9
10.5.2 Pulse Width Measurements ..10-10

10.6 TIMER 2... 10-10
10.6.1 Capture Mode ...10-11
10.6.2 Auto-reload Mode ...10-12

10.6.2.1 Up Counter Operation ..10-12
10.6.3 Up/Down Counter Operation ...10-13
10.6.4 Baud Rate Generator Mode ..10-14
10.6.5 Clock-out Mode ...10-14
vii

8x931AA, 8x931HA USER’S MANUAL
CHAPTER 11
SERIAL I/O PORT

11.1 OVERVIEW ... 11-1
11.2 MODES OF OPERATION.. 11-2

11.2.1 Synchronous Mode (Mode 0) ..11-2
11.2.1.1 Transmission (Mode 0) ..11-2
11.2.1.2 Reception (Mode 0) ..11-2

11.2.2 Asynchronous Modes (Modes 1, 2, and 3) ...11-7
11.2.2.1 Transmission (Modes 1, 2, 3) ...11-7
11.2.2.2 Reception (Modes 1, 2, 3) ..11-7

11.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)...................................... 11-7

11.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3).................................... 11-8
11.5 AUTOMATIC ADDRESS RECOGNITION... 11-8

11.5.1 Given Address ..11-9
11.5.2 Broadcast Address ..11-9
11.5.3 Reset Addresses ...11-10

11.6 BAUD RATES.. 11-10
11.6.1 Baud Rate for Mode 0 ...11-10
11.6.2 Baud Rates for Mode 2 ...11-11
11.6.3 Baud Rates for Modes 1 and 3 ...11-11

11.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) ..11-11
11.6.3.2 Selecting Timer 1 as the Baud Rate Generator ...11-11
11.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) ..11-12
11.6.3.4 Selecting Timer 2 as the Baud Rate Generator ...11-12

CHAPTER 12
KEYBOARD CONTROL

12.1 OVERVIEW ... 12-1
12.2 KEYBOARD SCAN IMPLEMENTATION... 12-2

12.2.1 Keyboard Interrupt Logic ...12-3
12.3 LED DRIVERS... 12-4

CHAPTER 13
MINIMUM HARDWARE SETUP

13.1 MINIMUM HARDWARE SETUP.. 13-1
13.2 ELECTRICAL ENVIRONMENT ... 13-1

13.2.1 Power and Ground Pins ..13-2
13.2.2 Unused Pins ..13-2
13.2.3 Noise Considerations ..13-2

13.3 CLOCK SOURCES.. 13-2
13.3.1 On-chip Oscillator (Crystal) ...13-2
13.3.2 On-chip Oscillator (Ceramic Resonator) ...13-3
13.3.3 External Clock ...13-3

13.4 RESET... 13-5
viii

CONTENTS
13.4.1 Externally-initiated Resets ..13-5
13.4.2 USB-initiated Resets ...13-5

13.4.2.1 USB Reset Separation ...13-6
13.4.3 Reset Operation ..13-6
13.4.4 Power-on Reset ..13-7

CHAPTER 14
SPECIAL OPERATING MODES

14.1 OVERVIEW ... 14-1
14.2 POWER CONTROL REGISTERS... 14-1

14.2.1 Power Off Flag ..14-1
14.3 IDLE MODE ... 14-6

14.3.1 Entering Idle Mode ..14-6
14.3.2 Exiting Idle Mode ..14-7

14.4 USB POWER CONTROL .. 14-7
14.4.1 Global Suspend Mode ..14-7

14.4.1.1 Powerdown (Suspend) Mode ...14-8
14.4.1.2 Entering Powerdown (Suspend) Mode ..14-8
14.4.1.3 Exiting Powerdown (Suspend) Mode ...14-8

14.4.2 Global Resume Mode ...14-9
14.4.3 USB Remote Wake-up ..14-10

14.5 LOW-CLOCK MODE ... 14-13
14.5.1 Entering Low-clock Mode ..14-13
14.5.2 Exiting Low-clock Mode ..14-13

14.6 ON-CIRCUIT EMULATION (ONCE) MODE .. 14-13
14.6.1 Entering ONCE Mode ...14-13
14.6.2 Exiting ONCE Mode ..14-13

CHAPTER 15
EXTERNAL MEMORY INTERFACE

15.1 OVERVIEW ... 15-1

15.2 EXTERNAL BUS CYCLES .. 15-2
15.2.1 Bus Cycle Definitions ..15-3

15.3 PORT 0 AND PORT 2 STATUS .. 15-5
15.3.1 Port 0 and Port 2 Pin Status ...15-5

15.4 EXTERNAL MEMORY DESIGN EXAMPLES.. 15-6
15.4.1 Example 1: 11-bit Bus, External RAM ...15-6
15.4.2 Example 2: 16-bit Bus, External ROM ..15-7
15.4.3 Example 3: 16-bit Bus, External EPROM and RAM ..15-8

CHAPTER 16
VERIFYING NONVOLATILE MEMORY

16.1 83931 MEMORY.. 16-1
ix

8x931AA, 8x931HA USER’S MANUAL
16.2 NONVOLATILE MEMORY... 16-1
16.3 VERIFYING ON-CHIP NONVOLATILE MEMORY.. 16-1

16.3.1 Verify Modes ...16-2
16.3.2 General Setup ...16-2
16.3.3 Verify Algorithm ...16-3
16.3.4 Verifying On-chip Program Memory ..16-4
16.3.5 Verifying the Lock Bits ..16-4
16.3.6 Verifying the Signature Bytes ..16-4

16.4 ENCRYPTION ARRAY.. 16-5

16.5 CONSIDERATIONS FOR ON-CHIP PROGRAM CODE MEMORY............................ 16-5

APPENDIX A
INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS.. A-2
A.2 OPCODE MAP ... A-3
A.3 INSTRUCTION SET SUMMARY.. A-4

A.3.1 Instruction Summaries .. A-4
A.4 INSTRUCTION DESCRIPTIONS ... A-9

APPENDIX B
PIN DESCRIPTIONS

APPENDIX C
REGISTERS

C.1 SFRS BY FUNCTIONAL CATEGORY .. C-3
C.2 SFR DESCRIPTIONS... C-6

APPENDIX D
DATA FLOW MODEL

APPENDIX E
8X931AA DESIGN CONSIDERATIONS

E.1 DIFFERENCES BETWEEN THE 8X931AA AND THE 8X931HA E-1

E.2 8X931AA ENUMERATION PROCESS... E-2
E.3 8X931AA PIN DESCRIPTIONS.. E-3
E.4 8X931AA SIGNAL DESCRIPTIONS... E-6
E.5 OPERATING FREQUENCIES.. E-9
E.6 8X931AA SFR MAP.. E-10

GLOSSARY

INDEX
x

CONTENTS
FIGURES
2-1 8x931 in a USB System ...2-1
2-2 Functional Block Diagram of the 8x931..2-2
2-3 8x931HA USB Module Block Diagram ...2-7
2-4 8x931 Clock Circuit ..2-9
2-5 8x931 Clocking Definitions ...2-10
3-1 MCS® 51 Program Memory..3-2
3-2 8x931 Memory Structure ..3-3
3-3 Internal Data Memory ...3-4
3-4 Upper and Lower 128 Bytes of Internal RAM...3-4
3-5 SFR Space ...3-5
4-1 Program Status Word Register...4-2
4-2 Shifting BCD Number Two Digits Right ..4-9
4-3 Shifting BCD Number One Digit Right..4-10
5-1 Interrupt Control System ..5-3
5-2 Bits of the Interrupt SFRs ...5-5
5-3 FIE: USB Function Interrupt Enable Register...5-9
5-4 FIFLG: USB Function Interrupt Flag Register ..5-11
5-5 SOFH: Start-of-frame High Register...5-12
5-6 SOFL: Start-of-frame Low Register ..5-13
5-7 HIE: Hub Interrupt Enable Register ..5-15
5-8 HIFLG: Hub Interrupt Status Register ..5-16
5-9 USB Reset Separation Operating Model..5-20
5-10 IEN0: USB Interrupt Enable Register 0 ..5-24
5-11 IEN1: USB Interrupt Enable Register ...5-25
5-12 IPH0: Interrupt Priority High Register 0 ..5-27
5-13 IPL0: Interrupt Priority Low Register 0..5-28
5-14 IPH1: Interrupt Priority High Register 1 ..5-29
5-15 IPL1: Interrupt Priority Low Register 1..5-30
5-16 Interrupt Response Timing Diagram...5-31
6-1 Bits of the USB Function SFRs ..6-4
6-2 EPINDEX: Endpoint Index Register ...6-6
6-3 EPCON: Endpoint Control Register..6-7
6-4 TXSTAT: Transmit FIFO Status Register ...6-9
6-5 RXSTAT: Receive FIFO Status Register..6-11
6-6 FADDR: Function Address Register...6-14
6-7 Transmit FIFO Outline..6-15
6-8 TXDAT: Transmit FIFO Data Register..6-16
6-9 TXCNTL: Transmit FIFO Byte Count Register ...6-16
6-10 TXCON: Transmit FIFO Control Register...6-19
6-11 TXFLG: Transmit FIFO Flag Register ..6-21
6-12 Receive FIFO ...6-24
6-13 RXDAT: Receive FIFO Data Register ..6-26
6-14 RXCNTL: Receive FIFO Byte Count Register..6-26
6-15 RXCON: Receive FIFO Control Register ...6-29
6-16 RXFLG: Receive FIFO Flag Register ...6-31
xi

8x931AA, 8x931HA USER’S MANUAL
7-1 8x931HA Hub Functional Diagram...7-2
7-2 Bits of the USB Hub SFRs ...7-3
7-3 Hub State Flow...7-5
7-4 Packet Signaling Connectivity ..7-6
7-5 HADDR: Hub Address Register..7-8
7-6 HSTAT: Hub Status and Configuration Register ..7-9
7-7 TXDAT: Hub Transmit Data Buffer (Endpoint 1) ..7-12
7-8 Status Change Communication To Host ..7-13
7-9 HPCON: Hub Port Control Register ...7-15
7-10 HPSTAT: Hub Port Status Register..7-18
7-11 HPSC: Hub Port Status Change Register ..7-21
7-12 HPINDEX: Hub Port Index Register ...7-24
7-13 Resume Connectivity ...7-26
7-14 HPPWR: Hub Port Power Control ..7-28
8-1 Program Flow ...8-1
8-2 High-level View of Transmit Operations ...8-6
8-3 Pre-transmit ISR (Non-Isochronous) ..8-7
8-4 Post-transmit ISR (Non-isochronous)...8-8
8-5 Post-transmit ISR (Isochronous) ..8-9
8-6 High-level View of Receive Operations ..8-11
8-7 Post-receive ISR (Non-isochronous) ..8-12
8-8 Receive SOF ISR (Isochronous) ..8-13
8-9 Post-receive ISR (Control)..8-15
8-10 Hardware Operations for SOF Token...8-16
8-11 Hub-to-Host Port Status Communication ...8-24
8-12 GetPortStatus Request ..8-25
8-13 Firmware Response to GetPortStatus..8-26
8-14 SetPortFeature (PORT_SUSPEND) Routine...8-27
8-15 SetPortFeature (PORT_RESET) Routine ..8-28
9-1 Port 1 and Port 3 Structure...9-3
9-2 Port 0 Structure ..9-3
9-3 Port 2 Structure ..9-4
9-4 Internal Pullup Configurations ..9-6
10-1 Basic Logic of the Timer/Counters ...10-3
10-2 Timer 0/1 in Mode 0 and Mode 1 ...10-4
10-3 Timer 0/1 in Mode 2, Auto-reload...10-5
10-4 Timer 0 in Mode 3, Two 8-bit Timers..10-6
10-5 TMOD: Timer/Counter Mode Control Register ...10-7
10-6 TCON: Timer/Counter Control Register ...10-8
10-7 Timer 2: Capture Mode ..10-11
10-8 Timer 2: Auto-reload Mode (DCEN = 0) ...10-12
10-9 Timer 2: Auto-reload Mode (DCEN = 1) ...10-13
10-10 Timer 2: Clock Out Mode..10-15
10-11 T2MOD: Timer 2 Mode Control Register..10-16
10-12 T2CON: Timer 2 Control Register ..10-17
11-1 Serial Port Block Diagram ..11-3
11-2 SCON: Serial Port Control Register ...11-4
xii

CONTENTS
11-3 Mode 0 Timing..11-6
11-4 Data Frame (Modes 1, 2, and 3) ..11-6
11-5 Timer 2 in Baud Rate Generator Mode ..11-14
12-1 KBCON: Keyboard Control Register ..12-1
12-2 Keyboard Scan Matrix Application..12-3
12-3 LED Driver Application ...12-4
13-1 Minimum Setup ..13-1
13-2 CHMOS On-chip Oscillator...13-3
13-3 External Clock Connection for the 8x931 ...13-4
13-4 External Clock Drive Waveforms..13-4
13-5 Reset Timing Sequence ...13-7
14-1 PCON: Power Control Register ..14-3
14-2 PCON1: USB Power Control Register..14-4
14-3 Suspend/Resume Program with/without Remote Wake-up14-11
14-4 Suspend/Resume Program with/without Remote Wake-up (Continued)..................14-12
15-1 Bus Structure..15-1
15-2 External Code Fetch...15-3
15-3 External Data Read ..15-4
15-4 External Data Write ..15-4
15-5 Bus Diagram for Example 1: 8x931AA/HA...15-6
15-6 Bus Diagram for Example 2: 8x931AA/HA...15-7
15-7 Bus Diagram for Example 3: 8x931AA/HA...15-8
16-1 Setup for Verifying Nonvolatile Memory ...16-3
B-1 8x931HA 68-pin PLCC Package ... B-1
B-2 8x931HA 64-pin SDIP Package .. B-2
B-3 8x931HA 64-pin QFP Package ... B-3
B-4 8x931AA 64-pin QFP Package ... B-4
B-5 8x931AA 68-pin PLCC Package ... B-5
E-1 8x931AA 64-pin QFP Package ... E-3
E-2 8x931AA 68-pin PLCC .. E-4
xiii

TABLES
1-1 Intel Application Support Services..1-7
2-1 8x931 Memory Options ..2-3
2-2 USB Peripheral Controller Feature Summary and Comparison2-4
2-3 8x931HA Operating Frequency ..2-9
2-4 8x931AA Operating Frequencies ...2-10
2-5 Endpoint Pairs for 8x931 ..2-12
4-1 The Effects of Instructions on the PSW Flags..4-3
4-2 Addressing Modes for Data Instructions in the MCS® 51 Architecture........................4-4
4-3 List of MCS® 51 Arithmetic Instructions ...4-5
4-4 List of MCS® 51 Logical Instructions ..4-6
4-5 List of MCS® 51 Data Transfer Instructions ...4-8
4-6 Transfer Instructions for Accessing External Data Memory Space4-11
4-7 MCS® 51 Read Instructions ...4-11
4-8 MCS® 51Boolean Instructions..4-12
4-9 Unconditional Jumps in MCS® 51 Devices ..4-14
4-10 Conditional Jumps in MCS® 51 Devices ..4-16
5-1 Interrupt System Input Signals ...5-1
5-2 Interrupt System Special Function Registers ...5-4
5-3 8x931AA/HA Interrupt Control Matrix ...5-6
5-4 8x931 USB/Hub Interrupt Control Matrix..5-7
5-5 Level of Priority...5-26
5-6 Interrupt Priority Within Level ...5-26
6-1 Function and Hub FIFO Configurations..6-2
6-2 Non-hub USB Signal Descriptions..6-2
6-3 USB Function SFRs ...6-3
6-4 Writing to the Byte Count Register ...6-17
6-5 Truth Table for Transmit FIFO Management..6-18
6-6 Status of the Receive FIFO Data Sets ...6-27
6-7 Truth Table for Receive FIFO Management...6-28
7-1 USB Hub SFRs ..7-3
7-2 8x931 Descriptors ..7-7
7-3 Hub Descriptors..7-8
7-4 Hub Endpoint Configuration ...7-11
7-5 USB Requests Ignored by Hardware (by Port State) ...7-14
7-6 Encoded Hub Port Control Commands ..7-16
7-7 UPWEN# Pin State Truth Table ...7-30
7-8 Signal Descriptions...7-30
8-1 Firmware Actions for USB Requests Sent to Hub..8-17
8-2 Firmware Action for Hub Class-Specific Requests...8-20
9-1 Input/Output Port Pin Descriptions ...9-1
9-2 Read-Modify-Write Instructions ..9-5
9-3 Instructions for External Data Moves..9-7
10-1 External Signals ...10-2
10-2 Timer/Counter and Watchdog Timer SFRs ..10-3
10-3 Timer 2 Modes of Operation...10-15

CONTENTS
11-1 Serial Port Signals..11-1
11-2 Serial Port Special Function Registers ...11-2
11-3 Summary of Baud Rates ..11-10
11-4 Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3..................................11-12
11-5 Selecting the Baud Rate Generator(s) ...11-13
11-6 Timer 2 Generated Baud Rates ...11-14
12-1 Keyboard Control Signals...12-2
14-1 Pin Conditions in Various Modes..14-6
15-1 External Memory Interface Signals...15-2
15-2 Port 0 and Port 2 Pin Status In Normal Operating Mode..15-5
16-1 Signal Descriptions (Verify Mode) ..16-2
16-2 Verify Modes ..16-3
16-3 Lock Bit Function..16-4
16-4 Contents of the Signature Bytes...16-4
A-1 Notation for Register Operands... A-2
A-2 Notation for Direct Addresses.. A-2
A-3 Notation for Immediate Addressing ... A-2
A-4 Notation for Bit Addressing.. A-2
A-5 Notation for Destinations in Control Instructions ... A-2
A-6 Instructions for 8x931 Peripheral Controllers .. A-3
A-7 Summary of Add and Subtract Instructions ... A-4
A-8 Summary of Increment and Decrement Instructions ... A-4
A-9 Summary of Multiply, Divide, and Decimal-adjust Instructions.................................... A-5
A-10 Summary of Logical Instructions ... A-5
A-11 Summary of Move Instructions .. A-6
A-12 Summary of Exchange, Push, and Pop Instructions ... A-7
A-13 Summary of Bit Instructions... A-7
A-14 Summary of Control Instructions ... A-8
A-15 Flag Symbols... A-9
B-1 68-pin PLCC Pin Assignment.. B-6
B-2 64-pin SDIP Pin Assignment ... B-7
B-3 64-pin QFP Pin Assignment .. B-8
B-4 68-pin PLCC Signal Assignments Arranged by Functional Category.......................... B-9
B-5 64-pin SDIP Signal Assignments Arranged by Functional Category......................... B-10
B-6 64-pin QFP Signal Assignments Arranged by Functional Category.......................... B-11
B-7 Signal Description ... B-12
C-1 8x931HA SFR Map ... C-2
C-2 Core SFRs... C-3
C-3 Interrupt System SFRs .. C-3
C-4 I/O Port SFRs .. C-4
C-5 Serial I/O SFRs ... C-4
C-6 USB Function SFRs .. C-4
C-7 USB Hub SFRs ... C-5
C-8 Timer/Counter SFRs.. C-5
D-1 Non-isochronous Transmit Data Flow ... D-1
D-2 Isochronous Transmit Data Flow in Dual-packet Mode... D-5
D-3 Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) D-8
xv

8x931AA, 8x931HA USER’S MANUAL
D-4 Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................ D-11
D-5 Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) D-18
E-1 8x931AA Signals Arranged by Functional Category ... E-5
E-2 8x931AA Signal Descriptions .. E-6
E-3 8x931AA Operating Frequencies .. E-9
E-4 8x931AA SFR Map.. E-10
xvi

1
Guide to this Manual

ach
CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8x931 microcontroller for universal serial bus (USB) applications.
This manual is intended for use by both firmware and hardware designers familiar with the prin-
ciples of microcontroller architecture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor-
mation.

Chapter 2, “Architectural Overview”— provides an overview of device hardware. It covers
core functions (CPU, clock and reset unit, and interrupts), I/O ports, on-chip memory, the USB
module, and on-chip peripherals (timer/counters and serial I/O port).

Chapter 3, “Address Spaces”— describes the three address spaces of the 8x931: memory ad-
dress space, special function register (SFR) space, and the register file. It also provides a map of
the SFR space showing the location of the SFRs and their reset values and explains the mapping
of the address spaces relative to the MCS® 51 architecture into the address spaces of the 8x931.

Chapter 4, “Programming Considerations”— provides an overview of the instruction set. It
describes each instruction type (control, arithmetic, logical, etc.) and lists the instructions in tab-
ular form. This chapter also discusses the addressing modes, bit instructions, and the program sta-
tus words. Appendix A, “Instruction Set Reference” provides a detailed description of e
instruction.

Chapter 5, “Interrupt System”— describes the 8x931 interrupt circuitry which provides ten
maskable interrupts: three external interrupts, three timer interrupts, a serial port interrupt, and
three USB interrupts. This chapter also discusses the interrupt priority scheme, interrupt enable,
interrupt processing, and interrupt response time.

Chapter 6, “USB Function”— describes the FIFOs and special function registers (SFRs) asso-
ciated with the USB function interface. This chapter describes the operation of function interface
on the 8x931 USB microcontrollers.

Chapter 7, “USB Hub”— describes the operation of the Intel Universal Serial Bus (USB) on-
chip hub. This chapter introduces on-chip hub operation and includes information on bus enumer-
ation, hub endpoint status and configuration, hub port control, hub suspend and resume, and hub
power control.

Chapter 8, “USB Programming Models”— describes the programming models of the 8x931
USB function interface. This chapter provides flow charts of suggested firmware routines for us-
ing the transmit and receive FIFOs to perform data transfers between the host PC and the embed-
ded function and describes how the firmware interacts with the USB module hardware.
1-1

8x931AA, 8x931HA USER’S MANUAL

ses
ccess-
Chapter 9, “Input/Output Ports”— describes the four 8-bit I/O ports (ports 0–3) and discus
their configuration for general-purpose I/O. This chapter also discusses external memory a
es (ports 0, 2) and alternative special functions.

Chapter 10, “Timer/Counters”— describes the three on-chip timer/counters and discusses their
application.

Chapter 11, “Serial I/O Port”— describes the full-duplex serial I/O and explains how to pro-
gram it to communicate with external peripherals. This chapter also discusses baud rate genera-
tion, framing error detection, multiprocessor communications, and automatic address
recognition.

Chapter 12, “Keyboard Control” — describes the 8x931 keyboard control interface, including
the keyboard scan output lines, the keyboard scan input lines, and the LED drivers.

Chapter 13, “Minimum Hardware Setup”— describes the basic requirements for operating the
8x931 in a system. It also discusses on-chip and external clock sources.

Chapter 14, “Special Operating Modes”— provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describes the power control (PCON) special function register and lists the status of the device
pins during the special modes.

Chapter 15, “External Memory Interface”— describes the external memory signals and bus
cycles and provides examples of external memory design. It also provides waveform diagrams
for the bus cycles.

Chapter 16, “Verifying Nonvolatile Memory”— provides instructions for verifying on-chip
program memory, signature bytes, and lock bits.

Appendix A, “Instruction Set Reference”— provides reference information for the instruction
set. It describes each instruction; defines the bits in the program status word register (PSW);
shows the relationships between instructions and PSW flags; and lists hexadecimal opcodes, in-
struction lengths, and execution times.

Appendix B, “Pin Descriptions”— describes the function(s) of each device pin. Descriptions
are listed alphabetically by signal name. This appendix also provides a list of the signals grouped
by functional category.

Appendix C, “Registers”— accumulates, for convenient reference, copies of the register defi-
nition figures that appear throughout the manual.

Appendix D, “Data Flow Model”— describes the data flow model for the 8x931 USB transac-
tions.

Appendix E, “8x931AA Design Considerations”—describes the differences between the hub-
less 8x931AA and the 8x931HA.

Glossary — a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.
1-2

GUIDE TO THIS MANUAL

rect
ng

ent
ay

For
 in

l
tive
ls
ave
 it
e it

ion.
.

 of
um

 of
um
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used with an instruction mnemonic, the
symbol prefixes an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1–4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the cor
values when configuring or programming registers or identifyi
signals.

XXXX, xxxx Uppercase X (no italics) and lowercase x (no italics) repres
unknown values or a “don’t care” states or conditions. The value m
be either binary or hexadecimal, depending on the context.
example, 2xAFH (hex) indicates that bits 11:8 are unknown; 10xx
binary context indicates that the two LSBs are unknown.

Assert and Deassert The terms assert and deassert refer to the act of making a signa
active (enabled) and inactive (disabled), respectively. The ac
polarity (high/low) is defined by the signal name. Active-low signa
are designated by a pound symbol (#) suffix; active-high signals h
no suffix. To assert RD# is to drive it low; to assert ALE is to drive
high; to deassert RD# is to drive it high; to deassert ALE is to driv
low.

Instructions Instruction mnemonics are shown in upper case to avoid confus
When writing code, either upper case or lower case may be used

Logic 0 (Low) An input voltage level equal to or less than the maximum value
VIL or an output voltage level equal to or less than the maxim
value of VOL. See data sheet for values.

Logic 1 (High) An input voltage level equal to or greater than the minimum value
VIH or an output voltage level equal to or greater than the minim
value of VOH. See data sheet for values.
1-3

8x931AA, 8x931HA USER’S MANUAL

ter-

g

are a
ame
revi-
und
nal.

re:
Numbers Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, the letter B
is added for clarity.

Register Access All register bits support read/write access unless noted otherwise in
the bit description. Other types of access include read-only, write-
only, read/conditional-write, etc.

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register Names Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMx represents the five registers: CCAPM0 through CCAPM4.

Reserved Bits Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is inde
minate.

Set and Clear The terms set and clear refer to the value of a bit or the act of givin
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.

Signal Names Signal names are shown in upper case. When several signals sh
common name, an individual signal is represented by the signal n
followed by a number. Port pins are represented by the port abb
ation, a period, and the pin number (e.g., P0.0, P0.1). A po
symbol (#) appended to a signal name identifies an active-low sig

Units of Measure The following abbreviations are used to represent units of measu

A amps, amperes

DCV direct current volts

Kbyte kilobytes

KΩ kilo-ohms
1-4

GUIDE TO THIS MANUAL
mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

W watts

V volts

µA microamps, microamperes

µF microfarads

µs microseconds

µW microwatts
1-5

8x931AA, 8x931HA USER’S MANUAL

3

pport
1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8x931. To order documents, please call Intel Literature Fulfillment (1-800-548-
4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646

Embedded Processors Order Number 272396

Embedded Applications Order Number 270648

Packaging Order Number 240800

Universal Serial Bus Specification Order Number 272904

MCS® 51 Microcontroller Family User’s Manual Order Number 27238

1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.

8x931AA/8x931HA Universal Serial Bus Microcontroller Order Number 273108

1.3.2 Application Notes

The following MCS 51 microcontroller application notes also apply to the 8x931.

AP-70, Using the Intel MCS® 51 Boolean Processing Capabilities Order Number 203830

AP-223, 8051 Based CRT Terminal Controller Order Number 270032

AP-252, Designing With the 80C51BH Order Number 270068

AP-425, Small DC Motor Control Order Number 270622

AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490

AP-476, How to Implement I2C Serial Communication Order Number 272319
Using Intel MCS® 51 Microcontrollers

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, the FaxBack* service, and Intel’s Brand Products and Applications Su
1-6

GUIDE TO THIS MANUAL

SB

ax ma-
e char-
k 24

h your
t a doc-
bulletin board service (BBS). These systems are available 24 hours a day, 7 days a week, provid-
ing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please
contact your local distributor. You can order product literature from Intel literature centers and
sales offices.

Table 1-1 lists the information you need to access these services.

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL: ht-
tp://www.intel.com/design/usb). Also visit Intel’s Web site for financials, history, news and U
information at: www.intel.com/design/.

1.4.2 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your f
chine. You can get product announcements, change notifications, product literature, devic
acteristics, design recommendations, and quality and reliability information from FaxBac
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access wit
phone. Just dial the telephone number and respond to the system prompts. After you selec
ument, the system sends a copy to your fax machine.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe

World Wide
Web

URL:http://www.intel.com/ URL:http://www.intel.com/ URL:http://www.intel.com/

World Wide
Web

URL:http://www.intel.com/
design/usb/

URL:http://www.intel.com/
design/usb/

URL:http://www.intel.com/
design/usb/

FaxBack* 800-525-3019 503-264-6835

916-356-3105

+44(0)1793-496646

BBS 503-264-7999

916-356-3600

503-264-7999

916-356-3600

+44(0)1793-432955

Help Desk 800-628-8686
916-356-7999

Please contact your local
distributor.

Please contact your local
distributor.

Literature 800-548-4725 708-296-9333

+81(0)120 47 88 32

+44(0)1793-431155
England

+44(0)1793-421777
France

+44(0)1793-421333
Germany
1-7

8x931AA, 8x931HA USER’S MANUAL

nload

ty and

 config-
arity, 8

d to the
 oper-

ccount
Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog

4. Systems catalog

5. Multimedia catalog

6. Multibus and iRMX® firmware catalog and BBS file listings

7. Microprocessor, PCI, and peripheral catalog

8. Quality and reliability and change notification catalog

9. iAL (Intel Architecture Labs) technology catalog

1.4.3 Bulletin Board System (BBS)

Intel’s Brand Products and Applications Support bulletin board system (BBS) lets you dow
files to your PC. The BBS has the latest ApBUILDER firmware, hypertext manuals and
datasheets, firmware drivers, firmware upgrades, application notes and utilities, and quali
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic
uration support for 1200- through 19200-baud modems. Use these modem settings: no p
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respon
system prompts. During your first session, the system asks you to register with the system
ator by entering your name and location. The system operator will set up your access a
within 24 hours. At that time, you can access the files on the BBS.

NOTE
In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).
1-8

2
Architectural
Overview

2-1

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8x931AA and 8x931HA are PC peripheral controllers for Universal Serial Bus (USB) appli-
cations. These peripheral controllers provide the means for connecting PC peripherals such as
monitors, keyboards, joysticks, telephones, and modems to USB-equipped personal computers.
For keyboard applications, both devices include an on-chip keyboard control interface. The USB
material in this document relies heavily on the Universal Serial Bus Specification which provides
a detailed description of the USB system.

In the language of the USB specification, the 8x931AA/HA is a USB device. A USB device can
serve as a function by providing an interface for a PC peripheral, and it can serve as a hub by pro-
viding USB ports for additional PC peripherals.

The 8x931AA is a hubless USB peripheral controller which serves as a USB function. The
8x931HA serves as both a USB function and as a hub; it supports one embedded function and
provides four external downstream ports. Figure 2-1 depicts the 8x931 in an example USB sys-
tem.

Figure 2-1. 8x931 in a USB System

A4519-01

Speakers

USB Function

8x930Ax

Telephone

USB Function

Joystick

USB Function

Digital Camera

Host PC

USB Hub

USB Function

8x931Hx

Monitor

USB Function

8x930Ax

8x931Ax 8x931Ax8x930Ax

Printer

USB Hub

8x931Hx

Keyboard

8x931AA, 8x931HA USER’S MANUAL
Figure 2-2. Functional Block Diagram of the 8x931

2.1 PRODUCT OVERVIEW

The 8x931 employs the architecture of the MCS® 51 microcontroller family. Specifically, it is
derived from the 8xC51Fx core which is optimized for control operations with extensive boolean
processing capabilities. The 8x931 executes the standard instruction set of the MCS 51 architec-
ture.

A functional block diagram of the 8x931 is shown in Figure 2-2. The 8x931 contains a microcon-
troller core, a USB module, a keyboard control interface, on-chip ROM (optional) and RAM, four
8-bit parallel ports, and on-chip peripherals (timer/counters and serial port). The USB module op-
erates in conjunction with the CPU to provide the capabilities of a USB device. It supports all
four types of USB data transfers: control, isochronous, interrupt, and bulk. Dedicated pinouts are
provided for USB signals.

The 8x931 is available in ROMless and factory-programmed ROM versions in 64-pin S-DIP, 64-
pin QFP, and 68-pin PLCC packages. See Appendix B for package diagrams, pin assignments,
and signal descriptions. Table 2-1 lists the on-chip RAM and ROM memory options.

A4518-01

Upstream
Port

Data
Address
Register

ALU

ROMRAM

B ACC

Program
Counter

Program
Address
Register

USB
Module

Downstream
Ports

Data
Pointer

Stack
Pointer

Instruction
Sequencer

Clock
and

Reset

Parallel
Ports

On-chip
Peripherals

HA only
2-2

ARCHITECTURAL OVERVIEW

ee

l

ction
ontrol,
pports

l PC

own-
of

rans-
r a sum-
re 2-3

The 8x931 provides a rich set of microcontroller features. The following sections describe the
major features. Table 2-2 on page 2-4 summarizes these features and provides an item-by-item
comparison of the 8x930Hx and 8x931Hx and the 8x930Ax and 8x931Ax. The 8x931 is based on
the MCS® 51 architecture, whereas the 8x930Hx is based on the MCS® 251 architecture.

For detailed description of the 8xC51Fx hardware, programmer’s model, and instruction set, s
the MCS 51 Microcontroller Family User’s Manual, order number 272383.

For further information on the 8x931, see “Microcontroller Core” on page 2-6, and “Universa
Serial Bus Module” on page 2-11.

2.1.1 8x931AA Features

The 8x931AA provides a USB interface for one PC peripheral. The 8x931AA function interface
provides three function endpoint pairs with corresponding transmit/receive FIFO pairs. Fun
endpoint 0 supports control data transfers only, while function endpoints 1 and 2 support c
interrupt, and bulk data transfers. Function endpoint 1, which has 16-byte FIFOs, also su
isochronous data transfers. See Table 2-5 on page 2-12 for endpoint pair information.

2.1.2 8x931HA Features

The 8x931HA also provides a USB hub capability, permitting the connection of additiona
peripherals or hubs. In addition to an upstream port to the host PC (USB root port), the 8x931HA
provides four external downstream ports (with ganged power switching), and an internal d
stream port for the embedded function. The 8x931HA provides on-chip transceivers for each
the external USB ports.

The 8x931HA has two hub endpoint pairs: endpoint 0 which supports 8-byte control data t
fers and endpoint 1 which transmits a status change byte to the host PC. See Table 2-2 fo
mary of USB features and Table 2-5 on page 2-12 for endpoint pair information. See Figu
for the 8x931HA USB module block diagram.

NOTE
The 8x931AA microcontroller does not support hub operations. Specific
details of the 8x931AA are covered in Appendix E, “8x931AA Design
Considerations”.

Table 2-1. 8x931 Memory Options

8x931AA
(Hubless)

8x931HA
(Hub)

On-chip Memory

ROM
(Kbytes)

RAM
(Bytes)

80931AA 80931HA 0 256

83931AA 83931HA 8 256
2-3

8x931AA, 8x931HA USER’S MANUAL

G

G

U

)

)

U

2.1.3 Keyboard Control Interface

The 8x931 contains a keyboard control interface with a 20-bit by 8-bit scan capability and four
LED drivers. Chapter 12, “Keyboard Control”, describes this further.

Table 2-2. USB Peripheral Controller Feature Summary and Comparison

8x931Hx 8x931Ax 8x930Hx 8x930Ax

eneral Features
On-chip ROM 0, 8 Kbytes 0, 8 Kbytes 0, 8 or 16

Kbytes
0, 8 or 16

Kbytes
On-chip RAM 256 bytes 256 bytes 1024 bytes 1024 bytes
On-chip peripherals:

Timer/counters 3 3 3 3
Serial I/O port Yes Yes Yes Yes
PCA, Hardware Watchdog Timer No No Yes Yes

Code compatible with MCS® 51 Microcontrollers Yes Yes Yes Yes
Code compatible with MCS® 251 Microcontrollers No No Yes Yes
Keyboard control interface Yes Yes No No

eneral USB Features
Complete Universal Serial Bus Specification,

Rev. 1.0 compatibility
Yes Yes Yes Yes

On-chip USB transceivers Yes Yes Yes Yes
Automatic transmit/receive FIFO management Yes Yes Yes Yes
Time base (crystal/PLL) 12 MHz 12 MHz 12 MHz 12 MHz
USB rate (full speed) 12 Mbps 12 Mbps 12 Mbps 12 Mbps
Low-clock mode Yes Yes Yes Yes
Suspend/resume Yes Yes Yes Yes
USB interrupt vectors (hub, function, and

suspend/resume)

Reset Separation

6 Endpoint Pair Option

Yes

Yes

No

Yes

Yes

No

Yes

No

No

Yes

Yes

Yes
SB Function Features
Function endpoint pairs 3 3 4 4 (or 6)
Transmit/receive FIFO sizes:

Endpoint 0

Endpoint 1

Endpoint 2

Endpoint 3

Endpoint 4

Endpoint 5

8 bytes

16 bytes

8 bytes

—

—

—

8 bytes

16 bytes

8 bytes

—

—

—

16 bytes

0-1024 bytes

16 bytes

16 bytes

—

—

16 bytes

0-1024 bytes

(or 256 bytes)

16 (or 32 bytes

16 (or 32 bytes

(32 bytes)

(16 bytes)
SB Hub Features
Internal downstream port USB port 1 — USB port 4 —
USB rate (full speed) 12 Mbps — 12 Mbps —

† INT2:0# are external interrupts.T2:0 are timer/counter interrupts.
2-4

ARCHITECTURAL OVERVIEW

ated in
 the ad-

divid-
nning,
xternal

U

C

)

2.1.4 MCS® 51 Architecture Features

The 8x931 retains the basic features of and is code-compatible with the MCS 51 microcontroller.
Features of the MCS 51 architecture are discussed in the following paragraphs and summarized
in Table 2-2.

The MCS 51 architecture has separate program memory and data memory addresses spaces. A
sixteen-bit address bus permits the 8x931 to address 64 Kbytes of program memory (up to 8
Kbytes of on-chip ROM and the remainder in external program memory) and 64 Kbytes of data
memory (256 bytes of on-chip RAM and the remainder in external data memory). The general
purpose registers (four banks of R0–R7) and the special function registers (SFRs) are loc
the data memory address space. Refer to Chapter 3, “Address Spaces” for a description of
dress modes.

The MCS 51 architecture has four 8-bit parallel I/O ports. The pins of these ports can be in
ually programmed to provide an external bus, to support special functions (keyboard sca
timer/counter, interrupts, etc.), or for general I/O use. Ports P0 and P2 comprise a 16-line e

SB Hub Features (cont.)
External downstream ports 4 (USB ports

2,3,4,5)
— 4 (USB ports

1,2,3,5)
—

USB rate (full speed/low speed) 12 Mbps/
1.5 Mbps

— 12Mbps/
1.5 Mbps

—

Hub endpoint 0: transmit/receive FIFOs 8 bytes — 16 bytes —
Hub endpoint 1: one transmit data buffer register 1 byte — 1 byte —

ore Microcontroller Features
Architecture MCS® 51

(Accumu-
lator-based)

MCS® 51
(Accumu-

lator-
based)

MCS® 251
(Register-

based)

MCS® 251
(Register-

based)

Address spaces:

Program memory
Data memory

64 Kbytes
64 Kbytes

64 Kbytes
64 Kbytes

(Single 256-
Kbyte

address
space)

(Single 256-
Kbyte

address space

External bus (multiplexed)
Address

Data

16 bits

8 bits

16 bits

8 bits

16, 17, or 18
bits

8 bits

16, 17, or 18
bits

8 bits
Number of Registers 8 8 40 40
Core interrupt vectors:

INT0#, INT1#, T0, T1, T2†, and Serial I/O
Keyboard (INT2#)†

PCA

Yes
Yes
No

Yes
Yes
No

Yes
No
Yes

Yes
No
Yes

Parallel I/O ports 4 4 4 4
Powerdown and idle power-saving modes Yes Yes Yes Yes

Table 2-2. USB Peripheral Controller Feature Summary and Comparison (Continued)

8x931Hx 8x931Ax 8x930Hx 8x930Ax

† INT2:0# are external interrupts.T2:0 are timer/counter interrupts.
2-5

8x931AA, 8x931HA USER’S MANUAL

pped,
n-chip
n, the
e re-

it, the

, gen-
nd data

imized
 small
rmation

ht
nks oc-
bus, which transmits a 16-bit address multiplexed with eight data bits. Ports P1 and P3 carry bus-
control and peripheral signals. See Table B-7, “Signal Description,” on page B-12.

The MCS 51 architecture has two power-saving modes. In idle mode, the CPU clock is sto
while clocks to the peripherals continue to run. In global suspend mode (powerdown), the o
oscillator is stopped, and the chip enters a static state. In addition to idle and powerdow
8x931 has a special power-saving mode, low-clock mode, which it enters following a devic
set. Refer to Chapter 14, “Special Operating Modes,” for details on power-saving modes.

2.2 MICROCONTROLLER CORE

The microcontroller core contains the central processor unit (CPU), the clock and reset un
interrupt handler, the bus interface, and the peripheral interface (Figure 2-2).

2.2.1 CPU

The CPU contains the ALU, program counter, instruction decoder, data memory interface
eral-purpose registers R0 – R7, and special function registers ACC, B, stack pointer (SP) a
pointer (DPTR).

The CPU executes the instruction set of the MCS 51 architecture. The instruction set is opt
for control operations. It provides fast addressing modes to facilitate byte operations on
data structures and extensive support for one-bit variables as a separate data type. For info
on the instruction set refer to the MCS® 51 Microcontroller Family User’s Manual and the MCS®

51 Macro Assembler User’s Guide.

To provide fast context switching, the 8x931 implements registers R0 – R7 as four banks of eig
registers, with the active bank selected by the program status word (PSW). The register ba
cupy the lowest 32 bytes of RAM memory in the data memory address space.
2-6

ARCHITECTURAL OVERVIEW

Figure 2-3. 8x931HA USB Module Block Diagram

2.2.2 Clock and Reset Unit

The waveform at XTAL1 is the 8x931 system clock. It can be supplied by an external source con-
nected to XTAL1 or generated by an on-chip oscillator which has its resonant circuit (crystal or
ceramic resonator) connected across XTAL1 and XTAL2. See Figure 2-4 for the 8x931 clock cir-
cuit.

 DP5

 DM5 Transceiver

A5247-01

 DP4

 DM4

 DP3

 DM3

 DP2

 DM0

 DP0

 DM2

Repeater

USB Upstream Port
(Hub Root Port)

USB External
Downstream Ports

Serial Bus Interface Engine
(SIE)

 Transceiver

 Transceiver

 Transceiver

Hub
Interface

Unit
(HIU)

Function
Interface

Unit
(FIU)

Control

Control

FIFOs

Data Bus

To
CPU

Transmit/Receive Bus

 Transceiver
2-7

8x931AA, 8x931HA USER’S MANUAL

 1 of a
lete at
e cycle.

es
ys full
 device
vides

ipher-
 the

 rate.

 pin
ware
2.2.2.1 State Time and Machine Cycles

The basic unit of time for 8x931 peripheral controller is the state time (or state). States are divided
into two phases identified as phase 1 and phase 2. The 8x931 machine cycle equals six states. See
Figure 2-5 on page 2-10 for 8x931 clocking definitions. A specific time within a machine cycle
is denoted by its state and phase. For example, when a timer/counter counts external events, the
external input is sampled during state 5, phase 2 (S5P2) of every machine cycle.

The 8x931 executes single-cycle instructions in one machine cycle. With a 12 MHz crystal, FCLK
= 6 MHz and the duration of a machine cycle is 1 µs. Instruction execution begins in state
machine cycle when the opcode is latched into the instruction register. Execution is comp
the end of state 6. On-chip peripherals such as the timer/counter also operate on a machin

2.2.2.2 USB Operating Rate

Because of its hub capability, the 8x931HA (including the embedded function) always operat
as a full-speed (12 Mbps) USB device. Root port data transfers with the host PC are alwa
speed. Data transfer rates on the external downstream ports are matched to the type of USB
attached — i.e., full speed or low speed (1.5 Mbps). For full speed operation, the PLL pro
the 4X USB sampling rate.

The 8x931AA can operate as a full-speed (12Mbps) or low-speed (1.5Mbps) device.

2.2.2.3 Low-clock Mode

Low-clock mode is a special power-reduction mode in which the CPU and the on-chip per
als operate at 3 MHz following device reset. To exit low-clock mode, clear the LC bit in
PCON register. During low-clock mode, FCLK = 3 MHz, so the timing definitions in Figure 2-5
do not apply to the CPU and on-chip peripherals. Low-clock mode does not affect the USB
Also see Chapter 14, “Special Operating Modes”.

2.2.2.4 Reset Unit

The reset unit resets the 8x931 to a known state. A chip reset is initiated by asserting the RST
or by a USB-initiated reset. For information on resets refer to Chapter 13, “Minimum Hard
Setup”.

NOTE
The 8x931 can be programmed so a USB-initiated reset does not cause a chip
reset. For additional information, see “USB Reset Separation” on page 5-17.
2-8

ARCHITECTURAL OVERVIEW

Figure 2-4. 8x931 Clock Circuit

Table 2-3. 8x931HA Operating Frequency

PLLSEL
XTAL1

Frequency
 (FOSC)

USB Rate
(1)

Internal
Frequency

(FCLK)
(2)

XTAL1
Clocks per

State
(TOSC/state)

 (3)

Comments

0 (4) – – – – –

1 12 MHz 12 Mbps
(Full Speed)

6 MHz (3) 2 PLL On

NOTES:
1. The sampling rate is 4 times the USB rate.
2. The internal frequency, FCLK = 1/TCLK, is the clock signal distributed to the CPU and the

on-chip peripherals,
3. Following device reset, the CPU and on-chip peripherals operate in low-clock mode

(FCLK = 3 MHz) until the LC bit in the PCON register is cleared. In low clock mode,
there are four TOSC periods per state. Low-clock mode does not affect the USB rate.

4. PLLSEL = 0 is used during factory test only.

Clock
Generator

A5324-01

XTAL1

XTAL2

FOSC
(12 MHz)

PCON.0
(Idle Mode)

IDL
PCON.1

(Powerdown)

PD

÷ 2
FCLK

CPU

On-chip
Peripherals

Internal Clock

PCON.5
(Low-clock Mode)

LC

0

1

3 MHz
2-9

8x931AA, 8x931HA USER’S MANUAL
 .

Figure 2-5. 8x931 Clocking Definitions

Table 2-4. 8x931AA Operating Frequencies

PLLSEL
 Pin

FSSEL
Pin

LC Bit
(1)

XTAL1
Frequency

(MHz)

USB Rate
(FS/LS)

(2)

Core
Frequency

FCLK
(Mhz)

Comment

0 0 0 6 LS 3 PLL Off

0 0 1 6 LS 3 PLL Off

1 0 0 12 LS 6 PLL Off

1 0 1 12 LS 3 PLL Off

1 1 0 12 FS 6 PLL On

1 1 1 12 FS 3 PLL On

NOTES:
1. Reset and power up routines set the LC bit in PCON to put the 8x931AA in low-clock mode (core

frequency = 3 MHz) for lower ICC prior to device enumeration. Following completion of device
enumeration, firmware should clear the LC bit to exit the low-clock mode. The user may switch the
core frequency back and forth at any time, as needed.

2. USB rates: Low speed = 1.5 Mbps; Full speed = 12 Mbps. The USB sample rate is 4X the USB rate.

TOSC

State 2

P1 P2
State 1

P1 P2
State 3

P1 P2
State 4

P1 P2
State 5

P1 P2

State 6

P1 P2

Machine Cycle

2 TOSC = State Time

XTAL1

XTAL1

P1 P2

Phase 1 Phase 2

A5325-01
2-10

ARCHITECTURAL OVERVIEW

sixteen-
 of
mory
8

sses
, the
 will

mory.
ese lo-
R7) re-

 80H –
s range

tion
ompo-

nnected
e Unit

2-3).
bedded
func-

a port
 of an

iptions
hat are
2.2.3 Interrupt Handler

The interrupt handler processes interrupt requests from maskable interrupt sources (USB module,
keyboard control interface, timer/counters and external). When the interrupt handler grants an in-
terrupt request, the CPU discontinues the normal sequence of instruction execution and branches
to a routine that services the interrupt source. You can enable or disable the interrupts individually
and you can assign one of four priority levels to each interrupt. Refer to Chapter 5, “Interrupt Sys-
tem” for a detailed description.

2.3 8x931 MEMORY

The 8x931 has separate 64-Kbyte program memory and data memory address spaces. A
bit address bus permits the 8x931 to address 64 Kbytes of program memory (up to 8 Kbytes
on-chip ROM and the remainder in external program memory) and 64 Kbytes of data me
(256 bytes of on-chip RAM and the remainder in external data memory). See Table 2-1 for x931
memory options.

The 8x931 is available with 8 Kbytes of on-chip ROM memory located at the lowest addre
of program memory, or without ROM. Program memory is read only. Following chip reset
first instruction is fetched from location 0000H in program memory. For ROM devices, this
be from on-chip program memory and EA# should be tied to VCC. For devices without on-chip
ROM, all instruction fetches are from external memory and EA# should be tied to ground.

The 8x931 has 256 bytes of on-chip RAM located at the lowest addresses of the data me
Data memory locations can be accessed with direct and indirect addressing. Sixteen of th
cations (20H–2FH) are bit addressable. The general purpose registers (four banks of R0–
side at data memory locations 00H-1FH.

Special functions registers (SFRs) are also located in the data memory space at locations
FFH. SFRs are accessed by direct addressing, while general purpose RAM in this addres
is accessed by indirect addressing.

2.4 UNIVERSAL SERIAL BUS MODULE

The 8x931HA USB module operates in conjunction with the CPU to provide both USB func
and USB hub capabilities. The block diagram in Figure 2-3 on page 2-7 shows the main c
nents of the 8x931HA USB module and how they interface with the CPU.

The hub provides the electrical interface between the host PC and downstream devices co
to the USB. The repeater and the hub interface, which is made up of the Serial Bus Interfac
(SIE), the Hub Interface Unit (HIU), and the hub FIFOs, provide the hub capability (Figure
The USB function interface manages communications between the host PC and the em
function. The function interface is made up of the SIE, the function interface unit (FIU), the
tion FIFOs (Figure 2-3).

The 8x931HA USB module communicates with the host PC by means of an upstream dat
(USB port 0). The USB module communicates with devices attached to the USB by means
internal downstream port (USB port 1) and the four external downstream ports (8x931HA only).
See Figure 2-3 and Figure 7-1 on page 7-2 for a hub block diagram. For USB port descr
and pin assignments, see Appendix B. The external USB ports are differential data ports t
2-11

8x931AA, 8x931HA USER’S MANUAL

” sec-

“Tim-

FRs).
pter 6,
s de-
r in Ap-
3,

e. The
t-only
 on the
 trans-
 reg-
fully compliant with the Universal Serial Bus Specification. The 8x931HA provides on-chip
transceivers for each external USB port and ganged-switched port power on the external down-
stream ports.

A complete description of the USB can be found in Universal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics
tions of the “Electrical” chapter of the Universal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and
ing Diagram” sections of the same chapter.

NOTE
The 8x931AA microprocessor does not support a hub interface. Specific
details of the 8x931AA are covered in Appendix E, “8x931AA Design
Considerations”.

2.4.1 USB Operation

Operation of the USB module is controlled through the use of special function registers (S
SFRs associated with the USB module are described in Chapter 5, “USB Function,” Cha
“USB Hub,” and Chapter 4, “Interrupt System.” Register definition tables in these chapter
scribe register usage and define the register bits. The register definition tables also appea
pendix C in alphabetical order. A memory map of the 8x931 SFRs is presented in Chapter
“Address Spaces” and Table C-1 on page C-2.

Data transfers with the host are made to/from endpoint pairs (EPPs) on the USB modul
8x931HA provides three function endpoint pairs, a hub control endpoint pair, and a transmi
hub status change endpoint. Table 2-5 lists the hub and function endpoint pairs available
8x931 along with the associated transmit and receive FIFO data buffers. For any given data
fer operation, the EPINDEX register specifies the endpoint pair involved and the HPINDEX
ister specifies the downstream port.

Table 2-5. Endpoint Pairs for 8x931

Device EPINDEX Endpoint Pair Transmit
FIFOs

Receive
FIFOs

USB Data Transfer
Types

8x931AA/HA 0000 0000 Function Endpoint 0 8 bytes 8 bytes Control

8x931AA/HA 0000 0001 Function Endpoint 1 16 bytes 16 bytes Control, Interrupt,
Bulk, Isochronous

8x931AA/HA 0000 0010 Function Endpoint 2 8 bytes 8 bytes Control, Interrupt,
Bulk

8x931HA 1000 0000 Hub Endpoint 0 8 bytes 8 bytes Control

8x931HA 1000 0001 Hub Endpoint 1 (1) N/A N/A Interrupt

NOTES:
1. Hub endpoint 1 assembles status-change information in a buffer register (TXDAT) and transmits it to

the host PC. Hub endpoint 1 does not require FIFOs.
2-12

ARCHITECTURAL OVERVIEW

-
am con-
rforms
ed (12
n and

a from
 pos-
tion.

to-par-
nsfers

aintain
onse to
ub” and

, “USB
l data
imum
dpoint
The CPU runs the firmware associated with the operation of the hub and the function interface.
It also reads the receive FIFOs, loads the transmit FIFOs, and decodes and executes USB requests
for the hub. Control transaction stages are tracked by firmware.

2.4.2 Hub Interface

Hub operation is implemented by reading and writing the hub SFRs. The repeater, the SIE, the
hub interface unit (HIU), and the hub FIFOs provide the hub capability. The hub interface has
two endpoint pairs. Hub endpoint 0 supports only control data transfers. Hub endpoint 1 is used
to transmit hub status change information to the host PC.

8x931HA USB hub operations fall into two categories: hub repeater operations and hub controller
operations. The hub controller is split among four modules: the serial bus interface engine, the
hub interface unit, the hub endpoint 0 transmit and receive FIFOs, and the 8x931HA CPU. See
Chapter 7, “USB Hub”. The following subsections discuss the role of each module.

2.4.3 Hub Repeater

The repeater is the connectivity manager for the 8x931HA. It detects the connection or discon
nection of devices on the external downstream ports and manages the upstream/downstre
nectivity for data packets. It keeps track of hub port status, manages connectivity, and pe
power management for external downstream ports. The repeater supports both full-spe
Mbps) and low-speed (1.5 Mbps) data traffic. The repeater also controls bus fault detectio
recovery. Downstream port control is managed primarily by the HIU.

2.4.4 Serial Bus Interface Engine (SIE)

The SIE is the USB communication protocol interpreter. It places data on and accepts dat
the bus. On the 8x931HA, the hub interface and the function interface share the SIE. This is
sible because the host communicates with only one USB device during any given transac

The internal downstream port is permanently attached to the SIE. The SIE provides serial-
allel conversion for data transfers from the host and parallel-to-serial conversion for data tra
to the host. For additional information on the SIE, see “SIE Details” on page 6-34.

2.4.5 Hub Interface Unit (HIU)

The HIU uses special function registers (SFRs) to control the operation of the hub and to m
the status of the hub and its downstream ports. Control SFRs are set by firmware in resp
USB requests. Status SFRs are set by the repeater hardware. Refer to Chapter 7, “USB H
Chapter 8, “USB Programming Models” for a discussion on the use of the HIU SFRs.

2.4.6 Hub FIFOs

Hub FIFOs operate in the same manner as the function interface FIFOs. See Chapter 6
Function” for a detailed description of their operation. Hub endpoint 0 handles only contro
transfers. It is implemented with 8-byte transmit and receive FIFO data buffers. The max
packet size for hub control data transfers is eight bytes. Data received from the USB for en
2-13

8x931AA, 8x931HA USER’S MANUAL

 simul-
e baud
 of 11
can be
 2, you

e over-

onment
elf or a
 another

perat-
rrent
:

0 is stored in the receive FIFO for reading by firmware. Data to be sent to the host from hub end-
point 0 is loaded into the transmit FIFO.

Hub endpoint 1 transmits single-byte interrupt tokens to the host and does not have FIFO data
buffers.

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals reside outside the microcontroller core. They perform specialized func-
tions in hardware. Firmware controls the peripherals via their special function registers (SFRs).
The 8x931 has two peripherals: the timer/counter unit and the serial I/O port.

2.5.1 Timer/Counters

The timer/counter unit has three programmable 16-bit timer/counters. They can be clocked by the
divided-down system clock or an external timebase (timer operation) or by external events
(counter operation). They can be set up as 8-bit, 13-bit, or 16-bit timer/counters. You can program
them for special applications, such as capturing the time of an event on an external pin, outputting
a programmable clock signal on an external pin, or generating a baud rate for the serial I/O port.
Timer/counter events generate interrupt requests.

2.5.2 Serial I/O Port

The serial I/O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1–3) are full-duplex (i.e., the port can send and receive
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. Th
rate is generated by the overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame
bits: a start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit
used for parity checking or to specify that the frame contains an address and data. In mode
can use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use th
flow from timer 1 or timer 2 to determine the baud rate.

In its asynchronous modes (modes 1–3) the serial port can operate as a slave in an envir
where multiple slaves share a single serial line. It can accept a message intended for its
message that is being broadcast to all of the slaves, and it can ignore a message sent to
slave.

2.6 OPERATING CONDITIONS

The 8x931 is designed for a commercial operating environment and to accommodate the o
ing rates of the USB interface. For detailed specifications, refer to the cu
8x931AA/8x931HA Universal Serial Bus Peripheral Controller datasheet (order number
273108-001). For USB module operating rates, see “Clock and Reset Unit” on page 2-7.
2-14

3
Address Spaces

CHAPTER 3
ADDRESS SPACES

3.1 MEMORY ORGANIZATION IN 8x931 DEVICES

3.1.1 Logical Separation of Program and Data Memory

8x931 devices have separate address spaces for Program and Data Memory, as shown in Figure
3-2. The logical separation of Program and Data Memory allows the Data Memory to be accessed
by 8-bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Never-
theless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program Memory can only be read, not written to. There can be up to 64K bytes of Program
Memory. In the ROM version, the lowest 8K bytes of Program Memory are provided on-chip.
Refer to Table 2-1 on page 2-3 for the amount of on-chip ROM on each device. In the ROMless
versions, all Program Memory is external. The read strobe for external Program Memory is the
signal PSEN# (Program Store Enable).

Data Memory occupies a separate address space from Program Memory. Up to 64K bytes of ex-
ternal RAM can be addressed in the external Data Memory space. The CPU generates read and
write signals, RD# and WR#, as needed during external Data Memory accesses.

External Program Memory and external Data Memory may be combined if desired by applying
the RD# and PSEN# signals to the inputs of an AND gate and using the output of the gate as the
read strobe to the external Program/Data memory.

3.1.2 Program Memory

Figure 3-1 shows a map of the lower part of the Program Memory. After reset, the CPU begin
execution from location 0000H.

As shown in Figure 3-1, each interrupt is assigned a fixed location in Program Memory. The in-
terrupt causes the CPU to jump to that location, where it commences execution of the service rou-
tine. External Interrupt 0, for example, is assigned to location 0003H. If External Interrupt 0 is
going to be used, its service routine must begin at location 0003H. If the interrupt is not going to
be used, its service location is available as general purpose Program Memory.
3-1

8x931AA, 8x931HA USER’S MANUAL
Figure 3-1. MCS® 51 Program Memory

The interrupt service locations are spaced at 8-byte intervals: 0003H for External Interrupt 0,
000BH for Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt ser-
vice routine is short enough (as is often the case in control applications), it can reside entirely
within that 8-byte interval. Longer service routines can use a jump instruction to skip over sub-
sequent interrupt locations, if other interrupts are in use.

The lowest 8K bytes of Program Memory can be either in the on-chip ROM or in an external
ROM. This selection is made by strapping the EA# (External Access) pin to either VCC or VSS.

In the 8K byte ROM devices, EA# = VCC selects addresses 0000H through 1FFFH to be internal,
and addresses 2000H through FFFFH to be external.

If the EA# pin is strapped to VSS, then all program fetches are directed to external ROM. The
ROMless parts must have this pin externally strapped to VSS to enable them to execute properly.

The read strobe to external ROM, PSEN#, is used for all external program fetches. PSEN# is not
activated for internal program fetches.

Program Memory addresses are always 16 bits wide, even though the actual amount of Program
Memory used may be less than 64K bytes. External program execution sacrifices two of the 8-bit
ports, P0and P2, to the function of addressing the Program Memory.

A4480-01

002BH

0023H

001BH

0013H

000BH

0003H

0000H

8 Bytes

RESET

Interrupt
Locations
3-2

ADDRESS SPACES
3.1.3 Data Memory

Figure 3-2 shows the internal and external Data Memory spaces available to the 8x931 user.

Figure 3-2. 8x931 Memory Structure

Internal Data Memory is mapped in Figure 3-3. The memory space is shown divided into three
blocks, which are generally referred to as the Lower 128, the Upper 128, and SFR space. Internal
Data Memory addresses are always one byte wide, which implies an address space of only 256
bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, us-
ing a simple trick. Direct addresses higher than 7FH access one memory space, and indirect ad-
dresses higher than 7FH access a different memory space. Thus Figure 3-3 shows the Upper 128
and SFR space occupying the same block of addresses, 80H through FFH, although they are phys-
ically separate entities.

The Lower 128 bytes of RAM are present in all MCS® 51 devices as mapped in Figure 3-4. The
lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these regis-
ters as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is

A 4475-01

External

EA# = 0
External

EA# = 1
Internal

FFFFH

FFH

00 0000

Program Memory
(Read Only)

PSEN#

0000

External

Internal

FFFFH

Data Memory
(Read/Write)

RD# WR#
3-3

8x931AA, 8x931HA USER’S MANUAL
in use. This allows more efficient use of code space, since register instructions are shorter than
instructions that use direct addressing.

Figure 3-3. Internal Data Memory

The next 16 bytes above the register banks form a block of bit-addressable memory space. The
MCS® 51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in
this area can be directly addressed by these instructions. The bit addresses in this area are 00H
through 7FH. All of the bytes in the Lower 128 can be accessed by either direct or indirect ad-
dressing. The Upper 128 can only be accessed by indirect addressing.

Figure 3-4. Upper and Lower 128 Bytes of Internal RAM

A 4477-01

FFH

80H
7FH

0

FFH

80H

Accessible
by indirect
addressing

only

Accessible
by direct

and indirect
addressing

Accessible
by direct

addressing only

Special
function
registers

Ports
Status and control bits
Timer
Registers
Stack pointers
accumulator
(etc.)

Upper
128

Lower
128

A 4476-01

11

FFH

7FH

2FH

1FH

17H

0FH

07H

80H

No bit-addressable
spaces

Available as stack space in
devices with 256 bytes RAM

20H

18H

10H

08H

0

Bit-addresseable space
(Bit addresses 0 - 7F)

4 Banks of 8 registers
(R0 - R7)

Reset value of
stack pointer

Bank select
bits in PSW

10

01

00
3-4

ADDRESS SPACES

n-
e bit

e Port
ressing.

on at-
 actu-

egisters
s and an
hich
Index-

 There
ccessed

rt num-
-23.

Rs by
3.2 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in the microcontroller core, the USB module, and the
on-chip peripherals. Memory maps showing the location of all the 8x931HA SFRs are presented
in Appendix C, “Registers”. 8x931AA SFRs are shown in Appendix E, “8x931AA Design Co
siderations”. The content of each register following device reset is given. An “x” indicates th
value following reset is indeterminate.

Figure 3-5 gives a brief look at the Special Function Register (SFR) space. SFRs include th
latches, timers, peripheral controls, etc. These registers can only be accessed by direct add

Figure 3-5. SFR Space

Blank locations in the SFR map are unimplemented, i.e., no register exists. If an instructi
tempts to write to an unimplemented SFR location, the instruction executes, but nothing is
ally written. If an unimplemented SFR location is read, it returns an unspecified value.

Endpoint-indexed SFRs are implemented as banks of registers. There is a set or bank of r
for each endpoint pair. Endpoint-indexed SFRs are accessed by means of the SFR addres
index value. The EPINDEX register specifies hub/function and the endpoint number (w
serves as the index value). See “Endpoint-indexed SFRs” on page 6-5 and “Hub Endpoint
ing Using EPINDEX” on page 7-11.

Port-indexed SFRs (HPCON, HPSC, and HPSTST) are implemented in a similar manner.
is a set or bank of these registers for each USB downstream port. Port-indexed SFRs are a
by means of the SFR address and an index value. The HPINDEX register contains the po
ber which serves as the index value. See “Hub Port Indexing Using HPINDEX” on page 7

Individual SFRs are presented in alphabetical order in Appendix C. Tables listing the SF
functional category are also given in Appendix C.

Register-mapped ports

Addresses that end in
0H or 8H are also
Bit-addressable

– Port Pins
– Accumulator
– PSW

(etc.)

FFH

E0H

B0H

A0H

90H

80H Port 0

Port 1

Port 2

Port 3

ACC
3-5

4
Programming
Considerations

ailed

 Intel’s
n be
s, Or-

 of the
Auxil-
y bit,

erves

 3-4 on
ection
S1 at

ns an
umber
CHAPTER 4
PROGRAMMING CONSIDERATIONS

The instruction set for the 8x931 supports the instruction set for the MCS® 51 architecture. This
chapter describes the addressing modes and summarizes the instruction set, which is divided into
data instructions, bit instructions, and control instructions. The program status word register is
also described. Appendix A, “Instruction Set Reference” contains an opcode map and a det
description of each instruction.

4.1 THE MCS® 51 INSTRUCTION SET

All members of the MCS 51 family execute the same instruction set. The MCS-51 instruction set
is optimized for 8-bit control applications. It provides a variety of fast addressing modes for ac-
cessing the internal RAM to facilitate byte operations on small data structures. The instruction set
provides extensive support for one-bit variables as a separate data type, allowing direct bit ma-
nipulation in control and logic systems that require Boolean processing.

An overview of the MCS 51 instruction set is presented below, with a brief description of how
certain instructions might be used. References to “the assembler” in this discussion are to
MCS 51 Macro Assembler, ASM51. More detailed information on the instruction set ca
found in the MCS 51 Macro Assembler User’s Guide (Order No. 9800937 for ISIS System
der No. 122752 for DOS Systems).

4.1.1 Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state
CPU. The PSW, shown in Figure 4-1, resides in SFR space. It contains the Carry bit, the
iary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a Parit
and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations, also s
as the “Accumulator” for a number of Boolean operations.

The bits RS0 and RSl are used to select one of the four register banks shown in Figure
page 3-4. A number of instructions refer to these RAM locations as R0 through R7. The sel
of which of the four banks is being referred to is made on the basis of the bits RS0 and R
execution time.

The Parity bit reflects the number of 1s in the Accumulator P = 1 if the Accumulator contai
odd number of 1s, and P = 0 if the Accumulator contains an even number of 1s. Thus the n
of 1s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

Table 4-1 shows the effects of instructions on the PSW flags.
4-1

8x931AA, 8x931HA USER’S MANUAL

Figure 4-1. Program Status Word Register

PSW Address: S:D0H
Reset State: 0000 0000B

7 0

CY AC F0 RS1 RS0 OV UD P

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 4-1).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 4-1).

5 F0 Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0–R7).

RS1 RS0 Bank Address

0 0 0 00H–07H
0 1 1 08H–0FH
1 0 2 10H–17H
1 1 3 18H–1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC).
4-2

PROGRAMMING CONSIDERATIONS
4.1.2 Addressing Modes

The addressing modes in the MCS 51 instruction set are as follows.

4.1.2.1 DIRECT ADDRESSING

In direct addressing the operand is specified by an 8-bit address field in the instruction. Only in-
ternal Data RAM and SFRs can be directly addressed.

4.1.2.2 INDIRECT ADDRESSING

In indirect addressing the instruction specifies a register which contains the address of the oper-
and. Both internal and external RAM can be indirectly addressed. The address register for 8-bit
addresses can be R0 or R1 of the selected register bank, or the Stack Pointer. The address register
for 16-bit addresses can only be the 16-bit "data pointer" register, DPTR.

4.1.2.3 REGISTER INSTRUCTIONS

The register banks, containing registers R0 through R7, can be accessed by certain instructions
which carry a 3-bit register specification within the opcode of the instruction. Instructions that
access the registers this way are code efficient, since this mode eliminates an address byte. When
the instruction is executed, one of the eight registers in the selected bank is accessed. One of four
banks is selected at execution time by the two bank select bits in the PSW.

Table 4-1. The Effects of Instructions on the PSW Flags

Instruction Type Instruction
Flags Affected (1), (4)

CY OV AC (2)

Arithmetic

ADD, ADDC, SUBB,
CMP

X X X

INC, DEC

MUL, DIV (3) 0 X

DA X

Logical
ANL, ORL, XRL, CLR A,
CPL A, RL, RR, SWAP

RLC, RRC X

Program Control
CJNE X

DJNZ

NOTES:
1. X = the flag can be affected by the instruction.

0 = the flag is cleared by the instruction.
2. The AC flag is affected only by operations on 8-bit operands.
3. If the divisor is zero, the OV flag is set, and the other bits are

meaningless.
4. The parity bit (PSW.0) is set or cleared by instructions that change

the contents of the accumulator (ACC).
4-3

8x931AA, 8x931HA USER’S MANUAL
4.1.2.4 REGISTER-SPECIFIC INSTRUCTIONS

Some instructions are specific to a certain register. For example, some instructions always oper-
ate on the Accumulator, or Data Pointer, etc., so no address byte is needed to point to it. The op-
code itself does this. Instructions that refer to the Accumulator as A, assemble as accumulator-
specific opcodes.

4.1.2.5 IMMEDIATE CONSTANTS

The value of a constant can follow the opcode in Program Memory. For example,

MOV A, # 100

loads the Accumulator with the decimal number 100. The same number could be specified in hex
digits as 64H.

4.1.2.6 INDEXED ADDRESSING

Only Program Memory can be accessed with indexed addressing, and it can only be read. This
addressing mode is intended for reading look-up tables in Program Memory. A 16-bit base reg-
ister (either DPTR or the Program Counter) points to the base of the table, and the Accumulator
is setup with the table entry number. The address of the table entry in Program Memory is formed
by adding the Accumulator data to the base pointer.

Another type of indexed addressing is used in the "case jump" instruction. In this case the desti-
nation address of a jump instruction is computed as the sum of the base pointer and the Accumu-
lator data.

Table 4-2. Addressing Modes for Data Instructions in the MCS® 51 Architecture

Mode Address Range of
Operand

Assembly Language
Reference Comments

Register 00H–1FH R0–R7
(Bank selected by PSW)

Immediate Operand in Instruction #data = #00H–#FFH

Direct

00H–7FH dir8 = 00H–7FH On-chip RAM

SFRs dir8 = 80H–FFH
or SFR mnemonic. SFR address

 Indirect

00H–FFH @R0, @R1
Accesses on-chip RAM or the
lowest 256 bytes of external
data memory (MOVX).

0000H–FFFFH @DPTR, @A+DPTR Accesses external data
memory (MOVX).

0000H–FFFFH @A+DPTR, @A+PC Accesses code memory
(MOVC).
4-4

PROGRAMMING CONSIDERATIONS

ltiply

to gen-
eration

 the
4.1.3 Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 4-3. The table indicates the addressing
modes that can be used with each instruction to access the <byte> operand. For example, the
ADD A, <byte> instruction can be written as:

ADD A,7FH (direct addressing)

ADD A,@RO (indirect addressing)

ADD A,R7 (register addressing)

ADD A, # 127 (immediate constant)

The execution times listed in Table 4-3 assume a 12 MHz clock frequency. All of the arithmetic
instructions execute in 1µs except the INC DPTR instruction, which takes 2 µs, and the Mu
and Divide instructions, which take 4 µs.

NOTE
Any byte in the internal Data Memory space can be incremented or
decremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is used
erate 16-bit addresses for external memory, so being able to increment it in one 16-bit op
is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts
16-bit product into the concatenated B and Accumulator registers.

Table 4-3. List of MCS® 51 Arithmetic Instructions

Mnemonic Operation
Addressing Modes Execution

Time (µs)Dir Ind Reg Imm

ADD A, <byte> A = A + <byte> X X X X 1

ADDOA, <byte> A= A+< byte>+C X X X X 1

SUBB A, <byte> A= A–<byte>-C X X X X 1

INC A A=A+1 Accumulator only 1

INC . <byte> <byte> =<byte> + 1 X X X 1

INC DPTR DPTR = DPTR + 1 Data Pointer only 2

DEC A A= A- 1 Accumulator only 1

DEC <byte> <byte> = <byte> – 1 X X X 1

MUL AB B:A=Bx A ACC and B only 4

DIV AB A = Int [A/B]
B = MOd[A/B] ACC and B only 4

DA A Decimal Adjust Accumulator only 1
4-5

8x931AA, 8x931HA USER’S MANUAL

e bits

in-
lso in
The DIV AB instruction divides the Accumulator by the data in the B register and leaves the 8-
bit quotient in the Accumulator, and the 8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic "divide" routines than in radix conversions
and programmable shift operations. An example of the use of DIV AB in a radix conversion will
be given later. In shift operations, dividing a number by 2n shifts its n bits to the right. Using DIV
AS to perform the division completes the shift in 4 µs and leaves the B register holding th
that were shifted out.

The DA A instruction is for BCD arithmetic operations. In BCD arithmetic, ADD and ADDC
structions should always be followed by a DA A operation, to ensure that the result is a
BCD.

NOTE
DA A will not convert a binary number to BCD. The DA A operation produces
a meaningful result only as the second step in the addition of two BCD bytes.

Table 4-4. List of MCS® 51 Logical Instructions

Mnemonic Operation
Addressing Modes Execution

Time (µs)Dir Ind Reg Imm

ANL A, <byte> A = A .AND. <byte> X X X X 1

ANL <byte>, A <byte> = <byte> .AND. A X 1

ANL <byte>, #data <byte> = <byte> .AND. #data X 2

ORL A, < byte> A = A.OR. <byte> X X X X 1

ORL <bvte>,A <byte> = <byte> .OR. A X 1

ORL <byte>, #data <byte> = <byte> .OR. #data X 2

XRL A,< byte> A = A .XOR. <byte> X X X X 1

XRL <byte>,A <byte> = <byte> .XOR. A X 1

XRL <byte>, #data <byte> = <byte> .XOR. #data X 2

CLR A A=00H Accumulator only 1

CPL A A = .NOT.A Accumulator only 1

RL A Rotate ACC Left 1 bit Accumulator only 1

RLC A Rotate Left through Carry Accumulator only 1

RR A Rotate ACC Right 1 bit Accumulator only 1

RRC A Rotate Right through Carry Accumulator only 1

SWAP A Swap Nibbles in A Accumulator only 1
4-6

PROGRAMMING CONSIDERATIONS

Hz

 Mem-
or. The
 as in

 effort
mu-
ight

is is
inary
wing

d the
 nib-
4.1.4 Logical Instructions

Table 4-4 shows the list of MCS 51 logical instructions. The instructions that perform Boolean
operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-bit basis.
That is, if the Accumulator contains 00110101B and <byte> contains 01010011B, then

ANL A, <byte>

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the <byte> operand are listed in Table 4-4. Thus,
the ANL A, <byte> instruction may take any of the forms:

ANL A,7FH (direct addressing)

ANL A,@Rl (indirect addressing)

ANL A,R6 (register addressing)

ANL A, # 53H (immediate constant)

All of the logical instructions that are Accumulator-specific execute in l µs (using a 12 M
clock). The others take 2 µs.

Note that Boolean operations can be performed on any byte in the lower 128 internal Data
ory space or the SFR space using direct addressing, without having to use the Accumulat
XRL <byte >, #data instruction, for example offers a quick and easy way to invert port bits,

XRL Pl,#0FFH

If the operation is in response to an interrupt, not using the Accumulator saves the time and
to stack it in the service routine. The Rotate instructions (RL & RLC A, etc.) shift the Accu
lator 1 bit to the left or right. For a left rotation, the MSB rolls into the LSB position. For a r
rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator. Th
a useful operation in BCD manipulations. For example, if the Accumulator contains a b
number which is known to be less than 100, it can be quickly converted to BCD by the follo
code:

MOV B, # 10

DIV AB

SWAP A

ADD A,B

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, an
ones digit in the B register. The SWAP and ADD instructions move the tens digit to the high
ble of the Accumulator, and the ones digit to the low nibble.
4-7

8x931AA, 8x931HA USER’S MANUAL

RAM
f data
ing.

 stack.
but the
 can go

 bytes

Point-
sses.

e data.
nge.

 prob-
n be
o aid
 num-

eir sta-
4-8

4.1.5 Data Transfers

4.1.5.1 Internal RAM

Table 4-5 shows the menu of instructions that are available for moving data around within the
internal memory spaces, and the addressing modes that can be used with each one. With a 12
MHz clock, all of these instructions execute in either 1 or 2 µs.

The MOV <dest>, <src> instruction allows data to be transferred between any two internal
or SFR locations without going through the Accumulator. Remember the Upper 128 bytes o
RAM can be accessed only by indirect addressing, and SFR space only by direct address

NOTE
In all MCS 51 devices, the stack resides in on-chip RAM and grows upwards.

The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into the
PUSH and POP use only direct addressing to identify the byte being saved or restored,
stack itself is accessed by indirect addressing using the SP register. This means the stack
into the Upper 128, if they are implemented, but not into SFR space.

In devices that do not implement the Upper 128, if the SP points to the Upper 128, PUSHed
are lost, and POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the Data
er (DPTR) for look-up tables in Program Memory, or for 16-bit external Data Memory acce

The XCH A, <byte> instruction causes the Accumulator and addressed byte to exchang
The XCHD A, @Ri instruction is similar, but only the low nibbles are involved in the excha

To see how XCH and XCHD can be used to facilitate data manipulations, consider first the
lem of shifting an 8-digit BCD number two digits to the right. Figure 4-2 shows how this ca
done using direct MOVs, and for comparison how it can be done using XCH instructions. T
in understanding how the code works, the contents of the registers that are holding the BCD
ber and the content of the Accumulator are shown alongside each instruction to indicate th
tus after the instruction has been executed.

Table 4-5. List of MCS® 51 Data Transfer Instructions

Mnemonic Operation
Addressing Modes Execution

Time (µs)Dir Ind Reg Imm

MOV A, <src> A = <src> X X X X 1

MOV <dest> ,A <dest> = A X X X 1

MOV <dest>, <src> <dest> = <src> X X X X 2

MOV DPTR,#data16 dptr = 16-bit immediate constant X 2

PUSH <src> INC SP:MOV”@SP”,<src> X 2

POP <dest> MOV <dest>, “@SP”; DEC SP X 2

XCH A, <byte> ACC and <byte> exchange data X X X 1

XCHD A, @Ri ACC and @Ri exchange low nibbles X 1

PROGRAMMING CONSIDERATIONS

 time
 almost

ows a
ain,
e each
4-9

After the routine has been executed, the Accumulator contains the two digits that were shifted out
on the right. Doing the routine with direct MOVs uses 14 code bytes and 9 µs of execution
(assuming a 12 MHz clock). The same operation with XCHs uses less code and executes
twice as fast.

To right-shift by an odd number of digits, a one-digit shift must be executed. Figure 4-3 sh
sample of code that will right-shift a BCD number one digit, using the XCHD instruction. Ag
the contents of the registers holding the number and of the Accumulator are shown alongsid
instruction.

2A 2B 2C 2D 2E ACC

MOV A,2EH 00 12 34 56 78 78

MOV 2EH,2DH 00 12 34 56 56 78

MOV 2DH,2CH 00 12 34 34 56 78

MOV 2CH,2BH 00 12 12 34 56 78

MOV 2BH,#0 00 00 12 34 56 78

(a) Using direct MOVs: 14 bytes, 9 µs

2A 2B 2C 2D 2E ACC

CLR A 00 12 34 56 78 00

XCH A,2BH 00 00 34 56 78 12

XCH A,2CH 00 00 12 56 78 34

XCH A,2DH 00 00 12 34 78 56

XCH A,2EH 00 00 12 34 56 78

(b) Using XCHs: 9 bytes, 5 µs

Figure 4-2. Shifting BCD Number Two Digits Right

8x931AA, 8x931HA USER’S MANUAL
First, pointers R1 and R0 are set up to point to the two bytes containing the last four BCD digits.
Then a loop is executed which leaves the last byte, location 2EH, holding the last two digits of
the shifted number. The pointers are decremented, and the loop is repeated for location 2DH. The
CJNE instruction (Compare and if Not Equal) is a loop control that will be described later.

The loop is executed from LOOP to CJNE for R1=2EH, 2DH, 2CH and 2BH. At that point the
digit that was originally shifted out on the right has propagated to location 2AH. Since that loca-
tion should be left with 0s, the lost digit is moved to the Accumulator.

4.1.5.2 External RAM

Table 4-6 shows a list of the Data Transfer instructions that access external Data Memory. Only
indirect addressing can be used. The choice is whether to use a one-byte address, @Ri, where Ri
can be either R0 or R1 of the selected register bank, or a two-byte address, @DPTR. The disad-
vantage to using 16-bit addressees if only a few K bytes of external RAM are involved is that 16-
bit addresses use all 8-bits of Port 2 as address bus. On the other hand, 8-bit addresses allow one
to address a few K bytes of RAM, as shown in Figure 5, without having to sacrifice all of Port 2.

All of these instructions execute in 2 µs, with a 12 MHz clock.

2A 2B 2C 2D 2E ACC

MOV R1,#2EH 00 12 34 56 78 XX

MOV R0,#2DH 00 12 34 56 78 XX

loop for R1 = 2EH

LOOP: MOV A,@R1 00 12 34 56 78 78

XCHD A,@R0 00 12 34 58 78 76

SWAP A 00 12 34 58 78 67

MOV @R1,A 00 12 34 58 67 67

DEC R1 00 12 34 58 67 67

DEC R0 00 12 34 58 67 67

CJNE R1,#2AH, LOOP

loop for R1 = A,2DH: 00 12 38 45 67 45

loop for R1 = A,2CH: 00 18 23 45 67 23

loop for R1 = A,2BH: 08 01 23 45 67 01

CLR A 08 01 23 45 67 00

XCH A,2AH 00 01 23 45 67 08

Figure 4-3. Shifting BCD Number One Digit Right
4-10

PROGRAMMING CONSIDERATIONS

at all,

mory.
ad, not

bered
 Data

sed as
red entry
NOTE
In all external Data RAM accesses, the Accumulator is always either the
destination or source of the data.

The read and write strobes to external RAM are activated only during the execution of a MOVX
instruction. Normally these signals are inactive, and in fact if they’re not going to be used
their pins are available as extra I/O lines.

4.1.5.3 Lookup Tables

Table 4-7 shows the two instructions that are available for lookup tables in Program Me
Since these instructions access only Program Memory, the lookup tables can only be re
updated The mnemonic is MOVC for “move constant”.

If the table access is to external Program Memory, then the read strobe is PSEN#.

The first MOVC instruction in Table 4-7 can accommodate a table of up to 256 entries, num
0 through 255. The number of the desired entry is loaded into the Accumulator, and the
Pointer is set up to point to beginning of the table. Then

MOVC A, @A+DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, except the Program Counter (PC) is u
the table base, and the table is accessed through a subroutine. First the number of the desi
is loaded into the Accumulator, and the subroutine is called:

MOV A, ENTRY_NUMBER

Table 4-6. Transfer Instructions for Accessing External Data Memory Space

Address
Width Mnemonic Operation Execution

Time (µs)

8 bits MOVX A,@Ri Read external
RAM @Ri 2

8 bits MOVX@Ri,A Write external
RAM @Ri 2

16 bits MOVX A,@DPTR Read external
RAM @DPTR 2

16 bits MOVX@DPTR,A Write external
RAM @DPTR 2

Table 4-7. MCS® 51 Read Instructions

Mnemonic Operation Execution
Time (µs)

MOVC A,@A+DPTR Read Pgm Memory at (A+DPTR) 2

MOVC A,@A+PC Read Pgm Memory at (A+PC) 2
4-11

8x931AA, 8x931HA USER’S MANUAL

type
because
uction.
CALL TABLE

The subroutine “TABLE” would look like this:

TABLE: MOVC A,@A+PC
RET

The table itself immediately follows the RET (return) instruction in Program Memory. This
of table can have up to 255 entries, numbered 1 through 255. Number 0 can not be used,
at the time the MOVC instruction is executed, the PC contains the address of the RET instr
An entry numbered 0 would be the RET opcode itself.

4.1.6 Boolean Instructions

MCS® 51 devices contain a complete Boolean (single-bit) processor. The internal RAM contains
128 addressable bits, and the SFR space can support up to 128 other addressable bits. All of the
port lines are bit-addressable, and each one can be treated as a separate single-bit port. The in-
structions that access these bits are not just conditional branches, but a complete menu of move,
set, clear, complement, OR, and AND instructions. These kinds of bit operations are not easily
obtained in other architectures with any amount of byte-oriented software.

Table 4-8. MCS® 51Boolean Instructions

Mnemonic Operation Execution
Time (µs)

ANL C, bit C = C . AND.bit 2

ANL C,/bit C = C . AND..NOT.bit 2

ORL C,bit C = C .OR. bit 2

ORL C,/bit C = C. OR. .NOT. bit 2

MOV C,bit C = bit 1

MOV bit,C bit = C 2

CLR C C = 0 1

CLR bit bit = 0 1

SETB C C=1 1

SETB bit bit = 0 1

CPL C C = .NOT.C 1

CPL bit bit = .NOT. bit 1

JC rel Jump if C = 1 2

JNC rel Jump if C = 0 2

JB bit,rel Jump if bit = 1 2

JNB bit,rel Jump if bit = 0 2

JBC bit,rel Jump if bit = 1; CLR bit 2
4-12

PROGRAMMING CONSIDERATIONS

ment

t byte
The instruction set for the Boolean processor is shown in Table 4-8. All bit accesses are by direct
addressing. Bit addresses 00H through 7FH are in the Lower 128, and bit addresses 80H through
FFH are in SFR space.

Note how easily an internal flag can be moved to a port pin:

MOV C ,FLAG
MOV P1.0 ,C

In this example, FLAG is the name of any addressable bit in the Lower 128 or SFR space. An I/O
line (the LSB of Port 1, in this case) is set or cleared depending on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single -bit Accumulator of the Boolean processor. Bit
instructions that refer to the Carry bit as C assemble as Carry-specific instructions (CLR C, etc).
The Carry bit also has a direct address, since it resides in the PSW register, which is bit-address-
able.

Note that the Boolean instruction set includes ANL and ORL operation, but not the XRL (Exclu-
sive OR) operation. An XRL operation is simple to implement in software. Suppose, for example,
it is required to form the Exclusive OR of two bits:

C = bit1 .XRL. bit2

The software to do that could be as follows:

MOV C, bit1
JNB bit2, OVER
CPL C

OVER: (continue)

First, bit1 is moved to the Carry. If bit2 = 0, then C now contains the correct result. That is, bit1
.XRL. bit2 = bit1 if bit2 = 0. On the other hand, if bit2 = 1, C now contains the complement of
the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test instructions which execute a jump
if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC, JNB). In the above
case, bit2 is being tested, and if bit2 = 0, the CPL C instruction is jumped over.

JBC executes the jump if the addressed bit is set, and also clears the bit. Thus a flag can be tested
and cleared in one operation.

All the PSW bits are directly addressable, so the Parity bit, or the general purpose flags, for ex-
ample, are also available to the bit-test instructions.

4.1.6.1 Relative Offset

The destination address for these jumps is specified to the assembler by a label or by an actual
address in Program Memory. However, the destination address assembles to a relative offset byte.
This is a signed (two’s complement) offset byte which is added to the PC in two’s comple
arithmetic if the jump is executed.

The range of the jump is therefore –128 to +127 Program Memory bytes relative to the firs
following the instruction.
4-13

8x931AA, 8x931HA USER’S MANUAL

 and
hich

ove. The
stance

on is 3
 be any-

ion is 2
ed by
xecut-
 same.
JMP.

e way:
 correct
 dis-
nto the

d at ex-
 is set
n a 5-
 to be
4.1.7 Jump Instructions

Table 4-9 shows the list of unconditional jumps.

The table lists a single “JMP addr” instruction, but in fact there are three—SJMP, LJMP
AJMP—which differ in the format of the destination address. JMP is a generic mnemonic w
can be used if the programmer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address as a relative offset, as described ab
instruction is 2 bytes long, consisting of the opcode and the relative offset byte. The jump di
is limited to a range of –128 to +127 bytes relative to the instruction following the SJMP.

The LJMP instruction encodes the destination address as a 16-bit constant. The instructi
bytes long, consisting of the opcode and two address bytes. The destination address can
where in the 64K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The instruct
bytes long, consisting of the opcode, which itself contains 3 of the 11 address bits, follow
another byte containing the low 8 bits of the destination address. When the instruction is e
ed, these 11 bits are simply substituted for the low 11 bits in the PC. The high 5 bits stay the
Hence, the destination has to be within the same 2K block as the instruction following the A

In all cases the programmer specifies the destination address to the assembler in the sam
as a label or as a 16-bit constant. The assembler will put the destination address into the
format for the given instruction. If the format required by the instruction will not support the
tance to the specified destination address, a “Destination out of range” message is written i
List file.

The JMP @A+DPTR instruction supports case jumps. The destination address is compute
ecution time as the sum of the 16-bit DPTR register and the Accumulator. Typically, DPTR
up with the address of a jump table, and the Accumulator is given an index to the table. I
way branch, for example, an integer 0 through 4 is loaded into the Accumulator. The code
executed might be as follows:

MOV DPTR,#JUMP_TABLE

MOV A,INDEX_NUMBER

Table 4-9. Unconditional Jumps in MCS® 51 Devices

Mnemonic Operation Execution
Time (µs)

JMP addr Jump to addr 2

JMP @A+DPTR Jump to A+DPTR 2

CALL addr Call subroutine at addr 2

RET Return from subroutine 2

RETI Return from interrupt 2

NOP No operation 1
4-14

PROGRAMMING CONSIDERATIONS

nd
LL
ddress

ere in
brou-
e 11-
g the

me way:
mat for

llow-

T and
there
cal to

umps
istance
tant
me way
RL A

JMP @A+DPTR

The RL A instruction converts the index number (0 through 4) to an even number on the range 0
through 8, because each entry in the jump table is 2 bytes long:

JUMP_TABLE:

AJMP CASE_0
AJMP CASE_1
AJMP CASE_2
AJMP CASE_3
AJMP CASE_4

Table 4-9 shows a single “CALL addr” instruction, but there are two of them—LCALL a
ACALL—which differ in the format in which the subroutine address is given to the CPU. CA
is a generic mnemonic which can be used if the programmer does not care which way the a
is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be anywh
the 64K Program Memory space. The ACALL instruction uses the 11-bit format, and the su
tine can be anywhere in the 64K Program Memory space. The ACALL instruction uses th
bit format, and the subroutine must be in the same 2K block as the instruction followin
ACALL.

In any case, the programmer specifies the subroutine address to the assembler in the sa
as a label or as a 16-bit constant. The assembler will put the address into the correct for
the given instructions.

Subroutines should end with a RET instruction, which returns execution to the instruction fo
ing the CALL.

RETI is used to return from an interrupt service routine. The only difference between RE
RETI is that RETI tells the interrupt control system that the interrupt in progress is done. If
is no interrupt in progress at the time RETI is executed, then the RETI is functionally identi
RET.

Table 4-10 shows the list of conditional jumps available to the MCS 51 user. All of these j
specify the destination address by the relative offset method, and so are limited to a jump d
of –128 to +127 bytes from the instruction following the conditional jump instruction. Impor
to note, however, the user specifies to the assembler the actual destination address the sa
as the other jumps: as a label or a 16-bit constant.
4-15

8x931AA, 8x931HA USER’S MANUAL

bytes
he sec-
There is no Zero bit in the PSW. The JZ and JNZ instructions test the Accumulator data for that
condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a loop
N times, load a counter byte with N and terminate the loop with a DJNZ to the beginning of the
loop, as shown below for N = 10:

MOV COUNTER,#10

LOOP: (begin loop)

*

*

*

(end loop)

DJNZ COUNTER,LOOP

(continue)

The CJNE instruction (Compare and Jump if Not Equal) can also be used for loop control as in
Figure 4-3. Two bytes are specified in the operand field of the instruction. The jump is executed
only if the two bytes are not equal. In the example of Figure 4-3, the two bytes are the data in R1
and the constant 2AH. The initial data in R1 is 2EH. Every time the loop is executed, R1 is dec-
remented, and the looping is to continue until the R1 data reaches 2AH.

Another application of this instruction is in “greater than, less than” comparisons. The two
in the operand field are taken as unsigned integers. If the first is greater than or equal to t
ond, then the Carry bit is cleared.

Table 4-10. Conditional Jumps in MCS® 51 Devices

Mnemonic Operation
Addressing Modes Execution

Time (µs)Dir Ind Reg Imm

JZ rel Jump if A = 0 Accumulator only 2

JNZ rel Jump if A not equal to 0 Accumulator only 2

DJNZ <byte> , rel Decrement and jump if not zero X X 2

CJNE A, <byte> , rel Jump if A not equal to <byte> X X 2

CJNE <byte> , #data,rel Jump if <byte> not equal to #data X X 2
4-16

5
Interrupt System

CHAPTER 5
INTERRUPT SYSTEM

5.1 OVERVIEW

The 8x931, like other control-oriented microcontroller architectures, employs a program interrupt
method. This operation branches to a subroutine and performs some service in response to the
interrupt. When the subroutine completes, execution resumes at the point where the interrupt oc-
curred. Interrupts may occur as a result of internal 8x931 activity (e.g., timer overflow) or at the
initiation of electrical signals external to the microcontroller(e.g., keyboard scan). In all cases, in-
terrupt operation is programmed by the system designer, who determines priority of interrupt ser-
vice relative to normal code execution and other interrupt service routines. All of the interrupts
are enabled or disabled by the system designer and may be manipulated dynamically.

A typical interrupt event chain occurs as follows:

1. An internal or external device initiates an interrupt-request signal. This signal, connected
to an input pin (see Table 5-1) and periodically sampled by the 8x931, latches the event
into a flag buffer.

2. The interrupt handler compares the priority of the flag to the priority of other interrupts. A
high priority causes the handler to set an interrupt flag. This signals the instruction
execution unit to execute a context switch.

3. This context switch breaks the flow of the instruction sequence. The execution unit
completes the current instruction prior to a save of the program counter (PC) and reloads
the PC with the start address of a firmware service routine.

4. The firmware service routine executes assigned tasks and as a final activity performs a
RETI (return from interrupt instruction).

5. The RETI instruction signals completion of the interrupt, resets the interrupt-in-progress
priority, and reloads the program counter.

6. Program operation then continues from the original point of interruption.

Table 5-1. Interrupt System Input Signals

Signal
Name Type Description Multiplexed

With

INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the
TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INT0#. If bits
IT1:0 are clear, bits IE1:0 are controlled by a low-level trigger on
INT1:0#.

P3.3:2

KSI7:0 I Keyboard Scan Input. Schmitt-trigger inputs with firmware-
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.

AD7:0/
P0.7:0

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Pin Descriptions”.
5-1

8x931AA, 8x931HA USER’S MANUAL
Figure 5-1 illustrates the interrupt control system. The 8x931 has ten maskable interrupt sources.
These include two external interrupts (INT0# and INT1#), three timer interrupts (timers 0, 1 and
2), a serial port interrupt, a keyboard scan interrupt, and three USB interrupts (one of which dou-
bles as a hub interrupt). Each interrupt has an interrupt request flag, which can be set by firmware
as well as by hardware (see Table 5-6 on page 5-26). For some interrupts, hardware clears the
request flag when it grants the interrupt. Firmware can clear any request flag to cancel an impend-
ing interrupt.

There are three types of USB interrupts, as shown in Figure 5-1. The USB function interrupt, used
to control the flow of non-isochronous data; the hub/any start-of-frame interrupt (SOF), used to
signal a hub interrupt or to monitor the transfer of isochronous data; and the global suspend/re-
sume interrupt, used to allow USB power control and to provide a USB reset separation interrupt.
These interrupts are enabled using the IEN1 register. See Table 5-6 on page 5-26 and Figure 5-11.
5-2

5-3

INTERRUPT SYSTEM

Figure 5-1. Interrupt Control System

SOFH.6

ASOFStart of
Frame

SOFIE

HRXD0

HTXD0Transmit

Receive 0

HIFLG

SOFH.5

0

1

IPH1/IPL1IEN1

A5538-01

0

0

1

FRXIEx

FTXIEx

FRXDx

FTXDx

USB Function

Transmit

Receive

EF

1

ESR

2

1

USB Hub

FIFLG

0

0

1

HRXE0

HTXE0

ESOF/Hub

FIE

HIE

EA

Keyboard Scan
(INT2#)

KSI7:0

IE0

INT0#

Timer 0

IE1

0

1

INT1#

Timer 1

IT0
(TCON.0)

IT1
(TCON.2)

Interrupt Enable Priority Select

EX0

ET0

EX1

ET1

EX2

TF0

IE2

TF1

In
te

rr
up

t P
ol

lin
g

S
eq

ue
nc

e

Highest
Priority
Interrupt

EA
External

External

TCON.7

TCON.3

TCON.5

TCON.1

KBCON.5

0

1

IT0
(TCON.0)

IPH0/IPL0

EA

IEN0
External

0

1

IT2
(KBCON.4)

KSEN

KBCON.7

0

1

1

GRSM

URST
USB

Reset
Separation PCON1.3

GSUS
USB

Suspend

USB
Resume

PCON1.0

PCON1.1

PCON1.4

URDIS

Lowest Priority Interrupt

ES

ET2

RI

TI

TF2

EXF2

Receive

Transmit

Timer 2

T2EX

Serial Port

SCON.0

T2CON.7

SCON.1

T2CON.6

0

1

2

3

4

5

7

8x931AA, 8x931HA USER’S MANUAL
SFRs used by the interrupt system are listed in Table 5-2. Figure 5-2 shows the bits contained in
the interrupt SFRs.

Table 5-2. Interrupt System Special Function Registers

Mnemonic Description Address Page

FIE USB Function Interrupt Enable Register. Enables and
disables the receive and transmit done interrupts for the
function endpoints.

A2H page 5-9

FIFLG USB Function Interrupt Flag Register. Contains the USB
function’s transmit and receive done interrupt flags for non-
isochronous endpoints.

C0H page 5-11

HIE Hub Interrupt Enable Register. Contains the hub interrupt
enable bits.

A1H page 5-15

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt status
flags.

E8H page 5-16

IEN0 Interrupt Enable Register 0. Enables individual programmable
interrupts. Also provides a global enable for the programmable
interrupts. The reset value for this register is zero (interrupts
disabled).

A8H page 5-24

IEN1 Interrupt Enable Register1. Enables individual programmable
interrupts for the USB interrupts. The reset value of this register
is zero (interrupts disabled).

B1H page 5-25

IPL0 Interrupt Priority Low Register 0. Establishes relative priority
for programmable interrupts. Used in conjunction with IPH0.

B8H page 5-28

IPH0 Interrupt Priority High Register 0. Establishes relative priority
for programmable interrupts. Used in conjunction with IPL0.

B7H page 5-27

IPL1 Interrupt Priority Low Register 1. Establishes relative priority
for programmable interrupts. Used in conjunction with IPH1.

B2H page 5-30

IPH1 Interrupt Priority High Register 1. Establishes relative priority
for programmable interrupts. Used in conjunction with IPL1.

B3H page 5-29

KBCON Keyboard Control Register. This register controls the
keyboard scan input and output activity, enables and configures
the keyboard scan interrupt, and drives the keyboard LEDs.

F8H page 12-1

PCON1 USB Power Control. Contains USB global suspend and
resume interrupt bits. Also contains the USB reset separation
enable and interrupt bits.

DFH page 14-4

SOFH Start of Frame High Register. Contains isochronous data
transfer enable and interrupt bits and the upper-three bits of the
11-bit time stamp received from the host.

D3H page 5-12

SOFL Start of Frame Low Register. Contains the lower-eight bits of
the 11-bit time stamp received from the host.

D2H page 5-13

NOTE: Other SFRs are described in their respective chapters and in Appendix C,
“Registers”.
5-4

INTERRUPT SYSTEM
Many 8x931 interrupts are similar to the interrupts of other MCS® 51 microprocessors. These in-
terrupts are shown in Table 5-4. Particulars of the USB and hub interrupts are given in Table 5-6.

5.2 INTERRUPT SOURCES

Interrupt sources for the 8x931 include external interrupts, timer interrupts, a keyboard scan in-
terrupt, USB function transmit and receive interrupts, a USB start-of-frame interrupt, a USB glo-
bal suspend and resume interrupt, and a separate USB-only reset interrupt.

These interrupts are described in the following subsections.

7 0

FIE — — FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

FIFLG — — FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

HIE — — — — — — HRXE0 HTXE0

HIFLG — — — — — — HRXD0 HTXD0

IEN0 EA — ET2 ES ET1 EX1 ET0 EX0

IEN1 EX2 — — — — ESR EF ESOF

IPL0 — — IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

IPH0 — — IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

IPL1 IPL1.7 — — — — IPL1.2 IPL1.1 IPL1.0

IPH1 IPH1.7 — — — — IPH1.2 IPH1.1 IPH1.0

KBCON IE2 — KSEN IT2 LED3 LED2 LED1 LED0

PCON1 — — — URDIS URST RWU GRSM GSUS

SOFH SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

SOFL TS7:0

Figure 5-2. Bits of the Interrupt SFRs
5-5

8x931AA, 8x931HA USER’S MANUAL

 MHz).
etec-
 state
5.2.1 External Interrupts

External interrupts INT0# and INT1# (INTx#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits IT0 and IT1 in the TCON register (see Figure 10-6
on page 10-8). If ITx = 0, INTx# is triggered by a detected low at the pin. If ITx = 1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXx) in the
IEN0 register (see Figure 5-10 on page 5-24). Events on the external interrupt pins set the inter-
rupt request flags IEx in TCON. These request bits are cleared during the hardware vector to the
service routine only if the interrupt is negative-edge triggered. If the interrupt is level-triggered,
the interrupt service routine must clear the request bit. External hardware must deassert INTx#
before the service routine completes or an additional interrupt is requested. External interrupt pins
must be deasserted for at least four state times prior to a request.

External interrupt pins are sampled once every six state times (a frame length of 1 µs at 6
A level-triggered interrupt pin held low or high for any five-state time period guarantees d
tion. Edge-triggered external interrupts must hold the request pin low for at least seven
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Table 5-3. 8x931AA/HA Interrupt Control Matrix

Interrupt Name†

Keyboard
 Scan

[INT2#]
Timer 2 Serial

Port Timer 1 INT1# Timer 0 INT0#

Bit Name in IEN0
Register — ET2 ES ET1 EX1 ET0 EX0

Bit Name in IEN1
Register EX2 — — — — — —

Interrupt Priority-
Within-Level
(11 = Low Priority,
1 = High Priority)

7 6 5 4 3 2 1

Bit Names in:
IPH0
IPL0

IPH1.7
IPL1.7

IPH0.5
IPL0.5

IPH0.4
IPL0.4

IPH0.3
IPL0.3

IPH0.2
IPL0.2

IPH0.1
IPL0.1

IPH0.0
IPL0.0

Programmable for
Negative-edge
triggered or Level-
triggered Detect?

Yes No No No Yes No Yes

Interrupt Request
Flag in TCON or
KBCON Register

KBCON:
IE2

TCON:
TF2

EXF2

SCON:
RI
TI

TCON:
TF1

TCON:
IE1

TCON:
TF0

TCON:
IE0

Interrupt Request
Flag Cleared by
Hardware?

No No No Yes
Edge
Yes,

Level No
Yes

Edge
Yes,

Level No

ISR Vector Address 003BH 002BH 0023H 001BH 0013H 000BH 0003H

† Additional interrupts specific to USB and USB hub operation appear in Table 5-11.
5-6

INTERRUPT SYSTEM
5.2.2 Timer Interrupts

Two timer-interrupt request bits TF0 and TF1 (see TCON register, Figure 10-6 on page 10-8) are
set by timer overflow. The exception is Timer 0 in Mode 3, see Figure 10-4 on page 10-6. When
a timer interrupt is generated, the bit is cleared during the hardware vector to the interrupt service
routine. Timer interrupts are enabled by bits ET0 and ET1 in the IEN0 register (see Figure 5-10
on page 5-24).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON. Nei-
ther flag is cleared by a hardware vector to a service routine. In fact, the interrupt service routine
must determine if TF2 or EXF2 generated the interrupt, and then clear the bit. Timer 2 interrupt
is enabled by ET2 in register IEN0 (Figure 5-10).

5.2.3 Keyboard Scan Interrupt

The keyboard scan interrupt (INT2#) is actually an external interrupt similar to INT0# and
INT1#, except that it is based on the ANDed inputs KSI7:0. When any one of the KSI7:0 signals
drops to 0, the keyboard scan interrupt is triggered. This can happen on either a level 0 or the neg-
ative edge of a KSI7:0 signal, depending on the value of IT2 in KBCON (Figure 12-1 on page
12-1).

If the keyboard scan enable bit is set (KSEN in KBCON), the keyboard scan interrupt flag (called
the Interrupt 2 Flag and represented by the IE2 bit in KBCON) is set when one of the KSI7:0 sig-

Table 5-4. 8x931 USB/Hub Interrupt Control Matrix

Interrupt Name

USB Global
Suspend/Resume
 and USB Reset

USB Function
[Non-Isochronous

Endpoint]

USB Hub/SOF
[Isochronous

Endpoint]

Bit Name in IEN1
Register ESR EF ESOF

Interrupt Priority-
Within-Level
(11 = Low Priority,
1 = High Priority)

11 10 9

Bit Names in:
IPH1
IPL1

IPH1.2
IPL1.2

IPH1.1
IPL1.1

IPH1.0
IPL1.0

Interrupt Request
Flag

PCON1:
GSUS
GRSM
URST

FIFLG:
FTXDx, FRXDx

x=0,1,2

SOFH:ASOF,
HIFLG:

HTXD0, HRXD0

Interrupt Request
Flag Cleared by
Hardware?

No No No

ISR Vector Address 0053H 004BH 0043H
5-7

8x931AA, 8x931HA USER’S MANUAL

. Nei-
s RI or
nabled

us da-
rupts

icate
n in-
 The
 inter-
nals becomes zero. If external interrupt 2 is enabled (by setting EX2 in IEN1), a hardware inter-
rupt is triggered and program control vectors to 003BH.

See “Keyboard Interrupt Logic” on page 12-3 for additional information.

5.2.4 Serial Port Interrupt

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON register
ther flag is cleared by a hardware vector to the service routine. The service routine resolve
TI interrupt generation and clears the serial port request flag. The serial port interrupt is e
by bit ES in the IEN0 register (see Figure 5-10).

5.2.5 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochrono
ta: the receive done interrupt and the transmit done interrupt. Individual USB function inter
in the 8x931 are enabled by setting the corresponding bits in the FIE register (Figure 5-3).

NOTE
To use any of the USB function interrupts, the EF bit in the IEN1 register must
be enabled.

The USB Function Interrupt Flag register (FIFLG, as shown in Figure 5-4) is used to ind
pending function interrupts for a given endpoint. For all bits in FIFLG, a ‘1’ indicates that a
terrupt is actively pending for that endpoint; a ‘0’ indicates that the interrupt is not active.
interrupt status is shown in the FIFLG register regardless of the state of the corresponding
rupt enable bit in the FIE register (Figures 5-3).
5-8

INTERRUPT SYSTEM

 a re-

The USB function generates a receive done interrupt for an endpoint x (x = 0–2) by setting the
FRXDx bit in the FIFLG register (Figure 5-4). Only a non-isochronous transfer can cause
ceive done interrupt. Receive done interrupts are generated only when all of the following are
true:

• A valid SETUP or OUT token is received to function endpoint x.

• Endpoint x is enabled for reception (RXEPEN in EPCON = ‘1’).

• Receive is enabled (RXIE = ‘1’) and STALL is disabled (RXSTL = ‘0’) for OUT tokens (or
the token received is a SETUP token).

• A data packet is received with no time-out — regardless of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underrun).

FIE Address: A2H
Reset State: xx00 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the three function endpoints.

7 0

— — FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

Bit
Number

Bit
Mnemonic Function

7:6
—

Reserved:

Write zeros to these bits.

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIE0 Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXD0).

0 FTXIE0 Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint 0 (FTXD0).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value is still reflected in the FIFLG register.

Figure 5-3. FIE: USB Function Interrupt Enable Register
5-9

8x931AA, 8x931HA USER’S MANUAL

trans-
• There is no data sequence PID error.

Because the FRXDx bit is set (and a receive done interrupt is generated) regardless of transmis-
sion errors, this condition means either:

• Valid data is waiting to be serviced in the receive FIFO for function endpoint x and that the
data was received without error and has been acknowledged.

• Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must check
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endpoint x (x = 0–2) by setting the
FTXDx bit in the FIFLG register (Figure 5-4). Only a non-isochronous transfer can cause a
mit done interrupt. Transmit done interrupts are generated only when all of the following are true:

• A valid IN token is received to function endpoint x.

• Endpoint x is enabled for transmission (TXEPEN = ‘1’).

• Transmit is enabled (TXIE = ‘1’) and STALL is disabled (TXSTL = ‘0’).

• A data packet/byte count has been loaded in the transmit FIFO and was transmitted in
response to the IN token — regardless of whether or not a FIFO error occurs.

• An ACK is received from the host or there was a time-out in the SIE.

Because the FTXDx bit is set (and a transmit done interrupt is generated) regardless of transmis-
sion errors, this condition means either:

• The transmit data has been transmitted and the host has sent an acknowledgment to indicate
that is was successfully received.

• A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

NOTE
Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE, as shown in Figure 5-3) means that the interrupt is enabled and will
cause an interrupt to be signaled to the microcontroller. Clearing a bit in the
FIE register disables the associated interrupt source, which can no longer
cause an interrupt even though its value will still be reflected in the FIFLG
register (Figure 5-4).
5-10

INTERRUPT SYSTEM

5.2.6 USB Start-of-frame Interrupt

The USB start-of-frame interrupt (SOF) is used to control the transfer of isochronous data. The
8x931 frame timer attempts to synchronize with the host frame time automatically. When the
frame timer is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure
5-5). To enable the SOF interrupt, set the SOFIE bit in SOFH.

The 8x931 generates an SOF interrupt whenever a start-of-frame packet is received from the USB
lines, or whenever a start-of-frame packet should have been received (i.e., an artificial SOF). The
8x931 generates an SOF interrupt by setting the ASOF bit in the SOFH SFR. When an SOF in-
terrupt occurs, the 8x931 loads the current value of the 11-bit frame number issued with an SOF
token into the SOFH/SOFL registers (Figures 5-5 and 5-6). If an artificial SOF is generated, the
time stamp remains at its previous value — leaving it up to the firmware for updating.

FIFLG Address: C0H
Reset State: xx00 0000B

Function Interrupt Flag Register. Contains the USB function’s transmit and receive done interrupt
flags for non-isochronous endpoints.

7 0

— — FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXD0 Function Receive Done Flag, Endpoint 0

0 FTXD0 Function Transmit Done Flag, Endpoint 0

NOTES:
1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware. This SFR is bit-addressable.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

Figure 5-4. FIFLG: USB Function Interrupt Flag Register
5-11

8x931AA, 8x931HA USER’S MANUAL
NOTE
For the 8x931HA, the start-of-frame interrupt shares an interrupt vector with
the hub interrupt. When this interrupt is triggered, firmware must examine the
ASOF bit in the SOFH SFR to determine that it was the start-of-frame
interrupt that was triggered, and not the hub interrupt.

SOFH Address: D3H
Reset State: 0000 1000B

Start-of-frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time an SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TCLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

Figure 5-5. SOFH: Start-of-frame High Register
5-12

INTERRUPT SYSTEM

3 SOFODIS SOF# Pin Output Disable:

When set, the SOF# pin will be disabled and will respond like a port pin. The
SOF# pin will be driven to ‘1’ when SOFODIS is set. When this bit is clear,
setting the ASOF bit causes the SOF# pin to be toggled with a low pulse for
eight TCLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set. If an
artificial SOF is generated, the time stamp remains at its previous value and
it is up to firmware to update it. These bits are set and cleared by hardware.

SOFL Address: D2H
Reset State: 0000 0000B

Start-of-frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0

TS7:0

Bit
Number

Bit
Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with an
SOF token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Figure 5-6. SOFL: Start-of-frame Low Register

SOFH (Continued) Address: D3H
Reset State: 0000 1000B

Start-of-frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

Figure 5-5. SOFH: Start-of-frame High Register (Continued)
5-13

8x931AA, 8x931HA USER’S MANUAL

ts out-
The 8x931 uses the SOF interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from memory
and loaded into the transmit FIFO in preparation for transmission in the next frame; or

2. When receiving: An isochronous packet has been received in the previous frame and
needs to be retrieved from the receive FIFO.

Since the SOF packet could be corrupted, there is a chance that a new frame could be started with-
out successful reception of the SOF packet. For this reason, an artificial SOF is provided. The
frame timer signals a time-out when an SOF packet has not been received within the allotted
amount of time. In this fashion, the 8x931 generates an SOF interrupt reliably once each frame
within 1 µs of accuracy, except when this interrupt is suspended or when the frame timer ge
of-sync with the USB bus frame time.

In summary, to use the USB start-of-frame functionality for isochronous data transfer, the follow-
ing must all be true:

• The global enable bit must be set. That is, the EA bit must be set in the IEN0 register
(Figure 5-10).

• The isochronous endpoint Any SOF interrupt must be enabled. That is, the ESOF bit must
be set in the IEN1 register (Figure 5-11).

• The SOF interrupt must be enabled. That is, the SOFIE bit must be set in the SOFH Register
(Figure 5-5).

NOTE
The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a 1 ms pulse, subject to the accuracy of the USB start-of-frame. This pin is
enabled by clearing the SOFODIS bit in the SOFH register.
5-14

INTERRUPT SYSTEM

ed to
ively
IFLG
Figure
5.2.7 USB Hub Interrupt

The USB hub interrupt is used to signal a receive done or transmit done for hub endpoint 0.

To enable the hub interrupt:

1. Set the global enable bit (EA) in the IEN0 register (Figure 5-10)

2. Enable the hub endpoint 0 transmit done and receive done interrupts individually:

a. To enable the receive done interrupt, set the HRXE0 bit in the Hub Interrupt Enable
SFR (HIE, as shown in Figure 5-7)

b. To enable the transmit done interrupt, set the HTXE0 bit in HIE

NOTE
The 8x931Ax microprocessor does not support hub operations or a hub
interrupt. Specific details of the 8x931Ax are covered in Appendix E,
“8x931AA Design Considerations”.

The USB Hub Interrupt Flag Register (HIFLG) is shown in Figure 5-8. This register is us
indicate pending hub interrupts. For all bits in HIFLG, a ‘1’ indicates that an interrupt is act
pending; a ‘0’ indicates that the interrupt is not active. The interrupt status is shown in the H
register regardless of the state of the corresponding interrupt enable bit in the HIE register (
5-7).

HIE Address: A1H
Reset State: xxxx xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0

— — — — — — HRXE0 HTXE0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXE0 HRXE0:

Enable the hub endpoint 0 receive done interrupt (HRXD0).†

0 HTXE0 HTXE0:

Enable the hub endpoint 0 transmit done interrupt (HTXD0).†

† A ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.

Figure 5-7. HIE: Hub Interrupt Enable Register
5-15

8x931AA, 8x931HA USER’S MANUAL
NOTE
For the 8x931HA, the hub interrupt shares an interrupt vector with the SOF
interrupt. When this interrupt is triggered, firmware must examine the HIFLG
SFR to determine that it was the hub interrupt that was triggered and not the
SOF interrupt.

HIFLG Address: E8H
Reset State: xxxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0

— — — — — — HRXD0 HTXD0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXD0 Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXD0 Hub Transmit Done, Endpoint 0:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:
1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits

are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXD0 and HTXD0, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.

Figure 5-8. HIFLG: Hub Interrupt Status Register
5-16

INTERRUPT SYSTEM

t,
s soon
ing the
 in-
e” on

f the
-up

t has to
nd/re-

U in
cuting
mode
ake-

When
B
 all
a USB
5.2.8 USB Global Suspend/Resume Interrupt

The 8x931 supports USB power control through firmware. The USB power control register
(PCON1, as shown in Figure 9-2 on page 9-3) facilitates USB power control of the 8x931, includ-
ing global suspend/resume and USB function resume.

5.2.8.1 Global Suspend

When a global suspend is detected by the 8x931, the global suspend bit (GSUS of PCON1) is set,
and the global suspend/resume interrupt is generated if IEN0.7 (EA) and IEN1.2 are set. Global
suspend is defined as bus inactivity for more than 3 ms on the USB lines. For additional informa-
tion, see “Global Suspend Mode” on page 14-7.

5.2.8.2 Global Resume

When a global resume is detected by the 8x931, the global resume bit (GRSM of PCON1) is se
and the global suspend/resume interrupt is generated if IEN0.7 (EA) and IEN1.2 are set. A
as resume signaling is detected on the USB lines, the oscillator is restarted. After execut
resume interrupt service routine, the 8x931 resumes operation from where it was when it was
terrupted by the suspend interrupt. For additional information, see “Global Resume Mod
page 14-9.

5.2.8.3 USB Remote Wake-up

The 8x931 can also initiate resume signaling to the USB lines through remote wake-up o
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wake
has to be initiated through assertion of an enabled external interrupt. The external interrup
be enabled and it must be configured with level trigger and with higher priority than a suspe
sume interrupt. An external interrupt restarts the clocks to the 8x931 and program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RW
PCON1) to drive resume signaling on the USB lines to the host or upstream hub. After exe
the external ISR, the program continues execution from where it was put into powerdown
and the 8x931 resumes normal operation. For additional information, see “USB Remote W
up” on page 14-10.

5.2.9 USB Reset Separation

The 8x931 features an optional USB reset that functions independently from the chip reset.
the PCON1 SFR’s URDIS bit is set, the 8x931 core and peripherals will not reset when a US
reset signal is detected. After an 8x931 with URDIS set detects a USB reset signal, it resets
the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and generates
reset interrupt. USB reset signals can originate only from the host PC or upstream hub.

NOTE
The use of a separate USB reset is recommended only for applications where
the device is required to be operated continually, even when the PC is
powered-off, as is the case with Computer Telephony Integration (CTI). All
5-17

8x931AA, 8x931HA USER’S MANUAL

re out-

rm the
other applications are advised against using the separate USB reset. Leaving
the URDIS bit clear will ensure a robust, chip-level reset.

The USB reset must be implemented partially in firmware, including an
initialization routine as part of chip start-up. To ensure compliance with USB-
specified timing constraints and minimize the potential for data corruption,
you must implement flag checking as part of your main routine, subroutines,
and ISRs. These requirements increase the complexity of your firmware code.

If the 8x931 is in powerdown or suspend mode when the separate USB reset interrupt is generat-
ed, the device will wake up from powerdown or suspend mode upon receiving the USB reset sig-
nal. The ISR of a bus-powered device must set the LC bit of PCON (Figure 14-1 on page 14-3)
in order to operate at 3 MHz. This ensures that the device meets the 100 mA current limit during
enumeration, as required by the Universal Serial Bus Specification. Self-powered devices (i.e.,
devices drawing less than 100mA from the USB wires) may choose not to switch to Low Clock
mode after detecting the USB reset.

NOTE
If desired, your firmware can handle the separate USB reset without using an
ISR. To do this, you must clear the ESR bit in the IEN1 SFR. The USB reset
hardware operations will still take place, but the ISR will not be called. That is,
step 1 and step 2 under “USB Reset Hardware Operations” on page 5-21 will
still occur, but step 3 will not. Your firmware must poll the URST flag
periodically to detect the USB reset and take the appropriate action.

Since the global suspend and global resume interrupts share the same interrupt
vector as USB reset, your firmware must also poll the GRSM and GSUS bits
in PCON1 to detect global suspend or resume.

If instead you choose to implement a separate USB reset using an ISR, follow the procedu
lined in the following subsections and displayed in Figure 5-9.

5.2.9.1 Initialization Required for USB Reset

Because USB reset implementation depends heavily on firmware, your code must perfo
following initialization prior to execution of the main routine (See Figure 5-9):

1. To enable the USB reset interrupt on the 8x931, your initialization routine must set the
following bits to ‘1’:

a. the EA bit of IEN0 (Figure 5-10)

b. the ESR bit of IEN1 (Figure 5-11)

c. the URDIS bit of PCON1 (Figure 14-2 on page 14-4)

2. Use bit 2 of IPH1/IPL1 to set the priority of the USB reset interrupt (See “Interrupt
Priorities” on page 5-26).
5-18

INTERRUPT SYSTEM
NOTE
It is recommended that you set the USB reset interrupt to the highest priority.

3. After enabling the USB reset interrupt and assigning it a priority, your initialization
routine should clear the USB_RST_FLG flag. This flag is a global variable declared in
your firmware, not a bit in an SFR.
This flag, an indicator that a USB reset has occurred, will be examined at various points in
your main routine, subroutines, and ISRs.
5-19

8x931AA, 8x931HA USER’S MANUAL
Figure 5-9. USB Reset Separation Operating Model

A5206-01

No

Initialization Routine:
Set IEN0.EA;

Set IEN1.ESR;
Set PCON1.URDIS;
Set Interrupt Priority;
USB_RST_FLG = 0;

USB_RST_FLG
= 1?

Periodically Test
USB_RST_FLG

Yes

Main Routine:
(normal processing

until interrupt occurs)

Continue with
Main Routine

Continue with
Main Routine

Clear USB_RST_FLG;
Initialize USB-related SFRs;

Flush USB FIFOs;

USB
Initialization Routine

Check
PCON1.URST

USB Reset,
Global Suspend,
Resume ISR

Clear PCON1.URST;
USB_RST_FLG = 1

(Bus Powered?–
Set PCON.LC)

Perform Global
Suspend/Resume

ISR

ISR
Complete

= 0= 1

U
S

B
 r

es
et

 tr
ig

ge
re

d

Lo
op

 c
on

tin
uo

us
ly

USB Reset
Hardware

Reset all USB blocks;
Set PCON1.URST;

Generate USB Reset
Interrupt;
5-20

INTERRUPT SYSTEM

IS

ill

a

resume
N1’s

 must
 page

form

ed.

e.

 this
 that

er to

n be
5.2.9.2 USB Reset Hardware Operations

When the host initiates a USB reset signal, the following series of events is performed by the
8x931 hardware (See Figure 5-9):

1. Upon detecting a USB reset signal, the 8x931 hardware resets all the USB blocks (i.e., the
FIFOs, the SIU, the SIE, and the USB transceiver).

As a result of this process, all USB-related SFRs are reset to their default reset states. This
includes EPINDEX, EPCON, SOFL, SOFH, FIE, FIFLG, FADDR, TXSTAT, TXDAT,
TXCON, TXFLG, TXCNTL, TXCNTH, RXSTAT, RXDAT, RXCON, RXFLG,
RXCNTL, RXCNTH, and PCON1. Note that PCON1 is only partially reset — the URD
and URST bits retain their original values.

Because of this hardware reset, any USB-related operations (e.g., MOV TXDAT,A) w
not provide valid data.

2. The 8x931 sets the PCON1.URST bit to indicate a USB reset to the ISR.

3. If the ESR bit in IEN1 is set, the 8x931 generates a USB reset interrupt, which causes
branch to the interrupt service routine whose vector is located at FF:0053H. This ISR
services both the USB reset interrupt and the global suspend/resume interrupt.

5.2.9.3 USB Reset ISR

Because the USB reset interrupt shares an interrupt vector with the USB global suspend/
interrupt, the interrupt service routine must play a dual role. The ISR must first check PCO
URST bit to ensure that this interrupt is indeed a USB reset interrupt.

If URST = ‘0’, then this interrupt must be a global suspend/resume interrupt and the ISR
branch to service that type of interrupt. See “USB Global Suspend/Resume Interrupt” on
5-17 for a description of this portion of the ISR.

If the URST bit is set to ‘1’, then this interrupt is a USB reset interrupt. The ISR must per
the following procedure (See Figure 5-9):

1. Clear PCON1’s URST bit — to indicate that the USB reset interrupt has been servic

2. Set the user flag USB_RST_FLG that was cleared as part of your initialization routin

This flag is discussed in “Initialization Required for USB Reset” on page 5-18. Setting
flag is necessary to inform your firmware routines that a USB reset has occurred and
USB initialization must be performed.

3. Bus-powered devices must set the LC bit of PCON (Figure 14-1 on page 14-3) in ord
operate at 3 MHz. This ensures that the device meets the Universal Serial Bus
Specification’s 100 mA current limit during enumeration.

4. Restore any register values and return from interrupt.

The rest of the USB reset procedure will be initiated by a USB initialization routine that ca
called from the main routine, subroutines, or other ISRs.
5-21

8x931AA, 8x931HA USER’S MANUAL

 which

n

ON),

trans-

10ms:

e
our

code
point,
plete

at the
5.2.9.4 Main Routine Considerations

Although the USB-related SFRs were reset by the USB reset ISR, they must also be initialized
by a special USB initialization routine called by the main routine. Since the USB reset interrupt
can occur at any time, the only way the main routine will know that a USB reset occurred is to
periodically check the USB reset flag (USB_RST_FLG). This is the firmware flag that was set in
Step 2 of the “USB Reset ISR” on page 5-21.

When a set reset flag is detected, the main routine branches to a USB initialization routine,
performs the following tasks (See Figure 5-9):

1. Clear the user flag USB_RST_FLG.

Clearing this flag indicates that USB initialization is not required. Clear this flag first i
case a second USB reset occurs during this initialization routine, rendering this
initialization invalid.

2. Initialize the USB-related SFRs to the values required by your program.

If your application requires any other SFRs to be initialized upon USB reset (e.g., SC
now is the time to do so.

3. Restore any USB-related user flags specific to your application.

4. Flush all USB FIFOs. This is done by setting RXCLR in RXCON and TXCLR in
TXCON. This must be done for each function endpoint.

5. Return to the calling routine.

At this point, the main routine can resume normal processing. Eventually, the host PC will
mit a SETUP token. This will trigger an interrupt that will perform USB enumeration.

NOTE
USB specifications require that all devices must be able to accept a device
address via a SET_ADDRESS command no later than 10 ms after the reset is
removed.

It is recommended that you ensure that the total time required for the following is less than

1. The time to complete and exit from the USB reset ISR (accounting for latency — see
“Response Time” on page 5-32)

2. The time for the maximum number of instructions that could execute before your cod
recognizes that a USB reset has occurred (by checking USB_RST_FLG) and calls y
USB initialization routine

3. The time to execute your USB initialization routine

This time constraint may require you to check USB_RST_FLG at multiple points in your
(and within any ISRs that may take longer than 10ms to perform). By inserting this check
your program can branch from a routine (or ISR) after the USB reset without having to com
the routine (or ISR). Your program can continue the interrupted routine after ensuring th
device is ready for USB enumeration.
5-22

INTERRUPT SYSTEM
CAUTION
If a USB reset interrupt occurs during execution of a USB receive ISR (e.g.,
receive done or start-of-frame), the 8x931 will reset the USB hardware. This
will render invalid any data received during the USB transfer. If this is not
detected by your firmware, misprocessing can occur.

The risk of USB reset-related misprocessing can be reduced if your USB receive/transmit ISRs
check USB_RST_FLG before returning. If this flag is set, your code should branch to the USB
initialization routine to initialize the USB-related SFRs and flush the FIFOs. If this is done, the
only potential opportunity for misprocessing would be if the USB reset interrupt occurs between
the test of USB_RST_FLG and the branch to the USB initialization routine.

NOTE
Because of the risk of misprocessing, however slight, it is recommended that
applications that will not substantially benefit from a separate USB reset
disable this option (by leaving the URDIS bit in PCON1 cleared) to simplify
firmware coding and ensure a robust, chip-level reset.
5-23

8x931AA, 8x931HA USER’S MANUAL
5.3 INTERRUPT ENABLE

Each interrupt source may be individually enabled or disabled by the appropriate interrupt enable
bit in the IEN0 register at A8H (see Figure 5-10) or the IEN1 register at B1H (see Figure 5-11).
Note IEN0 also contains a global disable bit (EA). If EA is set, interrupts are individually enabled
or disabled by bits in IEN0 and IEN1. If EA is clear, all interrupts are disabled.

IEN0 Address: A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IEN0 contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1). The remaining bits enable/disable
the other individual interrupts.

7 0

EA — ET2 ES ET1 EX1 ET0 EX0

Bit
Number

Bit
Mnemonic Function

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by the
other bits of this register, as well as the interrupts enabled by the bits in
the IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which
are always enabled.

6 — Reserved:

Write a zero to this bit.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ET0 Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EX0 External Interrupt 0 Enable:

Setting this bit enables external interrupt 0.

NOTE: Note that because IEN0 appears in the first SFR column, it is a bit-addressable SFR.

Figure 5-10. IEN0: USB Interrupt Enable Register 0
5-24

INTERRUPT SYSTEM

IEN1 Address: B1H
Reset State: xxxx x000B

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.

7 0

EX2 — — — — ESR EF ESOF

Bit
Number

Bit
Mnemonic Function

7 EX2 External Interrupt 2 Enable (Keyboard Scan):

Setting this bit enables the external interrupt used for the keyboard scan.
NOTE: Setting this bit causes the 8x931 to trigger a hardware interrupt

when a keyboard scan interrupt occurs, but only if the KSEN bit
in the KBCON register is also set.

6:3 — Reserved:

Write zeros to these bits.

2 ESR Enable Suspend/Resume/Reset:

USB global suspend/resume/reset interrupt enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.

Figure 5-11. IEN1: USB Interrupt Enable Register
5-25

8x931AA, 8x931HA USER’S MANUAL
5.4 INTERRUPT PRIORITIES

The 8x931 interrupt sources may be individually programmed to one of four priority levels. This
is accomplished with the IPHX.x/IPLX.x bit pairs in the interrupt priority high (IPH1/IPH0 in Fig-
ure 5-12 and 5-14) and interrupt priority low (IPL1/IPL0) registers (Figures 5-13 and 5-15). Spec-
ify the priority level as shown in Table 5-5 using IPH0.x (or IPH1.x) as the MSB and IPL0.x (or
IPL1.x) as the LSB.

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other
interrupt source. Higher priority interrupts are serviced before lower priority interrupts. The re-
sponse to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same four-
state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table 5-6).
.

Table 5-5. Level of Priority

Priority Level IPH1.x, IPL1.x IPH0.x, IPL0.x

0 (Lowest Priority) 00 00

1 01 01

2 10 10

3 (Highest Priority) 11 11

Table 5-6. Interrupt Priority Within Level

Priority Number Interrupt Name

1 (Highest Priority) INT0#

2 Timer 0

3 INT1#

4 Timer 1

5 Serial Port

6 Timer 2

7 Keyboard Scan (INT2#)

8 —

9 USB Hub / SOF

10 USB Function

11 (Lowest Priority) USB Global Suspend/Resume
5-26

INTERRUPT SYSTEM

IPH0 Address: B7H
Reset State: x000 0000B

Interrupt Priority High Control Register 0. IPH0, together with IPL0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0x IPL0x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High.

4 IPH0.4 Serial I/O Port Interrupt Priority Bit High.

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High.

2 IPH0.2 External Interrupt 1 Priority Bit High.

1 IPH0.1 Timer 0 Overflow Interrupt Priority Bit High.

0 IPH0.0 External Interrupt 0 Priority Bit High.

Figure 5-12. IPH0: Interrupt Priority High Register 0
5-27

8x931AA, 8x931HA USER’S MANUAL

IPL0 Address: B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPL0, together with IPH0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0x IPL0x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low.

4 IPL0.4 Serial I/O Port Interrupt Priority Bit Low.

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low.

2 IPL0.2 External Interrupt 1 Priority Bit Low.

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low.

0 IPL0.0 External Interrupt 0 Priority Bit Low.

Figure 5-13. IPL0: Interrupt Priority Low Register 0
5-28

INTERRUPT SYSTEM

IPH1 Address: B3H
Reset State: xxxx x000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

IPH1.7 — — — IPH1.3 IPH1.2 IPH1.1 IPH1.0

Bit
Number

Bit
Mnemonic Function

7 IPH1.7 Keyboard Scan Interrupt Priority Bit High.

6:3 — Reserved:

Write zeros to these bits.

2 IPH1.2 Global Suspend/Resume/Reset Interrupt Priority Bit High.

1 IPH1.1 USB Function Interrupt Priority Bit High.

0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High.

Figure 5-14. IPH1: Interrupt Priority High Register 1
5-29

8x931AA, 8x931HA USER’S MANUAL

5.5 INTERRUPT HANDLING

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during
the following machine cycle. The Timer 2 interrupt cycle is slightly different, as described in the
Response Time section. If one of the flags was in a set condition at S5P2 of the preceding cycle,
the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate-
service routine, provided this hardware-generated LCALL is not blocked by any of the following
conditions:

1. An interrupt of equal or higher priority level is already in progress.

2. The current (polling) cycle is not the final cycle in the execution of the instruction in
progress.

3. The instruction in progress is RETI or any write to the IENx or IPx registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service rou-
tine. Condition 2 ensures that the instruction in progress will be completed before vectoring to
any service routine. Condition 3 ensures that if the instruction in progress is RETI or any write to
IENx or IPx, then at least one more instruction will be executed before any interrupt is vectored
to.

IPL1 Address: B2H
Reset State: xxxx x000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

IPL1.7 — — — — IPL1.2 IPL1.1 IPL1.0

Bit
Number

Bit
Mnemonic Function

7 IPL1.7 Keyboard Scan Interrupt Priority Bit Low.

6:3 — Reserved:

Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume/Reset Interrupt Priority Bit Low.

1 IPL1.1 USB Function Interrupt Priority Bit Low.

0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low.

Figure 5-15. IPL1: Interrupt Priority Low Register 1
5-30

INTERRUPT SYSTEM
The polling cycle is repeated with each machine cycle and the values polled are the values that
were present at S5P2 of the previous machine cycle. If the interrupt flag for a level-sensitive ex-
ternal interrupt is active but not being responded to for one of the above conditions and is not still
active when the blocking condition is removed, the denied interrupt will not be serviced. In other
words, the fact that the interrupt flag was once active but not serviced is not remembered. Every
polling cycle is new. The polling cycle/LCALL sequence is illustrated in Figure 5-17.

Note that if an interrupt of a higher priority level goes active prior to S5P2 of the machine cycle
labeled C3 in Figure 5-17, then in accordance with the above rules it will be vectored to during
C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated
LCALL to the appropriate servicing routine. The hardware-generated LCALL pushes the con-
tents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC
with an address that depends on the source of the interrupt being vectored to.

Execution proceeds from that location until the RETI instruction is encountered. The RETI in-
struction informs the processor that this interrupt routine is no longer in progress, then pops the
top two bytes from the stack and reloads the Program Counter. Execution of the interrupted pro-
gram continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted pro-
gram, but it would have left the interrupt control system thinking interrupt was still in progress.

Note that the starting addresses of consecutive interrupt service routines are only 8 bytes
apart.That means if consecutive interrupts are being used (IE0 and TF0 for example, or TF0 and
IEl), and if the first interrupt routine is more than 7 bytes long, then that routine will have to ex-
ecute a jump to some other memory location where the service routine can be completed without
overlapping the starting address of the next interrupt routine.

Figure 5-16. Interrupt Response Timing Diagram

A4462-01

C1
S5P2

C2 C3 C4 C5

S6

Interrupts are
polled

Interrupt
goes
active

Interrupt
latched

Interrupt
routine

Long call to interrupt
vector address

Note: This is the fastest possible response when C2 is the final cycle of an instruction other than
RETI or write IE or IP.

’

5-31

8x931AA, 8x931HA USER’S MANUAL

st in-

listed
ional
struc-
cles,
n in
ycles
 com-
em,
5.6 RESPONSE TIME

The INT0# and INT1# levels are inverted and latched into the Interrupt Flags IE0 and IE1 at S5P2
of every machine cycle. Similarly, the Timer 2 flag EXF2 and the serial Port flags RI and TI are
set at S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TF0 and TFl, are set at S5P2 of the cycle in which the timers over-
flow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2
is set at S2P2 and is polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine
call to the requested service routine will be the next instruction to be executed. The call itself
takes two cycles. Thus, a minimum of three complete machine cycles elapses between activation
of an external interrupt request and the beginning of execution of the service routine’s fir
struction. Figure 5-16 shows interrupt response timing.

A longer response time would result if the request is blocked by one of the 3 previously
conditions. If an interrupt of equal or higher priority level is already in progress, the addit
wait time obviously depends on the nature of the other interrupt's service routine. If the in
tion in progress is not in its final cycle, the additional wait time cannot be more than 3 cy
since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instructio
progress is RETI or write to IENx or IPx, the additional wait time cannot be more than 5 c
(a maximum of one or more cycles to complete the instruction in progress, plus 4 cycles to
plete the next instruction if the instruction is MUL or DIV). Thus, in a single-interrupt syst
the response time is always more than 3 cycles and less than 9 cycles.

CAUTION
It is recommended that programmers set the contents of EPINDEX and/or
HPINDEX once at the start of each routine, instead of writing to the
EPINDEX register prior to each access of an endpoint-indexed SFR (and to
HPINDEX prior to each access of a port-indexed SFR). This means that
interrupt service routines must save the contents of the EPINDEX and
HPINDEX registers at the start of the routine and restore the contents at the
end of the routine to prevent the EPINDEX and HPINDEX registers from
being corrupted.
5-32

6
USB Function

,

ers of
 de-
ation.

appear

com-
 inter-
f the
n the

N-

 page

 writ-
written
have
ws the
CHAPTER 6
USB FUNCTION

This chapter describes the FIFOs and special function registers (SFRs) associated with the USB
function interface. This chapter (along with Chapter 2, “Architectural Overview” and Chapter 8
“USB Programming Models”) describes the operation of function interface on the 8x931 USB
microcontroller.

A data flow model for USB transactions, intended to bridge the hardware and firmware lay
the 8x931, is presented in truth table form in Appendix D, “Data Flow Model”. The model
scribes 8x931 behavior in response to a particular USB event, given a known state/configur

The SFRs described in this chapter are listed in Table 6-3. The SFR definition tables that
in this chapter also appear in alphabetical order in Appendix C, “Registers”.

6.1 FUNCTION INTERFACE

The function interface provides a USB interface capability for one USB function. The main
ponents of the function interface are the serial bus interface engine (SIE) and the function
face unit (FIU). Refer to the block diagram in Figure 2-3 on page 2-7. The operation o
function interface is discussed in section 2.4, “Universal Serial Bus Module” (pg. 2-11). O
8x931HA, the hub accesses the function interface through the internal downstream port.

6.1.1 Function Endpoint Pairs

The endpoint pairs implemented on the 8x931 are listed in Table 2-5 on page 2-12. The EPI
DEX register selects the endpoint pair for any given data transaction. The 8x931HA supports
three function endpoint pairs and two hub endpoint pairs. See “USB Hub Endpoints” on
7-10.

6.1.2 Function FIFOs

The 8x931 provides a transmit/receive FIFO pair for each endpoint pair. Transmit FIFOs are
ten by the CPU and then read by the FIU for transmission on the USB. Receive FIFOs are
by the FIU following reception from the host PC, then read by the CPU. All transmit FIFOs
the same architecture, and all receive FIFOs have the same architecture. Table 6-1 sho
FIFO size and configuration for the hub and function endpoint pairs.
6-1

8x931AA, 8x931HA USER’S MANUAL

s): the
 Table
 bit as-

shows
f all
The USB signals discussed in this chapter are described in Table 6-2. The pinout diagrams for the
8x931 appear in Appendix B, “Pin Descriptions”.

The FIU controls operations through the use of four sets of special functions registers (SFR
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs.
6-3 lists the SFRs described in this chapter. Figure 6-1 provides a quick reference to the
signments in the SFRs.

USB interrupt SFRs are described in Chapter 5, “Interrupt System”. Table C-1 on page C-2
a memory map of all the 8x931HA SFRs. Table E-4 on page E-10 shows a memory map o
the 8x931AA SFRs.

Table 6-1. Function and Hub FIFO Configurations

Endpoint Control Bulk Interrupt Isochronous Dual-packet RX FIFO
Size

TX FIFO
Size

Hub EP0 Yes No No No No 8 bytes 8 bytes

Hub EP1 No No Yes No No N/A 1 byte

Function
EP0

Yes No No No No 8 bytes 8 bytes

Function
EP1

Yes Yes Yes Yes Yes 16 bytes 16 bytes

Function
EP2

Yes Yes Yes No No 8 bytes 8 bytes

Table 6-2. Non-hub USB Signal Descriptions

Signal
Name Type Description Alternate

Function

PLLSEL I Phase-locked Loop Select. For normal operation, connect
PLLSEL to logic high. PLLSEL = 0 is used for factory test (see
Table 2-3 on page 2-9).

—

SOF# O Start of Frame. The SOF# pin is asserted for eight states when
an SOF token is received.

—

DP0, DM0 I/O USB Port 0. DP0 and DM0 are the data plus and data minus
lines of differential USB upstream port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KΩ pullup resistor at DM0. For full-speed
devices, provide an external 1.5 KΩ pullup resistor at DP0.
NOTE: Provide an external 1.5 KΩ pullup resistor at DP0 so

the device indicates to the host that it is a full-speed
device.

—

ECAP I External Capacitor. Must be connected to a 1 µF capacitor (or
larger) to ensure proper operation of the differential line driver.
The other lead of the capacitor must be connected to VSS.

—

6-2

USB FUNCTION

Table 6-3. USB Function SFRs

Mnemonic Description Address Page

EPCON Endpoint Control Register. Configures the operation of the
endpoint specified by EPINDEX.

E1H page 6-7

EPINDEX Endpoint Index Register. Selects the appropriate endpoint pair. F1H page 6-6

FADDR Function Address Register. Stores the USB function address
for the device. The host PC assigns the address and informs the
device via endpoint 0.

8FH page 6-14

FIE USB Function Interrupt Enable Register. Enables and disables
the receive and transmit done interrupts for the function
endpoints.

A2H page 5-9

FIFLG USB Function Interrupt Flag Register. Contains the USB
function’s transmit and receive done interrupt flags for non-
isochronous endpoints.

C0H page 5-11

RXCNTL Receive FIFO Byte-Count Low Register. Stores the byte count
for the data packets received in the receive FIFO specified by
EPINDEX.

E6H page 6-26

RXCON Receive FIFO Control Register. Controls the receive FIFO
specified by EPINDEX.

E4H page 6-29

RXDAT Receive FIFO Data Register. Receive FIFO data is read from
this register (specified by EPINDEX).

E3H page 6-26

RXFLG Receive FIFO Flag Register. These flags indicate the status of
data packets in the receive FIFO specified by EPINDEX.

E5H page 6-31

RXSTAT Endpoint Receive Status Register. Contains the endpoint
status of the receive FIFO specified by EPINDEX.

E2H page 6-11

TXCNTL Transmit Count Low Register. Stores the byte count for the
data packets in the transmit FIFO specified by EPINDEX.

F6H page 6-16

TXCON Transmit FIFO Control Register. Controls the transmit FIFO
specified by EPINDEX.

F4H page 6-19

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to
this register (specified by EPINDEX).

F3H page 6-16

TXFLG Transmit Flag Register. These flags indicate the status of data
packets in the transmit FIFO specified by EPINDEX.

F5H page 6-21

TXSTAT Endpoint Transmit Status Register. Contains the endpoint
status of the transmit FIFO specified by EPINDEX.

FAH page 6-9
6-3

8x931AA, 8x931HA USER’S MANUAL
The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH,
and FADDR. The SOFH and SOFL SFRs are defined in Figure 5-5 on page 5-12 and Figure 5-6
on page 5-13. The remaining registers are defined in Figures 6-2 through 6-6.

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, and TXCNTL. These
registers are defined in Figures 6-8 through 6-11 beginning on page 6-16.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, and RXCNTL. These
registers are defined in Figures 6-13 through 6-16 beginning on page 6-26.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in-
dexed

7 0

EPCON RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

EPINDEX HORF — — — — — EPINX1 EPINX0

FADDR — Function Address

FIE — — FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

FIFLG — — FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

RXCNTL — — — BC4 BC3 BC2 BC1 BC0

RXCON RXCLR — — RXFFRC RXISO ARM ADVWM REVWP

RXDAT Receive Data Byte

RXFLG RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

RXSTAT RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

TXCNTL — — — BC4 BC3 BC2 BC1 BC0

TXCON TXCLR — — — TXIS0 ATM ADVRM REVRP

TXDAT Transmit Data Byte

TXFLG TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

TXSTAT TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Figure 6-1. Bits of the USB Function SFRs
6-4

USB FUNCTION

dpoint-
ccessed

selects

tc.)
s
point
cess-

point 1

b or
or se-
 or

nd-

ch rou-
 SFR.
r at the
X reg-
CAUTION
Unless otherwise noted in the bit definition, SFRs can be read and written by
firmware. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.
These instructions are listed in “Read-Modify-Write Instructions” on page 9-5.

6.1.3 Endpoint-indexed SFRs

As indicated in the SFR memory maps in Table C-1 on page C-2, certain USB SFRs are en
indexed. These SFRs are implemented as banks of registers. Endpoint-indexed SFRs are a
by means of the SFR address and the current contents of the EPINDEX register (which
the appropriate bank).

With the exception of hub endpoint 1, there is a bank of SFRs (TXDAT, TXCON, TXFLG, e
for each hub and function endpoint pair. Thus the 8x931, with three function endpoint pairs, plu
hub endpoint 0, has four TXCON registers. When EPINDEX = 0000 0001, the function end
1 TXCON is accessed. When EPINDEX = 0000 0010, the function endpoint 2 TXCON is ac
ed. The contents of a given SFR are retained when other endpoints are selected.

Only SFRs necessary for device operation are implemented. For example, since hub end
is transmit only, RXDAT for that endpoint is not implemented.

6.1.4 Endpoint Selection

The most significant bit of the endpoint index register (EPINDEX, Figure 6-2) selects hu
function.The low-order bits (EPINX1:0) indicate the endpoint and serve as an index value f
lecting the SFR bank. To specify the endpoint pair, write a value of the form Zxxx xYYYB
Zxxx xxYYB to EPINDEX, where Z specifies hub or function and YYY and YY specify the e
point number.

It is recommended that programmers set the contents of EPINDEX once, at the start of ea
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed
This means that interrupt service routines must save the contents of the EPINDEX registe
start of the routine and restore the contents at the end of the routine to prevent the EPINDE
ister from being corrupted.
6-5

8x931AA, 8x931HA USER’S MANUAL

EPINDEX Address: F1H
Reset State: 1xxx xx00B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0

HORF — — — — — EPINX1 EPINX0

Bit
Number

Bit
Mnemonic Function

7 HORF Hub/Function Bit:

1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

6:2 — Reserved:

Write zeros to these bits.

1:0 EPINX1:0 Endpoint Index:

EPINDEX†

0xxx xx00 Function Endpoint 0
0xxx xx01 Function Endpoint 1
0xxx xx10 Function Endpoint 2

EPINDEX†
1xxx xx00 Hub Endpoint 0
1xxx xx01 Hub Endpoint 1

† The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive FIFO
pair. The value in this register plus SFR addresses select the associated bank of endpoint-indexed SFRs
(TXDAT, TXCON, TXFLG, TXCNTL, RXDAT, RXCON, RXFLG, RXCNTL, EPCON, TXSTAT, and
RXSTAT).

Figure 6-2. EPINDEX: Endpoint Index Register
6-6

USB FUNCTION
6.2 USB FUNCTION SFRS

This section contains the special function registers (SFRs) used by the 8x931 USB function.

EPCON
(Endpoint-indexed)

Address: E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK.

5 CTLEP Control Endpoint:†
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:†

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO.
NOTE: For control endpoints (CTLEP=1), this bit should be set for single

packet mode operation as the recommended firmware model.
However, it is possible to have a control endpoint configured in
dual packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet override this bit if it is cleared, and
place the receive data in the FIFO.

† For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.

Figure 6-3. EPCON: Endpoint Control Register
6-7

8x931AA, 8x931HA USER’S MANUAL
2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. This bit is hardware read
only. Note that endpoint 0 is enabled for transmission upon reset.

EPCON (Continued)
(Endpoint-indexed)

Address: E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

† For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.

Figure 6-3. EPCON: Endpoint Control Register (Continued)
6-8

USB FUNCTION

TXSTAT
(Endpoint-indexed)

Address: F2H
Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): †

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:

Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW Transmit Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. ††

2 TXVOID Transmit Void (read-only): †††

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 6-4. TXSTAT: Transmit FIFO Status Register
6-9

8x931AA, 8x931HA USER’S MANUAL
1 TXERR Transmit Error (read-only):††

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG, is set when active.
For non-isochronous transactions, this bit is updated by hardware along with
the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):††

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG, is set when active. For
non-isochronous transactions, this bit is updated by hardware at the end of
data transmission (along with the TXERR bit — this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

TXSTAT (Continued)
(Endpoint-indexed)

Address: F2H
Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 6-4. TXSTAT: Transmit FIFO Status Register (Continued)
6-10

USB FUNCTION

RXSTAT
(Endpoint-indexed)

Address: E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write):

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
along with the new RXSEQ value.
NOTE: Always verify this bit after writing to ensure that there is no conflict

with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.

Figure 6-5. RXSTAT: Receive FIFO Status Register
6-11

8x931AA, 8x931HA USER’S MANUAL
4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
It is set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
NOTE: Make sure the EDOVW bit is cleared prior to reading the contents

of the FIFO.

3 RXSOVW Receive Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read. †††

2 RXVOID Receive Void Condition (read-only):††

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.

2. The EPCON register’s RXSTL bit is set.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

RXSTAT (Continued)
(Endpoint-indexed)

Address: E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.

Figure 6-5. RXSTAT: Receive FIFO Status Register (Continued)
6-12

USB FUNCTION
1 RXERR Receive Error (read-only):††

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):††

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

RXSTAT (Continued)
(Endpoint-indexed)

Address: E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.

Figure 6-5. RXSTAT: Receive FIFO Status Register (Continued)
6-13

8x931AA, 8x931HA USER’S MANUAL

smit
y the

6.3 TRANSMIT FIFOS

The 8x931 has a transmit FIFO for each function endpoint pair. In this manual, the term “tran
FIFO” refers to the transmit FIFO associated with the current endpoint pair specified b
EPINDEX register. 8x931 FIFOs are listed in Table 2-4.

The transmit FIFOs are circulating data buffers with the following features:

• endpoint 1 supports up to two separate data sets of variable sizes†

• a byte count register to store the number of bytes in the data sets

• protection against overwriting data in a full FIFO

• capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 6-7). The transmit FIFO and its associated
logic can manage up to two data sets, data set 0 (ds0) and data set 1 (ds1). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

† When operating in dual packet mode, the maximum packet size should be, at a maximum, half the FIFO size to ensure
both packets will simultaneously fit in the FIFO (see the Endpoint description in the Universal Serial Bus
Specification).

FADDR Address: 8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0

— Function Address

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is hardware read-only.

Figure 6-6. FADDR: Function Address Register
6-14

USB FUNCTION

Figure 6-7. Transmit FIFO Outline

The transmit process uses a write pointer, as well as a read pointer and a read marker. The CPU
writes to the FIFO location specified by the write pointer, which automatically increments by one
after a write. The read marker points to the first byte of data written to a data set, and the read
pointer points to the next FIFO location to be read by the function interface. The read pointer au-
tomatically increments by one after a read.

When a good transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read the last data set for retransmission. The read marker advance and read pointer reversal can
be accomplished two ways: explicitly by firmware or automatically by hardware, as specified by
bits in the transmit FIFO control register (TXCON).

6.3.1 Transmit FIFO Registers

There are five registers directly involved in the operation of the transmit FIFOs:

• TXDAT, the transmit FIFO data register

• TXCNTL, the transmit FIFO byte count register

• TXCON, the transmit FIFO control register

• TXFLG, the transmit FIFO flag register

These registers are endpoint indexed. This means they are used as a set to control the operation
of the transmit FIFO associated with the current endpoint, as specified by the EPINDEX register.
Figures 6-8 through 6-11 beginning on page 6-16 describe the transmit FIFO registers and pro-
vide bit definitions.

A5305-01

Data Set 0

Data Set 1

REVRP ADVRM

FIU Reads FIFO

 CPU Writes to FIFO

To USB Interface

From CPU

Byte Count
Register

Write Pointer

Read Marker

Read Pointer

TXCNTL
6-15

8x931AA, 8x931HA USER’S MANUAL
6.3.2 Transmit FIFO Data Register (TXDAT)

Bytes are written to the transmit FIFO via TXDAT, the transmit FIFO data register (Figure 6-8).

6.3.3 Transmit FIFO Byte Count Register (TXCNTL)

The transmit FIFO byte count register is used as a five-bit ring buffer, as shown in Figure 6-9.

TXDAT
(Endpoint-indexed)†

Address: F3H
Reset State: xxxx xxxxB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 TXDAT7:0 Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

† For hub endpoint 1, TXDAT is used in a different manner. See Figure 7-7 on page 7-12.

Figure 6-8. TXDAT: Transmit FIFO Data Register

TXCNTL†

(Endpoint-indexed)
Address: F6H

Reset States: xxxx xxxxB

Transmit FIFO Byte-count Register. Ring buffer used to store the byte count for the data packets in the
transmit FIFO specified by EPINDEX.

7 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read††)
Five-bit, ring buffer. Stores transmit byte count for endpoints 0 and 2.

† Byte count registers are not implemented for hub endpoint 1.
†† Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.

Figure 6-9. TXCNTL: Transmit FIFO Byte Count Register
6-16

USB FUNCTION
TXCNTL stores the number of bytes in either of the two data sets, data set 0 (ds0) and data set 1
(ds1). The FIFO logic for maintaining the data sets assumes that data is written to the FIFO in the
following sequence:

1. The CPU writes data bytes to TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNTL. TXCNTL must be written after the write to TXDAT to guarantee data
integrity.

The function interface reads the byte count register to determine the number of bytes in the set.

6.3.4 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which data sets (ds0
and/or ds1) have been written into the FIFO and are armed (ready for transmission). See the left
side of Table 6-4. FIFx = 1 indicates that data set x has been written and is armed. Following reset,
FIF1:0 = 00, signifying an empty FIFO. FIF1:0 also determine which data set is written next.
Note that FIF0 specifies the next data set to be written, except for the case of FIF1:0 = 11. In this
case further writes to TXDAT or TXCNTL are ignored.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

Two events cause the data set index bits to be updated:

• A new data set is written to the FIFO: The 8x931 writes bytes to the FIFO via TXDAT and
writes the number of bytes to TXCNTL. The data set index bits are updated after the write
to TXCNTL. This process is illustrated in Table 6-4.

• A data set in the FIFO is successfully transmitted: The function interface reads a data set
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read marker is
advanced. Note that in ISO mode, this happens at the next start-of-frame (SOF).

Table 6-4. Writing to the Byte Count Register

FIF1:0
 Data Sets Written Set for Next Write

to TXCNTL
Write bytes
to TXDAT.

FIF1:0
ds1 ds0

0 0 No No (Empty) ds0 —> Write byte
count to

TXCNTL.

—> 0 1

0 1 No Yes (1 set) ds1 1 1

1 0 Yes No (1 set) ds0 1 1

1 1 Yes Yes (2 sets) Write ignored 1 1
6-17

8x931AA, 8x931HA USER’S MANUAL
Table 6-5 summarizes how the actions following a transmission depend on the TXISO, ATM,
TXACK, and TXERR bits.

NOTE
For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF
bits.

NOTE
To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNTL.

Table 6-5. Truth Table for Transmit FIFO Management

TXISO
(TXCON.3)

ATM
(TXCON.2)

TXERR
(TXSTAT.1)

TXACK
(TXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.
6-18

USB FUNCTION
TXCON
(Endpoint-indexed)

Address: F4H
Reset State: 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT
register.

6:4 — Reserved:

Values read from this bit are indeterminate. Write zeros to these bits.

3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and must
be cleared by firmware.

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)

(1) to origin of next data set (2) to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.

Figure 6-10. TXCON: Transmit FIFO Control Register
6-19

8x931AA, 8x931HA USER’S MANUAL
1 ADVRM Advance Read Marker Control (non-ATM mode only)†:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This bit
is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)†:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. This bit is effective only when the ADVRM, ATM,
and TXCLR bits are all clear.

TXCON (Continued)
(Endpoint-indexed)

Address: F4H
Reset State: 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.

Figure 6-10. TXCON: Transmit FIFO Control Register (Continued)
6-20

USB FUNCTION

TXFLG
(Endpoint-indexed)

Address: F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNTL to reflect the
addition of a data set. Likewise, TXFIF1 and TXFIF0 are cleared in
sequence after each advance of the read marker to indicate that the set is
effectively discarded. The bit is cleared whether the read marker is
advanced by firmware (setting ADVRM) or automatically by hardware
(ATM = 1). The next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNTL X 01 Unchanged
01 Wr TXCNTL X 11 Unchanged
10 Wr TXCNTL X 11 Unchanged
11 Wr TXCNTL X 11 TXOVF = 1

00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB. Therefore, writes to TXCNTL “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNTL for traceability.
See the TXFLUSH bit in TXSTST.
NOTE: To simplify firmware development, configure control endpoints in

single-packet mode.

5:4 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

† When set, all transmissions are NAKed.

Figure 6-11. TXFLG: Transmit FIFO Flag Register
6-21

8x931AA, 8x931HA USER’S MANUAL
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

TXFLG (Continued)
(Endpoint-indexed)

Address: F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.

Figure 6-11. TXFLG: Transmit FIFO Flag Register (Continued)
6-22

USB FUNCTION
1 TXURF Transmit FIFO Underrun Flag (read, clear only)†:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNTL. This is caused when the value written to
TXCNTL is greater than the number of bytes written to TXDAT. This is a
sticky bit that must be cleared through firmware. When this flag is set, the
FIFO is in an unknown state, thus it is recommended that you reset the FIFO
in your error management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the byte count in TXCNTL does not agree with the data, hardware sets
TXURF. This indicates that the transmitted data was corrupted by a bit-
stuffing or CRC error.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag†:

This bit is set when an additional byte is written to a full FIFO or full TXCNTL
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNTL.

TXFLG (Continued)
(Endpoint-indexed)

Address: F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.

Figure 6-11. TXFLG: Transmit FIFO Flag Register (Continued)
6-23

8x931AA, 8x931HA USER’S MANUAL

ceive
EPIN-
6.4 RECEIVE FIFOs

The 8x931 has a receive FIFO for each function endpoint pair. In this manual, the term “re
FIFO” refers to the receive FIFO associated with the current endpoint pair specified by the
DEX register. 8x931 FIFOs are listed in Table 2-4.

The receive FIFOs are circulating data buffers with the following features:

• endpoint 1 supports up to two separate data sets of variable sizes†

• a byte count register that accesses the number of bytes in the data sets

• flags to signal a full FIFO and an empty FIFO

• capability to re-receive the last data set

Figure 6-12 illustrates a receive FIFO. A receive FIFO and its associated logic can manage up to
two data sets: data set 0 (ds0) and data set 1 (ds1). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways, the receive FIFO is symmetrical to the transmit FIFO. The FIU writes to the FIFO
location specified by the write pointer, which increments by one automatically following a write.
The write marker points to the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8x931. The read pointer increments by one automati-
cally following a read.

Figure 6-12. Receive FIFO

When a good reception is completed, the write marker can be advanced to the position of the write
pointer to set up for writing the next data set. When a bad reception is completed, the write pointer

† When operating in dual packet mode, the maximum packet size should be at most half the FIFO size to ensure that
both packets will simultaneously fit in the FIFO (see the Endpoint description in the Universal Serial Bus
Specification).

A5306-01

Data Set 0

Data Set 1

FIU Writes to FIFO

CPU Reads FIFO

From USB Interface

To CPU

Byte Count
Register

Read Pointer Write Marker

Write Pointer

RXCNTL
6-24

USB FUNCTION
can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the data again. The write marker advance and write pointer reversal can be accom-
plished two ways: explicitly by firmware or automatically by hardware, as specified by bits in the
receive FIFO control register.

The 8x931 should not read data from the receive FIFO before all bytes are received and success-
fully acknowledged because the reception may be bad.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data in
the receive FIFO. In the single packet mode, 8x931 can monitor the FIFO empty flag (RXEMP
bit in RXFLG) to avoid reading a byte when the FIFO is empty.

6.4.1 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:

• RXDAT, the receive FIFO data register

• RXCNTL, the receive FIFO byte count register

• RXCON, the receive FIFO control register

• RXFLG, the receive FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
receive FIFO associated with the current endpoint specified by the EPINDEX register. Figures
6-13 through 6-15 beginning on page 6-26 describe the receive FIFO registers and provide bit
definitions.

6.4.1.1 Receive FIFO Data Register (RXDAT)

Received data bytes are written to the receive FIFO via the receive FIFO data register (RXDAT).
6-25

8x931AA, 8x931HA USER’S MANUAL

6.4.1.2 Receive FIFO Byte Count Registers (RXCNTL)

The receive FIFO byte count register (RXCNTL) is used as five-bit ring buffer to accommodate
packet sizes of 0 to 16 bytes. This format is shown in Figure 6-14.

RXCNTL stores the number of bytes in either of the two data sets, data set 0 (ds0) and data set 1
(ds1). The FIFO logic for maintaining the data sets assumes that data is written to the FIFO in the
following sequence:

RXDAT
(Endpoint-indexed)

Address: E3H
Reset: xxxx xxxxB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

Receive Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 RXDAT7:0 Receive Data Byte:

To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8x931 reads from this register. The write
pointer and read pointer are incremented automatically after a write and
read, respectively.

Figure 6-13. RXDAT: Receive FIFO Data Register

RXCNTL†

(Endpoint-indexed)
Address: E6H

Reset State: xxxx xxxxB

Receive FIFO Byte-count Low Register. Ring buffer used to store the byte count for the data packets
received in the receive FIFO specified by EPINDEX.

7 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count.

† Not implemented for hub endpoint 1.

Figure 6-14. RXCNTL: Receive FIFO Byte Count Register
6-26

USB FUNCTION

er) to
1. The USB interface writes the received data packet into the receive FIFO.

2. The USB interface writes the number of bytes written into the receive FIFO to the byte
count register RXCNTL.

The CPU reads the byte count register to determine the number of bytes in the set.

The receive byte count register has a read/write index that allows it to access the byte count for
either of the two data sets. This is similar to the methodology used for the transmit byte count
register. After reset, the read/write index points to data set 0. Thereafter, the following logic de-
termines the position of the read/write index:

• After a read of RXCNTL, the read/write index (RXFIF) is unchanged.

• After a write of RXCNTL, the read/write index (RXFIF) is toggled.

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Receive FIFO Data Set Management” on page 6-27).

CAUTION
Do not read RXCNTL to determine if data is present in the receive FIFO. A
read attempt to RXCNTL during the time the receive FIFO is empty causes the
RXURF flag in RXFLG to be set. Always read the RXFIF bits in RXFLG to
determine if data is present in the receive FIFO. The RXFIF bits are updated
after RXCNTL is written (at the end of the receive operation and at the SOF
for ISO data).

6.4.2 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG regist
indicate which data sets are present in the receive FIFO (see Table 6-6).

Table 6-6. Status of the Receive FIFO Data Sets

FIF1:0
 Data Sets Written

ds1 ds0

0 0 No No (Empty)

0 1 No Yes (1 set)

1 0 Yes No (1 set)

1 1 Yes Yes (2 sets)
6-27

8x931AA, 8x931HA USER’S MANUAL
Table 6-7 summarizes how the actions following a reception depend on the RXISO bit, the ARM
bit, and the handshake issued by the 8x931.

NOTE
For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF
bits.

CAUTION
Do not read RXCNTL to determine if data is present in the receive FIFO.
Always read the FIF bits in the RXFLG register. RXCNTL contains random
data during a receive operation. A read attempt to RXCNTL during the time
the receive FIFO is empty causes the RXURF flag in RXFLG to be set.
Always read the FIF bits to determine if data is present in the receive FIFO.
The RXFLG FIF bits are updated after RXCNTL is written (at the end of the
receive operation).

Table 6-7. Truth Table for Receive FIFO Management

RXISO
(RXCON.3)

ARM
(RXCON.2)

RXERR
(RXSTAT.1)

RXACK
(RXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically.The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data
was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.
6-28

USB FUNCTION

RXCON
(Endpoint-indexed)

Address: E4H
Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — — RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO, and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are
not affected by this operation. Hardware clears this bit when the flush
operation is completed.

6:5 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read.
NOTE: FIFO Read Complete only works if STOVW and EDOVW are

cleared.

3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker

X ACK Unchanged Advanced

0 NAK Reversed Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.
NOTE: This bit should always be set, except for testing.

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

Figure 6-15. RXCON: Receive FIFO Control Register
6-29

8x931AA, 8x931HA USER’S MANUAL
1 ADVWM Advance Write Marker: †

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM, and RXCLR bits
are clear.

0 REVWP Reverse Write Pointer: †

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then receive the last data packet again and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

RXCON (Continued)
(Endpoint-indexed)

Address: E4H
Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — — RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

Figure 6-15. RXCON: Receive FIFO Control Register (Continued)
6-30

USB FUNCTION
RXFLG
(Endpoint-indexed)

Address: E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

7:6 RXFIF1:0 Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO. The RXFIF bits are updated after each write to RXCNTL to reflect the
addition of a data packet. Likewise, the RXFIF bits are cleared in sequence
after each setting of the RXFFRC bit. The next-state table for RXFIF bits is
shown below for operation in dual-packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single-packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you

utilize control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

† When set, all transmissions are NAKed.

Figure 6-16. RXFLG: Receive FIFO Flag Register
6-31

8x931AA, 8x931HA USER’S MANUAL
3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

RXFLG (Continued)
(Endpoint-indexed)

Address: E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.

Figure 6-16. RXFLG: Receive FIFO Flag Register (Continued)
6-32

USB FUNCTION
1 RXURF Receive FIFO Underrun Flag†:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNTL. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.
NOTE: When this bit is set, the FIFO is in an unknown state. It is

recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag†:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNTL with FIF1:0 = 11. This is a sticky bit that
must be cleared through firmware, although it can be cleared by hardware if
a SETUP packet is received after an RXOVF error had already occurred.†

When this bit is set, the FIFO is in an unknown state; thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.†

RXFLG (Continued)
(Endpoint-indexed)

Address: E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.

Figure 6-16. RXFLG: Receive FIFO Flag Register (Continued)
6-33

8x931AA, 8x931HA USER’S MANUAL

ical”
-
t, re-
efer to

yed by
 Con-
l”

nd so
 LSB

ol Lay-
d
tion,”

is not
TAT
VW

on is
e re-
acket,
OVW,

bit of
esets
 and

VW
ceived,
clear
 = 1
 This
6.5 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electr
chapter of Universal Serial Bus Specification. The specification defines: differential’1’, differen
tial’0’, idle (’J’ state), non-idle (’K’ state), start-of-packet, end-of-packet, disconnect, connec
set, and resume. The USB employs NRZI data encoding when transmitting packets. R
“Data Encoding/Decoding” in the Universal Serial Bus Specification for a description of NRZI
data encoding and decoding. To ensure adequate signal transitions, bit stuffing is emplo
the SIE when transmitting data. The SIE also performs bit unstuffing when receiving data.
sult the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrica
chapter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, a
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next
and so on. The serial bus interface engine (SIE) ensures that the LSb is first, but the 8x931 pro-
grammer must ensure the order of the bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protoc
er” chapter of Universal Serial Bus Specification. The FIU communicates data information an
handshaking instructions to the SIE. Programmers should consult the “Interconnect Descrip
“USB Devices,” and “USB Host” chapters of Universal Serial Bus Specification for detailed in-
formation on how the host and function communicate.

6.6 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even if the receive FIFO
empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXS
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STO
indicates a SETUP-initiated over-write (flush) is in progress. After the SETUP transacti
completed (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating th
ceive FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP p
regardless of whether the receive FIFO is full or empty always sequences through the ST
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of an 8x931 CPU data read cycle (from
a previous USB transaction), the receive FIFO could underrun, thus setting the RXURF
RXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW r
and locks the read pointer. The read pointer will remain locked until both the STOVW
EDOVW bits are cleared.

CAUTION
For SETUP packets only, firmware must clear EDOVW prior to reading data
from the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a SETUP packet, firmware should always check the STOVW and EDO
flags before setting the RXFFRC bit. When a SETUP packet either has been or is being re
setting RXFFRC has no effect if either STOVW or EDOVW is set. It is up to the user to
EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP
condition causes IN and OUT tokens to be NAKed automatically until RXSETUP is cleared.
6-34

USB FUNCTION

be up-
e first

urs.

thers
rule:
ange at

e,
is true even if the transmit and/or receive endpoint is stalled (TXSTL = 1, RXSTL = 1), and is
done to allow the clearing of a stall condition on a control endpoint.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

6.7 ISO DATA MANAGEMENT

ISO data management must always be performed in dual-packet mode. Interrupts are not gener-
ated when an ISO transmit or receive cycle is completed; ISO protocols should always be syn-
chronized to the SOF interrupt.

When transmitting, data written into the transmit FIFO at frame n is pre-buffered to be transmit-
ted in frame n+1. This guarantees that data is always available to the host when requested anytime
in a frame. When receiving, data written into the receive FIFO at frame n is pre-buffered to be
read-out in frame n + 1. This guarantees that data from the host is always available to the function
every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokens from the host are not cor-
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the token.
Function firmware needs to recognize this error condition and reconfigure the endpoints accord-
ingly.

6.7.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an isochro-
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by
hardware. This error condition can be detected by checking TXFIF1:0 = 11 at SOF. When this
occurs, the oldest data packet will be flushed and the transmit FIFO read-pointers and read-mark-
ers will be advanced to the start “address” of the second data packet. The TXFIF will also
dated. Therefore, the second packet will be ready to be transmitted for the next frame. Th
data packet is lost. The transmit flush bit, TXFLUSH in TXSTAT, is also set when this occ

For firmware traceability of FIFO status flags, some flags are updated immediately while o
are updated only at SOF. TXOVF, TXURF, and TXFIF are handled using the following
firmware events cause status change immediately while USB events only cause status ch
SOF. For example:

• TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

• TXURF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

• TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefor
writes to TXCNTL will “increment” TXFIF immediately. However, a successful USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.

The following bits do not follow the above rule:

• TXEMP/TXFULL: These always reflect the current status of the FIFO.
6-35

8x931AA, 8x931HA USER’S MANUAL

re,
• TXFLUSH: Firmware can detect a flush by monitoring this bit.

6.7.2 Receive FIFO ISO Data Management

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. RXOVF, RXURF, and RXFIF are handled using the following rule:
firmware events cause status change immediately while USB events only cause status change at
SOF. For example:

• RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.

• RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

• RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefo
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

• RXEMP/RXFULL: The rule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.
6-36

7
USB Hub

 ports.
te USB
rts, the

-specific

ub in-
CHAPTER 7
USB HUB

This chapter describes the operation of the Intel Universal Serial Bus (USB) on-chip hub, as im-
plemented in the 8x931HA. This chapter introduces on-chip hub operation and includes informa-
tion on bus enumeration, hub endpoint status and configuration, hub port control, hub suspend
and resume, and hub power control.

To see how the hub fits in the 8x931HA architecture, see Chapter 2, “Architectural Overview”.

NOTE
The 8x931AA microcontroller does not support hub operations. Specific
details of the 8x931AA are covered in Appendix E, “8x931AA Design
Considerations”.

7.1 HUB FUNCTIONAL OVERVIEW

The on-chip hub provides an electrical interface between the USB host and the downstream
In many cases, this relationship exists as an interface between a USB host and other discre
devices. Besides serving as a control interface between the host and the downstream po
hub is also a USB device and must respond to the standard USB requests and hub class
requests described in the Universal Serial Bus Specification.

The functionality between the PC host and the downstream ports that is handled by the h
cludes:

• Connectivity management

• Downstream device connect/disconnect detection

• Power management, including suspend and resume functions

• Bus fault detection and recovery

• Full and low-speed device support

The hub functionality can be divided into two sub-functions: the hub repeater and the hub con-
troller. The hub architecture is described in “Universal Serial Bus Module” on page 2-11.

The hub controller function is split among four modules:

• Hub interface unit (HIU)

• Serial bus interface engine (SIE)

• Transmit and receive FIFOs for hub endpoint 0 and endpoint 1

• 8x931HA CPU
7-1

8x931AA, 8x931HA USER’S MANUAL

” and

arac-

shows
A functional diagram of the hub is shown in Figure 7-1 on page 7-2. The diagram shows the root
port, which is the upstream port (port 0); the repeater, which is responsible for managing connec-
tivity on a per-packet basis; the hub controller, which provides status and control and permits host
access to the hub; four external downstream ports, which provide a means of expanding the USB
by permitting the connection of additional PC peripherals; and the internal downstream port,
which provides an interface to the embedded function.

Figure 7-1. 8x931HA Hub Functional Diagram

Refer to chapter 11 of Universal Serial Bus Specification for a more detailed description of the
hub and its functionality. For a description of the transceiver see the “Driver Characteristics
“Receiver Characteristics” sections of the Universal Serial Bus Specification’s “Electrical” chap-
ter. For electrical characteristics and data signal timing, see the “Bus Timing/Electrical Ch
teristics” and “Timing Diagram” sections of the same chapter.

SFRs used to control and access USB hub functionality are listed in Table 7-1. Figure 7-2
the bits contained in the hub SFRs.

 A5255-02

Port 0

Port 3 Port 5Port 4

CPU

Root Port

Hub Repeater

Port 2

Function Interface

Function Endpoints

Hub Endpoint 0, Endpoint 1

External Downstream Ports

P
or

t 1

F
A

D
D

R

Internal
Downstream Port

Hub
Controller HADDR
7-2

USB HUB
Table 7-1. USB Hub SFRs

Mnemonic Name Address Page

HADDR Hub Address Register. Used by the HIU to perform token
address decoding.

97H page 7-8

HIE Hub Interrupt Enable Register. Contains the hub interrupt
enable bits.

A1H page 5-15

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt
status flags.

E8H page 5-16

HPCON Hub Port Control. Enables, disables, resets, suspends, and
resumes the hub ports. USB port-indexed using HPINDEX.

CFH page 7-15

HPINDEX Hub Port Index Register. Provides port indexing into the
HPSC, HPSTAT, and HPCON registers.

D4H page 7-24

HPPWR Hub Port Power Control. Controls power to the
downstream ports.

9AH page 7-28

HPSC Hub Port Status Change. Indicates a change in reset,
suspend, enable, disable, or connect status. USB port-
indexed using HPINDEX.

D5H page 7-21

HPSTAT Hub Port Status. Provides DP, DM, low-speed device,
power, reset, suspend, enable, and disable status for the
hub ports. USB port-indexed using HPINDEX.

D7H page 7-18

HSTAT Hub Status and Configuration. Used to examine or enable
remote wake-up, stall feature, endpoint 1, over-current
status, and local power status

AEH page 7-9

7 0

HADDR — Hub Address

HIE — — — — — — HRXE0 HTXE0

HIFLG — — — — — — HRXD0 HTXD0

HPCON — — — — — HPCON2 HPCON1 HPCON0

HPINDEX — — — — — HPIDX2 HPIDX1 HPIDX0

HPPWR — — HPPWR5 HPPWR4 HPPWR3 HPPWR2 HPPWR1 —

HPSC — — — RSTSC — PSSC PESC PCSC

HPSTAT DPSTAT DMSTAT PPSTAT LSSTAT PRSTAT PSSTAT PESTAT PCSTAT

HSTAT OVRIEN HRWUPE EP1STL EP1EN OVISC — OVI —

Figure 7-2. Bits of the USB Hub SFRs
7-3

8x931AA, 8x931HA USER’S MANUAL

he

s it to

et
ut will
d.

, idle-
7.1.1 Port Connectivity States

In addition to the root port (port 0), the hub contains four external downstream ports (ports 2, 3,
4, and 5) and one internal downstream port, port 1.

Hub downstream ports may be in one of five possible states:

• powered-off — Power-switched ports are a USB option supported by the 8x931. A powered
off port supplies no power downstream, ignores all upstream-directed bus activity on t
port, and its signal output buffers are placed in the high impedance state.

• disconnected — Initial state upon power-up or reset, the port cannot propagate any
upstream or downstream signaling. The port can detect a connect event, which cause
transition to the disabled state.

• disabled — Port can only propagate downstream-directed signaling arising from a res
request. A disabled port does not propagate upstream signaling if the hub is awake, b
detect disconnects and initiate resume signaling to the root port if the hub is suspende

• enabled — Port propagates all downstream and upstream signaling.

• suspended — When suspended, the port will not stop propagating in the middle of a
transaction. If hub is awake, no upstream or downstream connectivity can propagate
through the port, except for downstream-directed reset signaling. If hub is suspended
to-resume is propagated.

The transitions between these states are shown in Figure 7-3.
7-4

USB HUB

” state

orts 2,
wered-
and pri-
lways
is, the
om the
Figure 7-3. Hub State Flow

These port states are tracked and managed in the hub repeater based on hardware events (e.g.,
physical connection/disconnection of a device on a port) and firmware execution of host com-
mands. Normal packet traffic is allowed to propagate through ports that are in the “enabled
only, as described in “Per-packet Signaling Connectivity” on page 7-6.

The root port is the only upstream port; it is permanently powered on and enabled. Hub p
3, 4, and 5 are external downstream ports. They are power-switched ports that must be po
on by host command, detect a device connection and then become enabled via host comm
or to propagating USB packet traffic. Hub port 1 is an internal downstream port that is a
powered on and always physically connected. It functionally supports port enabling. That
downstream port connectivity will not be enabled unless a port enable has been received fr
host.

ElseSuspended

ElseEnabled

Else

Disconnect Detect

Disabled

Else

Else

PORT_POWER = OFF or
Reset on root port

 A5121-01

Powered Off

Disconnected

Connect Detect

PORT_POWER = ON

Disconnect Detect

Disconnect Detect

PORT_ENABLE or PORT_RESET
PORT_DISABLE
or Frame error

PORT_SUSPEND

PORT_RESUME or
PORT_RESET or
Remote wakeup
7-5

8x931AA, 8x931HA USER’S MANUAL

t can
on of
on.

peed or
-speed
g asyn-

ted on
e from
orts 2
eed
ity, re-

 down-
port by
 allow
or sce-
ect up-
7.1.2 Per-packet Signaling Connectivity

The hub repeater establishes connectivity between ports for upstream and downstream traffic on
a per-packet basis. Packet signaling connectivity for downstream, upstream, and idle traffic is il-
lustrated in Figure 7-4. While the host can communicate with all the downstream ports simulta-
neously, as shown in the “downstream connectivity” illustration in Figure 7-4, only one por
communicate with the host at one time, as shown in the “Upstream Connectivity” illustrati
the same figure. The host selects one of the downstream ports for upstream communicati

Figure 7-4. Packet Signaling Connectivity

Connections made by the repeater also depend on whether the port is attached to a full-s
low-speed device and whether the USB packet is a full-speed or low-speed packet. Low
packets are identified by a PREamble token. Connections are made by the repeater usin
chronous control logic in order to meet the USB signal propagation requirements.

7.1.2.1 Connectivity to Downstream Ports Attached With Full-speed Devices

Downstream connectivity is established upon detection of a start of packet (SOP) transmit
the root or upstream port by the USB host. As shown in Figure 7-4, the connection is mad
the root port (port 0) to all enabled downstream ports attached with full-speed devices (p
and 3 in this case). Connectivity is not established to any enabled ports attached with low-sp
devices. Upon detection of the end-of-packet (EOP), the repeater terminates the connectiv
verting to the idle state, as shown in Figure 7-4.

Upstream connectivity is established upon detection of a SOP transmitted on any enabled
stream port. The connection is only made between a single downstream port and the root
the repeater, as shown in “upstream connectivity” in Figure 7-4. The USB protocol does not
packets to be transmitted by more than one downstream port simultaneously, but in an err
nario where this happens, the repeater would choose only one downstream port to conn
stream. Once again, upon detection of an EOP, the connectivity is terminated.

A5258-01

Port 5Port 5Port 4Port 3Port 2

(Disabled)

Root Port

Port 4Port 3Port 2

(Disabled)

P
or

t 1
 (

In
te

rn
al

)

P
or

t 1
 (

In
te

rn
al

)

P
or

t 1
 (

In
te

rn
al

)

Root Port

Downstream
Connectivity

Upstream
Connectivity

Port 4Port 3Port 2

(Disabled)

Root Port

Idle

Port 5
7-6

USB HUB

erated
C per-
During
evice.

vided

xcept
s only
ection

ithin the
parts,
7-7

7.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices

Downstream connectivity is established in the same fashion for low-speed packets as for full-
speed packets, with the following exceptions:

1. Downstream low-speed packets are routed to all enabled ports, including ports attached
with low-speed and full-speed devices.

2. Downstream low-speed packets contain a low-speed PREamble field which is recognized
by the SIE. Upon detection of the PREamble, the repeater establishes the connection to all
enabled low-speed downstream ports.

3. Packet data is inverted at the ports attached to low-speed devices for both upstream and
downstream traffic.

Upstream connectivity is established in the same fashion for low-speed packets as for full-speed
packets, with the exception that no PREamble is propagated prior to low-speed packets. The root
port propagates low-speed packets upstream using full-speed signaling (edge rates).

7.2 BUS ENUMERATION

The USB host manages bus enumeration at system start-up or whenever a new USB device is at-
tached to the host or to a hub’s downstream port. Initially, the USB hub is in the unenum
state and the hub address register (HADDR) contains the default value 00H. The host P
forms bus enumeration in which it identifies and addresses devices attached to the bus.
enumeration, a unique address assigned by the host is written to the HADDR of every hub d

Information on descriptors and the HADDR register, required for bus enumeration, is pro
in the following subsections.

7.2.1 Hub Descriptors

The 8x931 has five descriptors, as shown in Table 7-2. All are standard USB descriptors e
the hub descriptor, which is class-specific. There is no descriptor for endpoint 0. A hub ha
one valid configuration and interface. The actual descriptor field values are given in the s
of Universal Serial Bus Specification referenced in the table.

The host reads the hub descriptors during bus enumeration. The host uses the values w
descriptors to determine device configuration. The hub descriptor is divided into several
which are shown in Table 7-3.

Table 7-2. 8x931 Descriptors

Descriptor Size Universal Serial Bus
Specification Reference

Device 18 bytes Section 9.7.1

Configuration 9 bytes Section 9.7.2

Interface 9 bytes Section 9.7.3

Endpoint 7 bytes Section 9.7.4

Hub 9 bytes Section 11.11.2

8x931AA, 8x931HA USER’S MANUAL

7.2.2 The Hub Address Register (HADDR)

During bus enumeration, the host PC communicates a unique address for the hub through hub
endpoint 0 using the set address command. Device firmware must interpret and write this hub ad-
dress to the Hub Address register (HADDR, as shown in Figure 7-5). This procedure is outlined
in “Enumeration” on page 8-2.

Table 7-3. Hub Descriptors

Field Size Offset Description

bDescLength 1 byte 0 Number of bytes in this descriptor, including this byte.

bDescriptorType 1 byte 1 Descriptor Type

bNbrPorts 1 byte 2 Number of downstream ports this hub supports.

wHubCharacteristics 2 bytes 3 Determines power switching mode, identifies device as a
compound device, and describes the over-current protection
mode used by the device.

bPwrOn2PwrGood 1 byte 5 Time elapsed from when the power on sequence begins on a
port until power is good on that port.

bHubContrCurrent 1 byte 6 Maximum current requirements of the hub controller.

DeviceRemovable 1 byte 7 Indicates if a port has a removable device attached.

PortPwrCtrlMask 1 byte Variable Indicates if a port is affected by a gang-mode power control
request.

HADDR Address: 97H
Reset State:0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0

— Hub Address

Bit
Number Function

7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

Figure 7-5. HADDR: Hub Address Register
7-8

USB HUB

ternal
 and is
led dif-
ividual

 7-6).
ns.
7.3 HUB STATUS

Status and configuration of the USB hub function is performed by both standard and hub class-
specific USB requests. These requests, generated by the host PC, manage and configure the status
of the hub and its downstream ports. These USB requests are listed and explained in “Hub Status
and Configuration” on page 8-17.

The hub has an internal downstream port (port 1) which operates differently than the ex
downstream ports. Because this port is physically connected to the embedded function
powered-on at all times, USB requests intended for the internal downstream port are hand
ferently than similar requests to the other downstream ports. The management of the ind
hub ports is discussed in “USB Hub Ports” on page 7-14.

The host PC may request that firmware check and change bits of the HSTAT SFR (Figure
See Table 8-1 on page 8-17 for a list of USB requests and their associated firmware actio

HSTAT Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

OVRIEN HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

7 OVRIEN Overcurrent Detect Enable Bit:

This bit is used to gate off the overcurrent input detect which is
multiplexed with P3.0. When set, a low on P3.0/OVRI# pin will trigger
over current detection logic. When this bit is ’0’ the over current detection
logic is disabled.

6 HRWUPE Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit
is modified through the SetFeature and ClearFeature requests using the
DEVICE_REMOTE_WAKEUP feature selector. When ‘0,’ the hub blocks
resume signaling for connect/disconnect and resume events detected on
downstream ports.
NOTE: Do not set this bit until after the hub is enumerated and the host

issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

† Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

Figure 7-6. HSTAT: Hub Status and Configuration Register
7-9

8x931AA, 8x931HA USER’S MANUAL
7.4 USB HUB ENDPOINTS

Table 7-4 gives the packet size, transfer type and implementation of the 8x931 hub endpoints.
Bulk and isochronous transfers are not supported by the hub endpoints. The hub handles control
transfers using endpoint 0 with a maximum packet size of eight bytes.

5 EP1STL Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1,’ will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of
0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon
receipt of configuration value other than 0001H or a system or USB
reset.
NOTE: This bit must be set in order for the UPWEN# pin to enable

power to the downstream ports. Downstream power cannot be
applied until this is done.

3 OVISC Hub Over-current Indicator Status Change (read/clear-only): †

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

2 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

1 OVI Latest Over-current Indicator (read-only): †

Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

HSTAT (Continued) Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

OVRIEN HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

† Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

Figure 7-6. HSTAT: Hub Status and Configuration Register (Continued)
7-10

USB HUB

EX.
s of
to con-

.

Hub endpoint 1 supports interrupt transfers only and has no endpoint receive buffer. Endpoint 1
is used to inform the host of a hub or port status change. Figure 7-8 on page 7-13 illustrates the
format used to transmit status change information to the host. Since endpoint 1 transmits a single
byte of information, TXDAT (Figure 7-7 on page 7-12) serves as the data buffer. Endpoint 1 op-
erations are primarily controlled by hardware and do not involve firmware, except for the
EP1STL and EP1EN bits in HSTAT (Figure 7-6).

7.4.1 Hub Endpoint Indexing Using EPINDEX

The 8x931 hub endpoint 0 uses the same communication registers (TXCNTL, RXCNTL, TX-
DAT, RXDAT, TXFLG, RXFLG, TXSTAT, RXSTAT, TXCON, and RXCON) as the embedded
USB function endpoints. The EPINDEX register (), used to access the registers of the USB func-
tion endpoints, is also used to access the registers for hub endpoints.

To access the communication SFRs for the hub endpoints, first write a ‘1’ to bit 7 of EPIND
To access the internal USB function’s registers, write ‘0’ to EPINDEX’ bit 7. Regardles
whether you are accessing the hub or function endpoints, the LSbs of EPINDEX are used
trol which endpoint’s registers are accessed.

For additional information on how to use EPINDEX, see “Endpoint Selection” on page 5-4

7.4.2 Hub Endpoint Control

Hub endpoint 1 of the 8x931 is controlled primarily by hardware, with these exceptions:

• Firmware can read endpoint 1’s TXDAT SFR

• Firmware can stall hub endpoint 1 in response to a Set_Feature (ENDPOINT_STALL)
request from the host by setting the EP1STL bit in HSTAT (Figure 7-6). Firmware can also
clear this bit in response to a Clear_Feature request.

• Firmware can enable hub endpoint 1 in response to a Set_Configuration request from the
host by setting the EP1EN bit in HSTAT (Figure 7-6 on page 7-9)

Firmware can control hub endpoint 0 through its EPCON register () when EPINDEX has previ-
ously been set to 80H. Hub endpoint control for endpoint 0 behaves identically to function end-
point control, except that hub endpoint 0 is always a single-packet, control endpoint. Therefore,
the corresponding bits (CTLEP and RXSPM) of its EPCON SFR are hardwired to ‘1’.

Table 7-4. Hub Endpoint Configuration

Hub
Endpoint

Max Packet
Size Transfer Type Implementation

0 8 bytes Control Firmware-
controlled

1 1 byte Status Change
Interrupt

Hardware-
controlled
7-11

8x931AA, 8x931HA USER’S MANUAL

tatus
 in TX-

oring
s with
7.4.3 Hub Endpoint Transmit and Receive Operations

The 8x931 hardware uses hub endpoint 1’s TXDAT register (Figure 7-7) to transmit a port s
change interrupt to the host. Figure 7-8 shows how a hub or port status change is reflected
DAT.

TXDAT is cleared by firmware upon a ClearPortFeature request from the host. See “Monit
Port Status Change Using HPSC” on page 7-20 for a description of how firmware interact
the host to communicate a change in port status.

NOTE
Although the bits of hub endpoint 1’s TXDAT SFR are firmware read-only,
bits 5:1 of TXDAT can be cleared indirectly by writing to a port’s HPSC SFR.
Clearing all bits in a port’s HPSC causes hardware to clear the bit associated
with that port in hub endpoint 1’s TXDAT. Hub endpoint 1’s TXDAT.0 can be
cleared indirectly by clearing HSTAT’s OVISC bit.

TXDAT (For hub endpoint 1 only) EPINDEX=81H† Address: F3H
Reset State: xxxx xxxxB

7 0

— — TXDAT5 TXDAT4 TXDAT3 TXDAT2 TXDAT1 TXDAT0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Values read from this bit(s) are indeterminate.

5:0 TXDAT5:0 Hub Endpoint 1 Status Change (read-only††):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDAT0 hub status change
TXDAT1 port 1 status change
TXDAT2 port 2 status change
TXDAT3 port 3 status change
TXDAT4 port 4 status change
TXDAT5 port 5 status change

A ‘1’ indicates a status change and ‘0’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bit is a ‘1’. If all bits are zero, a NAK handshake is returned.

† TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 6-8 on page 6-16.

†† Bits 5:1 can be set indirectly by firmware by writing to a port’s HPSC SFR. Setting any bit in port x’s
HPSC results in the hardware setting bit x in TXDAT. TXDAT bits can be cleared indirectly in firmware by
clearing all bits in that port’s HPSC.

Figure 7-7. TXDAT: Hub Transmit Data Buffer (Endpoint 1)
7-12

USB HUB

”

Figure 7-8. Status Change Communication To Host

The remaining hub transmit and receive registers communicate control information between the
host and either the internal function or the downstream ports. The 8x931 communicates this con-
trol information through endpoint 0 using procedures identical to those outlined for the function
control endpoint (function endpoint 0) in “Transmit FIFOs” on page 6-14 and “Receive FIFOs
on page 6-24.

NOTE
Hub endpoint 0’s transmit SFRs (e.g., TXDAT, TXCNTL, TXFLG, and
TXSTAT) behave identically to their function counterparts. For example,
when firmware writes to endpoint 0’s TXDAT, hardware automatically
transfers the byte into the transmit FIFO before the next write to TXDAT.
Placing the byte count into hub endpoint 0’s TXCNTL prepares the bytes to be
transmitted from the FIFO through hub endpoint 0 at the next IN token.

 A5256-01

34 12 067 5

Host PC

Hub Endpoint 1

TXDAT

PCSC

PESC

PSSC

POVSC

RSTSC

OVI

OVISC

HPSC
(Port 1)

HSTAT

ORed HPSC
(Ports 2, 3, 4, 5)

.

.

.

.

.

.

.

.

.

.

.

.

7-13

8x931AA, 8x931HA USER’S MANUAL

b port
sing

or a
ion of
ort,
hanged

e con-
t is en-
plied. An
a given
red by
hey are
T SFR
red by
 status
ectivity
7.5 USB HUB PORTS

In addition to the root port (port 0) and the embedded function addressed by port 1, the hub con-
tains four external downstream ports, ports 2, 3, 4, and 5.

7.5.1 Controlling a Port Using HPCON

You can change a port’s status by writing an encoded hub port control command to the hu
control register (HPCON, as shown in Figure 7-9). All ports can be controlled by HPCON u
the HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 7-23 f
description of how port indexing works. Table 7-6 on page 7-16 gives a complete descript
the encoded hub port control commands. The 8x931 hardware can also change the status of a p
and some port features (i.e., low-speed/full-speed and connect/disconnect) can only be c
by hardware.

8x931 hardware ignores certain USB port requests if the request has no meaning within th
text of the current port state. For example, there is no need to activate power to a port tha
abled, disabled, or suspended, because a port in one of these states already has power ap
activate power request (SetPortFeature with a port power feature selector) is supported for
port only when that port is in the powered-off state. For all other states, the request is igno
hardware. Table 7-5 depicts the state-related USB requests and the port states for which t
ignored. Upon receipt of a state-related USB request, firmware must examine the HPSTA
to determine the current port state. If the port is in a state where the request will be igno
hardware, firmware must respond to the host by sending a STALL during the transaction
stage to indicate the command was not completed. Port states are discussed in “Port Conn
States” on page 7-4 and shown in Figure 7-3 on page 7-5.

Table 7-5. USB Requests Ignored by Hardware (by Port State)

USB Request

Response by Port State [as indicated by the given bit in HPSTAT]

Powered-Off
[PPSTAT = 0]

Disconnected
[PCSTAT = 0]

Disabled
[PESTAT = 0]

Enabled
[PESTAT = 1]

Suspended
[PSSTAT = 1]

SetPortFeature
(Port Power) Ignored Ignored Ignored Ignored

ClearPortFeature
(Port Power) Ignored

SetPortFeature
(Port Enable) Ignored Ignored Ignored Ignored

ClearPortFeature
(Port Enable) Ignored Ignored Ignored Ignored

SetPortFeature
(Port Reset) Ignored Ignored

SetPortFeature
(Port Suspend) Ignored Ignored Ignored Ignored

ClearPortFeature
(Port Suspend) Ignored Ignored Ignored Ignored
7-14

USB HUB

 ports.
 control
rts, as
After you request a port status change through HPCON, it may take the 8x931 hardware a period
of time to affect the change, depending on the current state of the hub port and its current opera-
tion. You can check the HPSC SFR to see that your latest change has taken effect, as described
in “Monitoring Port Status Change Using HPSC” on page 7-20.

NOTE
Port connect status cannot be changed through HPCON. This port feature is
controlled by physically connecting or disconnecting a device from the port.

Port 1 represents the internal downstream port and differs from the external downstream
The internal downstream port is always connected (and cannot be disconnected). Hub port
commands have a different effect on port 1 than they do on the external downstream po
shown in Table 7-6 below.

HPCON
(Indexed by HPINDEX)

Address: CFH
Reset State: xxxx x000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

7 0

— — — — — HPCON2 HPCON1 HPCON0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPCON2:0 Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port
001 — Enable port
010 — Reset and enable port
011 — Suspend port
100 — Resume port

See Table 7-6 on page 7-16 for a complete description of the encoded hub
port control commands.

Figure 7-9. HPCON: Hub Port Control Register
7-15

8x931AA, 8x931HA USER’S MANUAL
Table 7-6. Encoded Hub Port Control Commands

Code Command Condition Results [Port x
(x=2,3,4,5)] Results [Port 1]

000 Disable
port

Firmware should
write ‘000’ to
HPCON upon
receipt of a
ClearPortFeature
with a
PORT_ENABLE
feature selector.

Places port in the
disabled state the next
time the bus is idle.

Same

001 Enable
port

Firmware should
write ‘001’ to
HPCON upon
receipt of a
SetPortFeature with
a PORT_ENABLE
feature selector.

Places port in the
enabled state the next
time the bus is idle.

Same

010 Reset and
enable
port

Firmware should
write ‘010’ to
HPCON upon
receipt of
SetPortFeature with
PORT_RESET
feature selector.

Causes port x to
immediately drive an
SE0 downstream for at
least 15 msec and then
places the port in the
enabled state.

Causes an internal hardware reset of
the FIU and FIFO circuitry relating to
the embedded function. Certain
embedded function SFRs are reset
to their default values (as listed in
“Embedded Function Reset” on page
7-24). After at least 15 ms, hardware
automatically places the port in the
enabled state. Firmware should
handle reset of any other firmware
and hardware features relating to the
embedded function immediately after
initiating the reset and enable
through this SFR (must be complete
by 15 ms from start of reset).

011 Suspend
port

Firmware should
write ‘011’ to
HPCON upon
receipt of
SetPortFeature with
PORT_SUSPEND
feature selector.

Places the port in an
idle “J” state the next
time the bus is idle and
prevents the port from
propagating USB traffic.

Suspends the embedded function’s
port the next time the bus is idle,
preventing port 1 from generating
any USB traffic. Firmware should
suspend port 1 only after doing any
necessary processing (i.e., putting
any external components in a low-
power state) to place the embedded
function into a suspended state.

100 Resume
port

Firmware should
write ‘100’ to
HPCON upon
receipt of
ClearPortFeature
with
PORT_SUSPEND
feature selector.

Causes port x to
immediately drive a “K”
state downstream for
at least 20 msec
followed by a low-
speed EOP, and then
places the port back in
the enabled state.

Places port 1 into the enabled state
after 20 ms. Firmware should
resume port 1 only after doing any
necessary processing to take the
embedded function out of the
suspended (low-power) state.
7-16

USB HUB

 Figure
ng the
 de-

Bus

T also
discon-

irectly
ome
 7-14.
7.5.2 Examining a Port’s Status Using HPSTAT

You can examine a port’s status using the hub port status register (HPSTAT, as shown in
7-10 on page 7-18). The HPSTAT SFR can show the status for any of the ports by usi
HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 7-23 for a
scription of how this indexing works.

HPSTAT gives the current DP and DM values for the selected port; these implement the Get
State diagnostic aid to facilitate system debug (See the Universal Serial Bus Specification). HP-
STAT contains a bit that indicates when a low-speed device is attached to a port. HPSTA
shows a given port’s reset status, and whether the port is powered on or off, connected or
nected, enabled or disabled, or suspended.

NOTE
Firmware-initiated port status changes are not reflected in HPSTAT until the
next end-of-frame.

The HPSTAT SFR is read-only. To change the status of a port feature, you must do so ind
using the HPCON SFR. The 8x931HA hardware can also change the status of a port, and s
features can only be changed by hardware. See “Controlling a Port Using HPCON” on page
7-17

8x931AA, 8x931HA USER’S MANUAL
HPSTAT
(Indexed by HPINDEX)

Address: D7H
Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

7 DPSTAT DP Status (read-only):

Value of DP for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 1: Hard-wired to ’1’, since there is no DP signal for the embedded port

6 DMSTAT DM Status (read-only):

Value of DM for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 1: Hard-wired to ’0’, since there is no DM signal for the embedded port.

5 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 1: Hard-wired to ’0’ (full-speed), since port 1 is permanently attached to
the embedded USB function.

4 PPSTAT Port Power Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 1: Hard-wired to ’1’, since the internal function is always powered-on.

NOTES:

Firmware returns the bits of this register in the first word of the 8x931’ response to the host’s GetPortStatus
request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931 supports ganged power
control and overcurrent indication.

Figure 7-10. HPSTAT: Hub Port Status Register
7-18

USB HUB
3 PRSTAT Port Reset Status (read-only):

Port x ((x=2,3,4,5): Set and cleared by hardware as a result of initiating a
port x reset by writing to HPCON. ‘1’ = reset signaling is currently asserted
for port x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2
point near end of frame.

Port 1: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1’ = port x is currently suspended. ‘0’ = not suspended.
Sampled only at the EOF2 point near end of frame.

Port 1: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled
only at the EOF2 point near end of frame.

Port 1: Same as port x.

0 PCSTAT Port Connect Status (read-only):

Port x connect status from previous frame time.

Port x (x=2,3,4,5): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 1: Hard-wired to ‘1’, since the internal function is permanently
connected.

HPSTAT (Continued)
(Indexed by HPINDEX)

Address: D7H
Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

NOTES:

Firmware returns the bits of this register in the first word of the 8x931’ response to the host’s GetPortStatus
request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931 supports ganged power
control and overcurrent indication.

Figure 7-10. HPSTAT: Hub Port Status Register (Continued)
7-19

8x931AA, 8x931HA USER’S MANUAL

ecause
 down-

ware
(Figure

 port

st ad-

AT and
us Re-

eatures
t.
7.5.3 Monitoring Port Status Change Using HPSC

When firmware changes the status of a port, there may be a delay between the time firmware re-
quests the status change (using the HPCON register, as described in “Controlling a Port Using
HPCON” on page 7-14) and the time hardware actually changes the state. This occurs b
some port changes require hardware to perform auxiliary functions (such as driving a state
stream for up to 20ms). Additionally, some status changes are initiated by hardware. Firm
can determine when a port status change has occurred by monitoring the HPSC register
7-11).

NOTE
Firmware-initiated port status changes are not reflected in HPSC until the next
end-of-frame.

The 8x931HA uses the 1-byte TXDAT register associated with endpoint 1 to communicate a
status change to the host (Figure 7-7 on page 7-12). Bits in this register are set by the 8x931HA
hardware to indicate which ports (or the hub itself) have changed status.

After receiving notification of a port status change through endpoint 1, the host may reque
ditional information regarding the status change using a GetPortStatus request. 8x931HA firm-
ware must respond to the GetPortStatus request by transmitting the contents of the HPST
HPSC registers to the host in a two-word format. This process is described in “GetPortStat
quest Firmware” on page 8-25.

The HPSC register (Figure 7-11) indicates which port feature has changed status. Port f
whose status changes are reflected by HPSC include reset, suspend, enable, and connec
7-20

USB HUB

HPSC
(Indexed by HPINDEX)

Address: D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 1: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:

Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=2,3,4,5): This bit is set by hardware upon completion of the
firmware-initiated resume process.

Port 1: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).

Figure 7-11. HPSC: Hub Port Status Change Register
7-21

8x931AA, 8x931HA USER’S MANUAL
1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 1: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware at the EOF2 point near the end
of a frame due to hardware connects and disconnects.

Port 1: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

HPSC (Continued)
(Indexed by HPINDEX)

Address: D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).

Figure 7-11. HPSC: Hub Port Status Change Register (Continued)
7-22

USB HUB

bed in
 been

 Port
ecific
NOTE
While the HPSC register indicates which port features have changed status, it
does not show the current status of any feature. Firmware must examine the
HPSTAT register to determine if a given port is currently reset, suspended,
powered on or off, connected or disconnected, enabled or disabled. See
“Examining a Port’s Status Using HPSTAT” on page 7-17 for details.

7.5.4 Hub Port Indexing Using HPINDEX

A port indexing scheme is used for port-specific SFRs for reasons similar to those descri
“Endpoint Selection” on page 5-4 for endpoint-specific registers. Three sets of SFRs have
mapped into the port-indexed scheme: HPSC, HPSTAT, and HPCON.

Ports 1-4 are indexed by the binary value of the two lower bits of HPINDEX (Figure 7-12).
0 is reserved for the root port, but it is not indexed by HPINDEX since there are no port-sp
SFRs for the root port.

CAUTION
Firmware writers may choose to set the contents of HPINDEX once at the start
of each routine instead of writing to HPINDEX prior to each access of a port-
indexed SFR. Because of this, interrupt service routines must save the contents
of the HPINDEX register at the start of the routine and restore the contents at
the end of the ISR. This will prevent HPINDEX from being corrupted.
7-23

8x931AA, 8x931HA USER’S MANUAL

ddi-

IFLG,
de-
DEX
PCON,
s time

t. This

7.5.5 Embedded Function

The following subsections discuss considerations involved with the embedded function on inter-
nal downstream port 1. See “Embedded Function Suspend and Resume” on page 7-26 for a
tional embedded function information.

7.5.5.1 Embedded Function Reset

The USB host can generate an embedded port reset command to the hub to reset the 8x931HA
embedded function. When this command is received, the embedded function’s EPCON, F
FIE, TXSTAT, RXSTAT, TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their
fault values, as are the SOFACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPIN
and SOFL SFRs remain unchanged. These SFRs are reset immediately after the write to H
however bus traffic to the embedded function remains inactive for 15 ms. You may use thi
frame to initialize the embedded function.

After an embedded function reset, the internal function must be re-enumerated by the hos
procedure is given in “Enumeration” on page 8-2.

HPINDEX Address D4H
Reset State xxxx x000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

7 0

— — — — — HPIDX2 HPIDX1 HPIDX0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPIDX2:0 bit combinations:

Port 1 = “001” (internal port)
Port 2 = “010”
Port 3 = “011”
Port 4 = “100”
Port 5 = “101”

NOTE: Port 0 = “000” (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.

Figure 7-12. HPINDEX: Hub Port Index Register
7-24

USB HUB

he em-
.0 msec
e

ontroller

 shuts
 USB

r a

in

al con-
is sig-

nnect
t, the
 wake-
e Figure
7.5.5.2 Embedded Function Remote Wake-up

The HRWUPE bit in HSTAT (Figure 7-6 on page 7-9) must be set in order for any downstream
port to initiate resume signaling. This includes hub port 1, the internal downstream port. This port
must be suspended and the HRWUPE bit in HSTAT must be set before the embedded function
can initiate a remote wake-up. This is done by setting the RWU bit in PCON1 (Figure 14-2 on
page 14-4).

7.6 SUSPEND AND RESUME

7.6.1 Hub Global Suspend and Resume

USB requirements state that a USB device must be capable of being placed in a low-power sus-
pend mode in which the device draws less than 500 µA from the USB lines. The hub and t
bedded function are placed in suspend mode when a continuous idle state of more than 3
is detected on the hub root port. For an in-depth discussion of 8x931 suspend and resume, se
“USB Power Control” on page 14-7.

Once the suspend has been detected, the GSUS bit in the PCON1 SFR is set and a microc
interrupt is generated (See).

Firmware services the global suspend interrupt by setting the PD bit of the PCON SFR. This
off the device’s clocks and crystal oscillator, placing the hub and embedded function in a
suspend mode.

A resume event can be signaled in any of three ways:

1. The hub repeater asynchronously detects a resume state due to resume signaling o
connect/disconnect on the bus

2. The hub repeater detects a reset state on the bus’ root port

3. An external interrupt powers-up the entire device, with a resume sequence initiated
firmware by setting the RWU bit in the PCON1 SFR (Figure 14-2 on page 14-4)

7.6.2 Remote Connectivity

During the suspend state of the hub, logical connectivity can also be established if a physic
nection/disconnection is made on one of the downstream ports, or if a resume condition
naled on a port, as shown in Figure 7-13 on page 7-26.

7.6.2.1 Resume Connectivity

The HRWUPE bit must be set in the HSTAT register (Figure 7-6 on page 7-9) before the co
or disconnect of a downstream device can initiate a remote wake-up. If this bit is not se
downstream connect or disconnect will be ignored as a remote wake-up event. If a remote
up device signals a resume on a downstream port when the hub is in the suspend state (se
7-13), the following process occurs:

1. The resume signaling causes the hub to wake up.
7-25

8x931AA, 8x931HA USER’S MANUAL

mmand
an be
er to
the

SetPort-
e hard-
2. The repeater then establishes a connection from the port with the resume signal to the root
port and all other enabled downstream ports.

3. The connectivity is then changed to downstream-only from the root port to all enabled
downstream ports. This allows the host to drive the resume signaling downstream to the
rest of the USB bus.

NOTE
The 8x931HA hub cannot request a remote wake-up, although its embedded
function can. For this to happen, the HRWUPE bit must be set in HSTAT and
the embedded function must be enabled. The embedded function triggers the
remote wake-up by setting the RWU bit in PCON1.

Figure 7-13. Resume Connectivity

7.6.2.2 Connectivity Due to Physical Connect/Disconnect

If a disconnect is made to a disabled port and the hub is in a global suspend state, a resume state
is signaled as described in “Resume Connectivity” on page 7-25.

7.6.2.3 Embedded Function Suspend and Resume

Selective suspend is initiated on a downstream port when a SetPortFeature (suspend) co
is received from the host via the USB bus. Individual external ports or the internal port c
suspended by USB command; however, the hub cannot be suspended by command. Ref
Universal Serial Bus Specification for more detail on the behavior of selective suspend in
USB system.

USB requirements state that the host can suspend the embedded function by issuing a
Feature (PORT_SUSPEND) request to the hub’s port 1. Since the hub and function shar

A5257-01

Port 4Port 3Port 2

(Disabled)

Root Port

Port 4Port 3Port 2

(Disabled)

Root Port

Port 4Port 3Port 2

(Disabled)

P
or

t 1
 (

In
te

rn
al

)

Root Port

Downstream
Connectivity

Resume
Connectivity (Port 2)

Suspended Hub
with Resume (Port 2)

P
or

t 1
 (

In
te

rn
al

)

Port 5 Port 5

P
or

t 1
 (

In
te

rn
al

)

Port 5
7-26

USB HUB
ware such as the SIE, it is not possible to simply shut-off the clock to all circuitry associated with
the function when the hub is to remain operational.

When placed into the suspended state, the embedded function must behave as if it were connected
to a hub whose actual downstream port was suspended. This means that the embedded function
must not respond to SOFs or any normal bus traffic. This is done automatically by hardware.
Firmware should place any external circuitry associated with the embedded function in a low-
power state, if one exists. The embedded function should remain in this suspended state until the
host initiates a ClearPortFeature (PORT_SUSPEND) or a SetPortFeature (PORT_RESET) re-
quest to the hub, or until a remote wake-up is signaled by the embedded function via an external
interrupt.

7.7 HUB POWER DISTRIBUTION

USB hubs can supply a specified amount of power to their downstream components and are re-
sponsible for reporting their power distribution capabilities to the host during enumeration. Hubs
may be either locally powered, bus powered, or a combination of the two. The distinction is made
depending on how the user implements the power scheme at the board level, which should be in-
dicated in the value of the bmAttributes field of the configuration descriptor.

A hub can only supply power in a downstream direction and must never drive power upstream.
Bus-powered hubs must have port power switching for the downstream ports and are required to
power off all downstream ports when the hub comes out of power-up or when it receives a reset
on its root port. Port power can also be switched on or off under control of the host PC. Port power
switching is optional for self-powered devices.

NOTE
Port power switching and over-current detection (discussed in the following
subsections) are mutually exclusive. Over-current detection is required only
for self-powered hubs, while port power switching is required only for bus-
powered hubs.

7.7.1 Port Power Switching

Port power switching is only supported on a ganged basis, therefore there is only one output pin
used to enable power to the downstream devices.

From a USB perspective, power can be enabled on a per-port basis, but the power enable is active
if any of the ports are powered-on by the host. The host PC can selectively switch power on or
off for a given port using a Set_Feature request with a Port_Power feature selector. The 8x931
firmware must respond to this port power request by setting or clearing the appropriate bit in the
HPPWR SFR (Figure 7-14). An exception to this is the internal downstream port, port 1, which
is statically powered-on. The host PC may inquire about a port’s power status using Get_Feature
(Port_Power). Firmware must respond to this inquiry by checking and reporting on the PPSTAT
bit (bit 4) of HPSTAT (see Section 7.5.2, Examining a Port’s Status Using HPSTAT).
7-27

8x931AA, 8x931HA USER’S MANUAL
HPPWR Address: 9AH
Reset State: xxx0 001xB

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.

7 0

— — HPPWR5 HPPWR4 HPPWR3 HPPWR2 HPPWR1 —

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5:2 HPPWR5:2 Port Power Control for USB Ports 5-2:

Bit 5 is power control for port 5, bit 4 for port 4, bit 3 for port 3, and bit 2 for
port 2. These bits are set and cleared by firmware via a USB host request
SetPortFeature with the PORT_POWER feature selector. These bits will
also be cleared by hardware upon detection of an over-current condition.
This is done to prevent oscillation of the UPWEN# pin during an over-
current condition with bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the port in a
disconnected state. A value of ‘0’ turns the downstream port power off.
NOTE: The UPWEN# pin is set to ‘1’ only if all port power enable bits are

‘0,’ due to the use of a ganged (shared) power enable scheme.

1 HPPWR1 Port Power Control for USB Port 1 (read-only):

Port 1 is an internal port and is always powered on. This bit is hard-wired to
‘1.’

0 — Reserved:

Write a zero to this bit.

Figure 7-14. HPPWR: Hub Port Power Control
7-28

USB HUB

state;
n over-
time
er must
ignal

igure
hub
‘0’) or
bit was
rm-

 in the
h self-
er to
 —

stream
switch
ways:

ng as
or if
serted

ignals
8) are
 via the
nt con-
7.7.2 Overcurrent Detection

The OVRI# pin is an input pin that indicates when an overcurrent condition has been detected on
one of the downstream devices at the board level. OVRI# is enabled by setting HSTAT.7 and is
used to asynchronously disable the UPWEN# output pin, which switches power off to all external
ports. When the overcurrent condition is removed, the OVRI# pin is deasserted to a ‘1’
however, the UPWEN# signal remains inactive since the HPPWR5:2 bits are reset when a
current condition is detected (unless firmware has asserted one or more of these bits since the
the overcurrent was first detected). Due to the asynchronous nature of this signal, the us
be careful to guarantee that the OVRI# input is not “glitchy” or noisy, since glitches on this s
could have a detrimental impact on the system.

The state of the OVRI# pin can be read by the USB host via firmware, using the HSTAT (F
7-6 on page 7-9) OVI (HSTAT.1 — latest overcurrent indicator) and OVISC (HSTAT.3 —
overcurrent status change) bits. OVI indicates if the overcurrent bit is presently asserted (
de-asserted (‘1’). OVISC indicates whether the overcurrent status has changed since this
initially cleared by firmware (i.e., this bit acts as a “sticky” bit which must be cleared in fi
ware).

Another fact to consider about the overcurrent condition is that all external ports are placed
“powered off” state. This is true for both bus-powered and self-powered ports, even thoug
powered ports may still be powered. This condition will remain until the host enables pow
the ports via one of the HPPWR5:2 bits. To disable OVRI# pin, clear OVRIEN (HSTAT.7
overcurrent detect enable bit).

7.7.3 Ganged Power Enable

The 8x931HA uses a ganged power enable scheme to enable power to the external down
ports. This means that a single output pin, UPWEN# should be used at the board-level to
power to all of the downstream ports. The state of this power enable pin is controlled in two

• by the collective ORed value of bits 5:2 of the HPPWR SFR (Figure 7-14) under control of
firmware, and

• by the present state of the overcurrent sense input pin, OVRI#.

If any of the HPPWR bits are set, then the UPWEN# signal will be asserted (to a ‘0’) as lo
the OVRI# signal is not asserted (i.e., OVRI # = ‘1’). If the OVRI# signal is asserted (‘0’),
all of the power enable bits in HPPWR are cleared, then the UPWEN# signal will be deas
(to a ‘1’).

Table 7-7 describes the state of the UPWEN# signal for all conditions of the HPPWR5:2 s
and the OVRI# pin. Port power enable bits in the HPPWR SFR (Figure 7-14 on page 7-2
set via the SetPortFeature PORT_POWER request from the USB host. They are cleared
ClearPortFeature PORT_POWER request, or by hardware upon detection of an overcurre
dition.
7-29

8x931AA, 8x931HA USER’S MANUAL

t not
n.

 of the
-
al.

dix B.

Since a single power enable output is used for all downstream ports, the value of the correspond-
ing HPPWR bit does not necessarily reflect the actual state of the port power, since all HPPWR
bits must be disabled for power to be disabled. Similarly, a ‘1’ bit in the HPPWR SFR migh
reflect that power is actually enabled to any devices in the event of an overcurrent conditio

Note that the power enable signal for the internal port, HPPWR1, does not affect the state
UPWEN# pin. Also, note that bus-powered devices must use the UPWEN# signal to switch pow
er to downstream ports, however, port power switching for self-powered devices is option

NOTE
Before the UPWEN# pin can be enabled, the EP1EN bit in the HSTAT SFR
(Figure 7-6 on page 7-9) must be set. See Section 11.9 of the Universal Serial
Bus Specification.

7.8 HUB DEVICE SIGNALS

Table 7-8 lists device signals associated with the hub. Pin assignments are shown in Appen

Table 7-7. UPWEN# Pin State Truth Table

HPPWR5 HPPWR4 HPPWR3 HPPWR2 OVRI# UPWEN#

0 (disabled) 0 (disabled) 0 (disabled) 0 (disabled) 1 (disabled) 1 (disabled)

X X X 1 1 0 (enabled)

X X 1 X 1 0

X 1 X X 1 0

1 X X X 1 0

X X X X 0 (enabled) 1

Table 7-8. Signal Descriptions

Signal
Name Type Description Alternate

Function

DP0, DM0 I/O USB (Upstream) Port 0. DP0 and DM0 are the data plus and
data minus lines of USB port 0. These lines do not have internal
pullup resistors. For low-speed devices, provide an external 1.5
KΩ pullup resistor at DM0. For full-speed devices, provide an
external 1.5 KΩ pullup resistor at DP0.

NOTE: For the 8x931HA, provide an external 1.5 KΩ pullup
resistor at DP0 so the device indicates to the host that it is a full-
speed device.

—

DP2, DM2

DP3, DM3

DP4, DM4

DP5, DM5

I/O USB Downstream Ports 2,3,4,5. These pins are the data plus
and data minus lines for the four USB external downstream
ports. You must supply an external 15 KΩ pulldown resistor for
these lines. If the USB downstream ports are not used, the two
data lines are still required to be pulled low externally (similar to
a disconnect) so that the inputs are not left floating.

—

7-30

8
USB Programming
Models

ils on

ceive
 each
r enu-
s.
CHAPTER 8
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface and the hub inter-
face. It provides flow charts of firmware routines needed to perform data transfers between the
host PC and the embedded function, as well as routines needed to handle hub-oriented USB re-
quests. It also describes briefly how the firmware interacts with the USB module hardware during
these operations. Data operations refer to data transfers over the USB, whereas event operations
are hardware operations such as attach and detach. For a description of the USB function interface
as well as its FIFOs and special functions registers (SFRs), refer to Chapter 6, “USB Function”.
For further information about the USB hub interface, see Chapter 7, “USB Hub”. For deta
data flow in USB transactions refer to Appendix D, “Data Flow Model”.

Figure 8-1. Program Flow

8.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and re
SOF. Program flow is depicted in Figure 8-1 along with the type of token associated with
routine. Following device reset, the USB function enters the unenumerated state and afte
meration by the host, the idle state. From the idle state, it can enter any of the four routine

A4260-02

Receive SOFTransmit

Initialization

Reset

IN
token OUT

token
SETUP
token

SOF
token

Setup

Idle/Application Code

Receive

Enumeration
8-1

8x931AA, 8x931HA USER’S MANUAL

ntifies
ed by the

ne

b

e such
ize

tc.

he

ch

 .

. The
red in
8.1.1 Enumeration

Following device reset, the USB hub and function enter the unenumerated state. Initially, the hub
address register HADDR and the function address register FADDR contain the default value
00H. The host PC performs bus enumeration at system start-up or whenever a new USB device
is attached to the host or to a hub’s downstream port. During bus enumeration the host ide
and addresses devices attached to the bus. During enumeration, a unique address assign
host is written to HADDR and FADDR.

NOTE
Since the 8x931AA microcontroller does not support a hub interface (and
hence, has no HADDR SFR or downstream ports), its enumeration process is
simpler. The 8x931AA enumeration process is given in Appendix E,
“8x931AA Enumeration Process” on page E-2.

An example enumeration for the hub and downstream ports is given here:

1. Get device descriptor. The host requests and reads the device descriptor to determi
maximum packet size.

2. Set address. The host sends the 8x931HA’s hub address in a data packet using hub
endpoint 0. Device firmware interprets the data and instructs the CPU to write the hu
address to HADDR. See “The Hub Address Register (HADDR)” on page 7-8.

3. Get device descriptor. The host requests and reads the device descriptor to determin
information as device class, USB specification compliance level, maximum packet s
for endpoint 0, vendor id, product id, etc. For additional information on the 8x931HA
descriptors, see “Hub Descriptors” on page 7-7.

4. Get configuration descriptor. The host requests and reads the device’s configuration
descriptor to determine such information as the number of interfaces and endpoints;
endpoint transfer type, packet size, and direction; power source; maximum power; e
When the host requests the configuration descriptor, all related interface endpoint
descriptors are returned. For additional information on the 8x931HA descriptors, see “Hub
Descriptors” on page 7-7.

NOTE
Some versions of the operating system send a Get string descriptor at this point
in the enumeration process.

5. Set configuration. The host assigns a configuration value to the device to establish t
current configuration.

6. Get hub descriptor. The host requests and reads the hub descriptor to determine su
information as number of downstream ports, hub characteristics, controller current,
removable devices, etc. For additional information, see Table 7-3, “Hub Descriptors”

7. Next, the hub downstream ports start the state flow shown in Figure 7-3 on page 7-5
host issues a SetPortPowerFeature request to the downstream ports that were decla
the hub descriptor. This moves the hub downstream ports to the disconnect state.
8-2

USB PROGRAMMING MODELS

r to

pter

h the

ith the

ration
 adjust-
th the
fer
ata that
8. As connect detects occur, the host is notified through hub endpoint 1 (status change
endpoint). The host then issues a GetPortStatus command retrieving the contents of
HPSTAT and HPSC to determine the change for a specific downstream port. The host
then issues a ClearPortConnectionFeature command which should cause the firmware to
clear the PCSC bit in the HPSC register. This will indirectly clear the appropriate bit in
TXDAT for hub endpoint 1. This moves the hub downstream port to the disabled state.

9. The host sends a SetPortResetFeature request for the specified downstream port. The host
receives a response through hub endpoint 1 (status change endpoint). The host issues a
GetPortStatus command retrieving the contents of HPSTAT and HPSC to determine the
change for the specified downstream port. The host then issues a ClearPortResetFeature
command, causing firmware to clear the RSTSC bit in the HPSC register. This moves the
hub downstream port to the enabled state.

10. At this point, the downstream ports go through the function enumeration process,
beginning with the embedded function:

a. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For detailed information on device
descriptors, see the “Device Framework” chapter in Universal Serial Bus Specification.

b. Set address. The host sends the function address in a data packet using function
endpoint 0. Device firmware interprets the data and instructs the CPU to write the
function address to FADDR.

c. Get configuration. The host requests and reads the device configuration descripto
determine such information as the number of interfaces and endpoints; endpoint
transfer type, packet size, and direction; power source; maximum power; etc. For
detailed information on configuration descriptors, see the “Device Framework” cha
in Universal Serial Bus Specification. When the host requests the configuration
descriptor, all related interface and endpoint descriptors are returned.

d. Set configuration. The host assigns a configuration value to the device to establis
current configuration. Devices can have multiple configurations.

11. The external ports must go through steps 8 through 10.

8.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this state, the 8x931 exe-
cutes application code associated with the embedded function. Upon receipt of a token w
assigned address, the module enters the designated routine. The 8x931 remains in the idle state
when not processing USB transmissions.

8.1.3 Transmit and Receive Routines

When the 8x931 is sending and receiving packets in the transmit and receive modes, its ope
depends on the type of data that is transferred—isochronous or non-isochronous—and the
ment of the FIFO markers and pointers—automatic or manual. These differences affect bo
8x931 firmware and the operation of the 8x931 hardware. For isochronous data, a failed trans
is not retried (lossy data). For non-isochronous data, a failed transfer can be repeated. D
8-3

8x931AA, 8x931HA USER’S MANUAL

-trans-
ft side
t over
ge 8-7

edded
 data
pt of
t over
n
anage-

is then
U. The
ement

ndition

o

s
d
can be repeated is considered lossless data. Automatic adjustment of the FIFO markers and point-
ers is accomplished by the function interface hardware. Manual adjustment is accomplished by
the 8x931 firmware.

8.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, hub, and SOF interrupts, see
Chapter 5, “Interrupt System”.

8.2 TRANSMIT OPERATIONS

8.2.1 Overview

A transmit operation occurs in three major steps:

1. Pre-transmit data preparation by firmware

2. Data packet transmission by function interface hardware

3. Post-transmit management by firmware

These steps are depicted in a high-level view of transmit operations (Figure 8-2). The pre
mit and post-transmit operations are executed by the two firmware routines shown on the le
of the figure. Function interface hardware (right side of the figure) transmits the data packe
the USB line. Details of these operations are described in “Pre-transmit Operations” on pa
and “Post-transmit Operations” on page 8-8.

Transmit operations for non-isochronous data begin with an interrupt request from the emb
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the
from the function to the transmit FIFO where it is held until the next IN token. Upon recei
the next valid IN token, the function interface shifts the data out of the FIFO and transmits i
the USB. If the data packet is not ready for transmission, 8x931 hardware responds to the IN toke
with a NAK. The post-transmit routine checks the transmission status and performs data m
ment tasks.

Completion of data transmission is indicated by a handshake returned by the host. This
used to generate a transmit done interrupt to signal the end of data transmission to the CP
interrupt can also be used for activity tracking and fail-safe management. Fail-safe manag
permits recovery from lockups that can only be cleared by firmware.

Because a transmit done interrupt is generated regardless of transmission errors, this co
means either:

1. The transmit data has been transmitted and the host has sent an acknowledgment t
indicate that is was successfully received; or

2. A transmit data error occurred during transmission of the data packet, which require
servicing by firmware to be cleared. You must check for these conditions and respon
accordingly in the ISR.
8-4

USB PROGRAMMING MODELS
For ISO data transmission, the cycle is similar. The significant differences are: the cycle is initi-
ated by a start-of-frame (SOF) interrupt, there is no handshake associated with ISO transfer, and
a transmit done interrupt is not generated. For ISO data transfers, the transaction status is updated
at the end of the USB frame. The 8x931 supports one ISO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 6-10 on page 6-19) have a major
influence on transmit operation:

• The TXISO bit (TXCON.3) determines whether the transmission is for isochronous data
(TXISO = 1) or non-isochronous data (TXISO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 8-2). Also, for non-
isochronous data, the post-transmit routine is an ISR; for isochronous data the post-transmit
routine is an ISR initiated by an SOF token.

• The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REVRP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitions in TXCON (Figure 5-12).
8-5

8x931AA, 8x931HA USER’S MANUAL

Figure 8-2. High-level View of Transmit Operations

Interrupt
(keyboard, joystick, modem)

ISR

Write data to transmit FIFO
Write TXCNT

TXISO = 0: Transmit done interrupt
TXISO = 1: SOF interrupt

IN Token

Send data over USB

RETI

Firmware Hardware

RETI

– Receive host handshake
– Manage TXSEQ bit

If TXISO = 0:

If ATM = 1:

A4262-02

(SIE, FIU, FIFOs)

Post-
Transmit
Routine

Pre-transmit
Routine

– Adjust FIFO read
 marker and read pointer

– Adjust FIFO read marker and
 read pointer

•
•

•
•

ISR

Check status
If ATM = 0:

•
•

•

Generate transmit done interrupt
or SOF interrupt

•

8-6

USB PROGRAMMING MODELS
8.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy-
stick, scanner, etc. In event-control applications, the end function signals the availability of data
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre-
pare the data for transmission and initiate the transmission process. The flow chart in Figure 8-3
illustrates a typical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start-of-frame (SOF) packet.

Figure 8-3. Pre-transmit ISR (Non-Isochronous)

RETI

Start: Non-ISO

 A5071-01

Yes

No

Yes

NoVacancy
in Transmit

FIFO?

Transfer Packet to
Transmit FIFO through

TXDAT

TXFIF1:0 = 11 in Dual-packet Mode
TXFIF1:0 = 00 in Single-packet Mode

Write Packet Size to
TXCNT

Error in
Transmit FIFO? TXOVF = 1 (overflow)

Error
Recovery
8-7

8x931AA, 8x931HA USER’S MANUAL

 ensure
uld be

 flow of
) and
8.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake received
from the host (non-isochronous data) or based on the transmission process itself (isochronous
data). For a non-isochronous transfer, the function interface generates a transmit done interrupt.
The purpose of the post-transmit service routines is to manage the transmitter’s state and to
data integrity for the next transmission. For isochronous data, the post-transmit routine sho
embedded within the transfer request routine because both are triggered by an SOF. The
operations of typical post-transmit ISRs is illustrated in Figure 8-4 (non-isochronous data
Figure 8-5 (isochronous data).

Figure 8-4. Post-transmit ISR (Non-isochronous)

RETI

Identify Interrupt and Endpoint
(check FTXDx bits in FIFLG register)

Start: Transmit Done ISR

 A5072-01

No(TXACK = 1) Yes

Read Transaction Status
(TXSTAT Register)

Clear Interrupt Flag
(FTXDx Bit)

Transmit
Error?

(TXERR = 1)

Error in
Transmit
FIFO?

Yes

Data Error recovery

Reverse Transmit FIFO to
Current Packet Retry

No

Failed CRC,
Bit-stuffing, or
Timeout from Host

Advance Transmit FIFO to
Next Packet Transmit

(Underrun Flag
TXURF = 1?)

Buffer Segmentation Management. Executed automatically by hardware, based on transaction
status, if ATM bit in TXCON is set.

†

† †
8-8

USB PROGRAMMING MODELS

Figure 8-5. Post-transmit ISR (Isochronous)

No

RETI

Start: SOF ISR

 A5073-02

Check TXFLUSH
(error tracking)

Overflow
Error in Transmit

FIFO?

No

Yes (TXURF = 1)

YesNo
For

Each Endpoint,
Read Transaction Status

(TXSTAT)
Transmit Error?

Write Next Packet
to Transmit FIFO

(TXERR = 1)(TXACK = 1)

Error in
Transmit FIFO?

Advance Transmit
FIFO to next packet No

(Failed CRC, Bit
Stuffing, or Timeout
from Host)

Transmit FIFO
Error Recovery

Write Packet Size
to TXCNT

Error Recovery

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit
in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

†

Write Packet Size
to TXCNT

Write Next Packet
to Transmit FIFO

Advance Transmit
FIFO to Next Packet

Overflow
Error in Transmit

FIFO?(TXOVF = 1)

Yes

(TXOVF = 1)Yes

†

†

8-9

8x931AA, 8x931HA USER’S MANUAL

f fig-

PU
 routine
lso be

d by an
st

 receive

major
8.3 RECEIVE OPERATIONS

8.3.1 Overview

A receive operation is always initiated by the host, which sends an OUT token to the 8x931. The
operation occurs in two major steps:

1. Data packet reception by the function interface (hardware)

2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 8-6. The post-
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see “Post-receive Operations” on page 8-11. Function interface hardware (right side o
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin when the 8x931 receives a valid OUT token
from the host. The received data is written to a data buffer FIFO. The 8x931 indicates completion
of data received by returning a handshake to the host.

At the end of the receive cycle, the 8x931 generates a receive done interrupt to notify the C
that a receive operation has occurred. Program execution branches to the interrupt service
and transfers the data packet from the receive FIFO to its destination. The interrupt can a
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiate
OUT token. At the end of the OUT transaction, the 8x931 does not return handshake to the ho
and the receive done interrupt is not generated. Instead, the SOF interrupt is used for post
management. The data reception status is updated at the next SOF. The 8x931 supports one ISO
packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 6-15 on page 6-29) have a
influence on receive operation:

• The ISO bit (RXCON.3) determines whether the reception is for isochronous data (ISO = 1)
or non-isochronous data (ISO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates a receive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routine is an ISR; for
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOF token.

• The ARM bit (RXCON.2) determines whether the FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitions in RXCON (Figure 6-15 on page 6-29).
8-10

USB PROGRAMMING MODELS

ta integ-
the re-
 called

us da-

Figure 8-6. High-level View of Receive Operations

8.3.2 Post-receive Operations

Reception status is updated at the end of data reception based on the handshake received from the
host (non-isochronous data) or based on the transmission process itself (isochronous data). For a
non-isochronous transfer, the function interface generates a receive done interrupt (FRXDx). The
purpose of the post-receive service routine is to manage the receiver’s state to ensure da
rity and latency for the next reception. The post-receive routine also transfers the data in
ceive FIFO to the end function. For isochronous data, the post-receive routine should be
by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 8-7 (non-isochrono
ta) and Figure 8-8 (isochronous data).

RXISO = 0: Receive done interrupt
RXISO = 1: SOF interrupt

ISR

OUT Token

Firmware

Hardware

RETI

A4265-02

(SIE, FIU, FIFOs)

Post-
Receive
Routine

Send data over USB

– Send host handshake
– Adjust RXSEQ bit
Generate receive done interrupt
or SOF interrupt

If ISO = 0:

If ARM = 1:
– Adjust FIFO write marker and
 write pointer

•
•

•

Check status and read data
If ARM = 0:
– Adjust FIFO write marker
 and write pointer

•
•

•

8-11

8x931AA, 8x931HA USER’S MANUAL

Figure 8-7. Post-receive ISR (Non-isochronous)

No

RETI

Start: Receive Done ISR

Clear Interrupt Flag

Identify Function Interrupt and Endpoint
(Check FRXDx Bits in FIFLG Register)

Error in
Receive
FIFO?

No

Yes (RXOVF=1)

Yes

YesNo
Check

RXSTAT for
Receive

Error

Read Data Packet(s)

(RXERR=1)(RXACK=1)

Error in
Receive FIFO?

Advance Receive FIFO
to next packet

Reverse Receive FIFO
to current packet retry

No(Failed CRC or Bit Stuffing)

Receive FIFO
Error Recovery

Check for
Another Packet in

Receive FIFO
(RXFIF1:0 = 00 in Dual

Port Mode)

Receive FIFO
Error Recovery

Unlock Current Packet from
Receive FIFO (set RXFFRC

Bit in RXCON)

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction
if ARM bit in RXCON is set.

†

†

†

 A5070-01

Yes (RXURF = 1)

(RXOVF=1)
8-12

USB PROGRAMMING MODELS

Figure 8-8. Receive SOF ISR (Isochronous)

Yes

RETI

Start: SOF ISR

 A5074-01

Error
in Receive

FIFO?

Yes (RXOVF = 1)

YesNo
For

Each Endpoint,
Read Transaction Status

(RXSTAT)
Transmit Error?

Read Data Packet

(RXERR = 1)(RXACK = 1)

Error in
Receive FIFO?

Advance Receive
FIFO to Next Packet No

(Failed CRC
or Bit Stuffing)

Receive FIFO
Error Recovery

Data Reconstruction
by Application for

Lost Data

Receive FIFO
Error Recovery

Unlock Current Packet
from Receive FIFO

(set RXFFRC bit in RXCON)

Buffer Segmentation Management. Executed automatically by hardware at the end of a data
transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current
packet regardless of transaction status.

†

(RXURF = 1)

No

Advance Receive FIFO
to Next Packet Receive

Data Reconstruction
by Application for

Lost Data

†

†

Unlock FIFO
(set RXFFRC)
8-13

8x931AA, 8x931HA USER’S MANUAL

ayer”
o-

ood).
n non-
fferent

t of a
ith re-
 nature
t this,
ite is
, user
s the
8.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in order to respond to SETUP tokens. (This
will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol L
section of the Universal Serial Bus Specification for details of SETUP token transactions and pr
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is g
Receive data transfer operations for a control endpoint are very similar to data transfers o
control endpoints for non-setup tokens. However, the response of a control endpoint is di
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receip
setup token, a control endpoint flushes the contents of the receive FIFO before writing it w
ceived setup data. This may create an error condition in the FIFO due to the asynchronous
of FIFO reads by the CPU and simultaneous writes by the function interface. To preven
STOVW and EDOVW are used to track when an overwrite is occurring. When the overwr
complete, the user must clear EDOVW to read the SETUP packet. If EDOVW is not cleared
firmware will only be able to read the first byte of the SETUP packet. Figure 8-9 illustrate
operations of a typical post-receive routine for a control endpoint.
8-14

USB PROGRAMMING MODELS

Figure 8-9. Post-receive ISR (Control)

RETI

Start: Receive Done ISR

 A5075-01

No

YesNo

Read Data Packet

OUT Token
Received

Clear Firmware
Setup Flag

Setup Token Received
Clear EDOVW

(RXERR = 1)(RXACK = 1)

Clear Overwrite Bit
(EDOVW)

Unlock Current Packet
from Receive FIFO

(set RXFFRC bit in RXCON)

Inhibited in hardware if STOVW or EDOVW are asserted.
†

No

No

Yes
(STOVW = 0 and
EDOVW = 1)

Yes
(STOVW = 1 or
 EDOVW = 1)

Normal
Error

Handling

†

Identify Interrupt Endpoint
(check FRXDx bits in the FIFLG register) Clear Interrupt Flag

Check
RXSTAT for

Receive
Error

Setup
Token?

Yes (RXSETUP = 1)

Overwrite
Completed?

Receive FIFO
Overwrite?

Error in
Receive FIFO?

No

No

Yes

Error
Recovery

(RXURF = 1)

Yes

Yes

Clear Overwrite Bit
(EDOVW)

No

Overwrite
Completed

Receive FIFO
Overwrite?

(STOVW = 0 and
EDOVW = 0)

(STOVW = 1 or
EDOVW = 1)

(STOVW = 0 and
EDOVW = 1)

(STOVW = 0 and
EDOVW = 0)
8-15

8x931AA, 8x931HA USER’S MANUAL
8.5 START-OF-FRAME (SOF) TOKEN

Figure 8-10 illustrates the hardware operations performed by the function interface for a start-of-
frame (SOF) token. The host issues an SOF token at a nominal rate of once every 1.0 ms. An SOF
token is valid if the PID is good. The SOF token is not endpoint-specific; it should be received
by every node on the bus.

Figure 8-10. Hardware Operations for SOF Token

Set ASOF Bit

End of
Transfer

No

Pass
CRC?

Yes

Write SOF Registers

Clear
SOFACK

Bit

Done

Yes

Valid SOF Token

No

Set SOFACK.
(SOF token received

without error)

Generate SOF Pulse
by Asserting SOF# Pin

(SOFH.7)

(SOFH.7)

(SOFH, SOFL)

(SOFH.6)

A4267-02
8-16

USB PROGRAMMING MODELS

s-spe-
ub and
stream
 phys-
SB re-
sts to

b end-
8.6 HUB OPERATION

The primary objective of the programming model suggested here is to explain the linkage be-
tween the hardware and firmware of the 8x931HA in operation.

NOTE
Since the 8x931AA microprocessor does not support a hub interface, the
programming models in this section are unnecessary. Specific details of the
8x931AA are covered in Appendix E, “8x931AA Design Considerations”.

8.6.1 Hub Status and Configuration

USB communication with the USB hub function is performed via the standard and hub clas
cific USB requests. These requests control status management and configuration of the h
its downstream ports. Since the hub is part of a compound device, it has an internal down
port (port 1) which is unique from the external downstream ports. This is because port 1 is
ically connected to the embedded function and is powered-on at all times. Thus several U
quests intended for internal downstream port 1 are handled differently from similar reque
the other downstream ports, as shown in Table 7-6 on page 7-16.

Table 8-1 is a summary of firmware actions required for standard USB requests sent to hu
point 0.

Table 8-1. Firmware Actions for USB Requests Sent to Hub

USB Request Feature Selector /
Type Firmware Action Required

SET_FEATURE

DEVICE_REMOTE
_WAKEUP

Set the HRWUPE bit of the HSTAT SFR. See “Hub
Status” on page 7-9.

ENDPOINT_STALL

Stall the endpoint specified in the Setup PID. See “Hub
Endpoint Control” on page 7-11.

Endpoint 0 specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set RXSTL and TXSTL bits of EPCON SFR.

Endpoint 1 specified:

Set EP1STL bit of HSTAT SFR.

CLEAR_FEATURE

DEVICE_REMOTE
_WAKEUP

Clear HRWUPE bit of HSTAT SFR. See “Hub Status and
Configuration” on page 8-17.

ENDPOINT_STALL

Cancel stall for the specified endpoint. See “Hub
Endpoint Control” on page 7-11.

Endpoint 0 specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Clear RXSTL and TXSTL bits of EPCON SFR

Endpoint 1 specified:

Clear EP1STL bit of HSTAT SFR.
8-17

8x931AA, 8x931HA USER’S MANUAL
SET_CONFIGURATION N/A

1. Store hub endpoint 1 configuration value from value
field in memory

2. Set EP1EN bit of HSTAT SFR (Figure 7-6 on page
7-9) after the Status stage if 2-byte configuration
value = 0001H

GET_CONFIGURATION N/A Read configuration value (one byte) from memory and
send to the host.

GET_DESCRIPTOR

Device Read device descriptor from memory and transmit to
USB host through hub endpoint 0.

 Configuration
Read configuration, interface, endpoint, and hub
descriptors from memory and transmit to USB host
through hub endpoint 0.

GET_INTERFACE N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

GET_STATUS

Device
Read HSTAT SFR bit HRWUPE (Figure 7-6 on page
7-9) and power configuration from memory and transmit
to USB host using hub endpoint 0.

Interface
Load 2 bytes of zero into transmit buffer and transmit to
USB host. These bits are reserved in the initial version of
USB.

Endpoint

Endpoint 0 specified:

Load transmit buffer with value of zero if endpoint 0 is not
stalled. No data can be returned if endpoint 0 is stalled,
since STALL will be transmitted instead.

Endpoint 1 specified:

Load value of EP1STL bit of HSTAT SFR into transmit
buffer (Figure 7-6 on page 7-9).

SET_ADDRESS N/A

Read address value contained in request value field and
store in HADDR SFR (Figure 7-5 on page 7-8) after
successful completion of control transaction status
stage.

SET_DESCRIPTOR N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

SET_INTERFACE N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

SYNCH_FRAME N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

Table 8-1. Firmware Actions for USB Requests Sent to Hub (Continued)

USB Request Feature Selector /
Type Firmware Action Required
8-18

USB PROGRAMMING MODELS
Table 8-2 summarizes firmware action for hub class-specific USB requests.

NOTE
Upon receipt of a state-related USB request (i.e., SetPortFeature,
ClearPortFeature), firmware must examine the HPSTAT SFR to determine the
current port state. If the port is in a state where the request will be ignored by
hardware, instead of performing the action given in Table 8-2, firmware must
respond to the host by sending a STALL during the transaction status stage to
indicate the command was not completed. Table 7-6 on page 7-16 depicts the
state-related USB requests and the port states for which they are ignored.
See“Controlling a Port Using HPCON” on page 7-14 for additional
information.
8-19

8x931AA, 8x931HA USER’S MANUAL
Table 8-2. Firmware Action for Hub Class-Specific Requests

USB Requests Feature Selector
/ Type / Index Firmware Action Required

SetHubFeature —

Unsupported request since there are no current feature selectors
to match this request in the initial version of USB.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

ClearHubFeature

C_HUB_OVER_
CURRENT

Clear HSTAT SFR bit OVISC (hub over-current status change
bit). HSTAT is shown in Figure 7-6 on page 7-9.

C_HUB_LOCAL_
POWER

Unsupported request.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

GetBusState Port number

Transfer the port bus signal values (DP and DM) to the host for
diagnostic purposes.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Transfer the DPSTAT and DMSTAT bits of HPSTAT (Figure

7-10 on page 7-18) to the transmit buffer of hub endpoint 0.
Transmit these bits in a single byte, with DMSTAT as bit 0,
DPSTAT as bit 1, and bits 2-7 as ‘0’.

GetHubDescriptor N/A Read hub descriptor from memory and transmit to USB host using
hub endpoint 0.

SetHubDescriptor N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

GetHubStatus N/A

Communicate the hub over-current status change, local power
status change, current-overcurrent indicator, and current local
power status to the host:

Load HSTAT bits OVISC and OVI into transmit buffer, with LPS
as the LSb. The HSTAT SFR is shown in Figure 7-6 on page 7-9.

GetPortStatus Port number

Load the indicated port’s HPSTAT and HPSC SFRs into the
transmit buffer.

See “GetPortStatus Request Firmware” on page 8-25 for
additional information, including bit ordering and a flowchart.
8-20

USB PROGRAMMING MODELS
SetPortFeature

PORT_ENABLE

Enables address and endpoint decoding for the downstream
ports. For hub port 1, this enables address and endpoint decoding
for the embedded function.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Write “001” to bits 2:0 of the port’s HPCON SFR (Figure 7-9

on page 7-15)

PORT_SUSPEND

Write “011” to bits 2:0 of the port’s HPCON SFR.

If hub port 1 is specified, the user cannot suspend the embedded
function without also suspending the hub. Firmware must
suspend any non-hub functionality associated with the embedded
function prior to writing to HPCON. This is done by placing any
external device hardware into a low-power suspend mode.

See “SetPortFeature (PORT_SUSPEND) Firmware” on page
8-26 for additional information and a flowchart.

PORT_RESET

Write “010” to bits 2:0 of the port’s HPCON SFR.

If port 1 is specified, firmware needs to reset all non-hub
functionality in the microcontroller. Upon writing to the embedded
function’s HPCON SFR, a hardware reset is generated for the FIU
and function FIFOs. Firmware must gracefully shut-down the
application code, peripherals, etc. prior to writing to port 1’s
HPCON. Once written, the reset will be active in hardware for 10-
11 ms.

See “SetPortFeature (PORT_RESET) Firmware” on page 8-27 for
additional information and a flowchart.

PORT_POWER

Set bit x of HPPWR (where x is the port specified in the request
index field)

Port power-on is also supported for port 1, but only for reasons of
port compatibility since power for the embedded function cannot
be switched (i.e., writing bit 1 of HPPWR does not affect any
hardware).

Table 8-2. Firmware Action for Hub Class-Specific Requests (Continued)

USB Requests Feature Selector
/ Type / Index Firmware Action Required
8-21

8x931AA, 8x931HA USER’S MANUAL
ClearPortFeature

PORT_ENABLE

Requests port disable.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Write “000” to bits 2:0 of the port’s HPCON SFR (Figure 7-9

on page 7-15)

For hub port 1, this will disable address and endpoint decoding for
the embedded function.

PORT_SUSPEND

Requests port resume.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Write “100” to bits 2:0 of the port’s HPCON SFR (Figure 7-9

on page 7-15)

If port 1 is specified, firmware must also resume any non-hub
functionality associated with the embedded function prior to
writing to port 1’s HPCON. This requires taking any external
device hardware out of a low-power suspend mode.

PORT_POWER

Request port power off.

If any port other than port 1 is specified:

Clear bit x of HPPWR (where x is the port specified in the
request index field)

Port power off is not supported for port 1. If port 1 is specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

C_PORT_
CONNECTION

Request to clear port connect status change.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Clear PCSC bit of HPSC SFR (Figure 7-11 on page 7-21)

C_PORT_
ENABLE

Request to clear hardware-initiated port enable/disable status
change.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Clear PESC bit of HPSC SFR (Figure 7-11 on page 7-21)

C_PORT_
SUSPEND

Request to clear port suspend status change.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Clear PSSC bit of HPSC SFR (Figure 7-11 on page 7-21)

C_PORT_
OVERCURRENT

Unsupported request to clear port over-current status change.
The 8x931HA implements over-current detection on a hub-wide
basis, not on a per-port basis. If received:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

C_PORT_RESET

Request to clear port reset status change.
1. Load xxxB into HPINDEX2:0, where xxx is the binary

representation of the port index
2. Clear RSTSC bit of HPSC SFR (Figure 7-11 on page 7-21)

Table 8-2. Firmware Action for Hub Class-Specific Requests (Continued)

USB Requests Feature Selector
/ Type / Index Firmware Action Required
8-22

USB PROGRAMMING MODELS

 the

 hub
rent

ange
 in

t
port’s
is
e

rent

ature
 will

tions
8.6.2 Port Status Change Communication

The flowchart in Figure 8-11 shows how the hub communicates a change in port status to the host.
This process involves 8x931HA hardware, 8x931HA firmware, and PC host firmware. The flow-
chart illustrates the complete process at a high level. The process contains the following steps:

1. Any change in a port’s reset, suspend, enable, or connect status is communicated to
host via hub endpoint 1’s TXDAT register, as shown in Figure 7-8 on page 7-13. The
information passed through hub endpoint 1 is sufficient to indicate which port (or the
itself) changed status, but it does not indicate which status value changed or the cur
value of any status indicator.

Firmware has no involvement with USB communication to hub endpoint 1 (status ch
endpoint 1). This communication is handled completely in hardware and is discussed
“USB Hub Endpoints” on page 7-10.

2. After the host receives notice of a change in port status through hub endpoint 1, hos
firmware can determine which status value changed and the current value of all the
status indicators by transmitting a GetPortStatus request through hub endpoint 0. Th
request includes a Port_Index to tell the 8x931HA which port is of interest to the host. Se
the Universal Serial Bus Specification for additional information.

3. The host’s GetPortStatus request triggers the 8x931HA GetPortStatus routine. The
firmware response to the GetPortStatus request provides the host with the port’s cur
status along with an indication of any status changes that have occurred. See
“GetPortStatus Request Firmware” on page 8-25 for a complete description of this
routine.

4. The host resets the port status change indicators by issuing a separate ClearPortFe
request for each bit in HPSC that showed a change. Each ClearPortFeature request
include one of the following feature selectors:

a. C_PORT_CONNECTION — to clear HPSC.PCSC

b. C_PORT_ENABLE — to clear HPSC.PESC

c. C_PORT_SUSPEND— to clear HPSC.PSSC

d. C_PORT_RESET — to clear HPSC.RSTSC

5. 8x931HA firmware responds to each ClearPortFeature request by performing the ac
shown in Table 8-2 on page 8-20.

6. Finally, the host must perform any actions necessitated by the status change.
8-23

8x931AA, 8x931HA USER’S MANUAL
Figure 8-11. Hub-to-Host Port Status Communication

8.6.3 Hub Firmware Examples

Several of the firmware routines given in Table 8-2 have been selected as examples. The remain-
ing routines should be coded similarly. The following subsections contain a flowchart and an ad-
ditional explanation for these routines:

 A5207-01

8X930Hx
communicates change
in port status to host
via hub endpoint 1

Status Change
Communication

Host inquires into
status change via a

GetPortStatus
command

Firmware
responds through the

GetPortStatus
request routine

Host clears bits of HPSC
one at a time through

ClearPortFeature
commands

Firmware clears
HPSC bits through
ClearPortFeature

routines

Host performs any
actions necessitated by

status change

End
8-24

USB PROGRAMMING MODELS
• GetPortStatus (Port_Index)

• SetPortFeature (PORT_SUSPEND)

• SetPortFeature (PORT_RESET)

8.6.3.1 GetPortStatus Request Firmware

Firmware responds to a GetPortStatus call by returning four bytes to the host using the flowchart
procedure shown in Figure 8-12. The four bytes are arranged into a two-byte port status field and
a two-byte port change field containing the contents of the HPSTAT and HPSC SFRs, respective-
ly. Figure 8-13 shows the relationship between the four bytes returned by firmware and the con-
tents of the HPSTAT and HPSC registers.

Figure 8-12. GetPortStatus Request

 A5208-01

Write 80H to
EPINDEX to access

hub endpoint 0's
TX registers

Start:
GetPortStatus Request

Write xxxB to HPINDEX
(xxx = port number)

to access port's
HP registers

Transfer HPSTAT to
TXDAT using

two-byte format

Transfer HPSC to
TXDAT using two-byte

format

Put 04H in TXCNTL
(to indicate 4 bytes
ready to transmit)

End
8-25

8x931AA, 8x931HA USER’S MANUAL

atus
t also

w the
Firm-
ition).

ed is in-
d any
 hard-

The
Transferring the contents of HPSTAT and HPSC into TXDAT requires additional code not
shown in the flowchart. The bits of HPSTAT must be “converted” into a two-byte port st
field, as shown in Figure 8-13, and transmitted to the host LSB first. The bits of HPSC mus
be transmitted in a two-byte format, called the port change field.

The bit names are given in Figure 8-13, along with their position in the register (shown belo
bit name) and their position in the transmitted two-byte field (shown above the bit names).
ware must transmit the four bytes to the host in the byte order indicated (above the bit pos

NOTE
The HPSTAT bits are not directly mapped into the port status field. Firmware
must clear bit three of byte one to indicate that power is normal (not
overcurrent) for the port. This is done because the 8x931HA indicates
overcurrent on a ganged, not per-port, basis.

Figure 8-13. Firmware Response to GetPortStatus

8.6.3.2 SetPortFeature (PORT_SUSPEND) Firmware

This USB request suspends the downstream ports. The number of the port to be suspend
cluded in the request from the host. If hub port 4 is specified, firmware must also suspen
non-hub functionality associated with the embedded function and place any external device
ware into low-power suspend mode prior to writing to hub port 4’s HPCON SFR.

To implement this routine, firmware must write “011” to bits 2:0 of the port’s HPCON SFR.
flowchart in Figure 8-14 illustrates the process.

 A5117-01

P
C

S
C

P
E

S
C

P
S

S
C

R
S

T
S

C

Reserved

01234

HPSC

P
C

S
T

A
T

P
E

S
T

A
T

P
S

S
T

A
T

0

Res
er

ve
d

P
R

S
T

A
T

P
P

S
T

A
T

Reserved

LS
S

T
A

T

012345

HPSTAT

Get
Port

Status

0781507815

Port Change FieldPort Status Field
Byte 3Byte 4Byte 1Byte 2

0

8-26

USB PROGRAMMING MODELS

f the
1.6.2
Figure 8-14. SetPortFeature (PORT_SUSPEND) Routine

8.6.3.3 SetPortFeature (PORT_RESET) Firmware

This USB request resets the downstream ports. The number of the port to be reset is included in
the request from the host. To implement this routine, firmware must write “010” to bits 2:0 o
port’s HPCON SFR. The flowchart in Figure 8-15 illustrates the process. Refer to Section 1
of the Universal Serial Bus Specification for a detailed description of this USB command.

 A5166-01

Write xxxB to
HPINDEX

(xxx = port number)
to select the port

End

Write 011B to
HPCON to

suspend the port

Is Suspend
for port 4?

Place embedded
function and its
external device

hardware into low-
power suspend

mode

Yes

No

SetPortFeature
(PortSuspend)
8-27

8x931AA, 8x931HA USER’S MANUAL

rt 4’s

IFOs.
AT,

e SO-
n un-
 to the

e em-
Figure 8-15. SetPortFeature (PORT_RESET) Routine

If port 4 is specified, firmware must reset all non-hub functionality in the microcontroller. Firm-
ware must gracefully shut-down the application code, peripherals, etc. prior to writing to po
HPCON.

Upon writing to port 4’s HPCON SFR, a hardware reset is applied to the FIU and function F
When this reset is applied, the embedded function’s EPCON, FIFLG, FIE, TXSTAT, RXST
TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their default values, as are th
FACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPINDEX and SOFL SFRs remai
changed. These SFRs are reset immediately after the write to HPCON, however bus traffic
embedded function remains inactive for 15 ms. You may use this time frame to initialize th
bedded function.

A5167-01

Write xxxB to
HPINDEX

(xxx = port number)
to select the port

End

Write 010B to
HPCON to

reset the port

Is Reset
for port 4?

Shut down
application code,
peripherals, etc.,

for embedded
function

Yes

No

SetPortFeature
(PortReset)
8-28

9
Input/Output Ports

ter-

n in-
pera-
ves the
 port 0.
CHAPTER 9
INPUT/OUTPUT PORTS

The 8x931 has four 8-bit input/output (I/O) ports for general-purpose I/O, external memory op-
erations, and specific alternate functions (see Table 9-1). This chapter describes the ports and pro-
vides information on port loading, read-modify-write instructions, and external memory
accesses. Chapter 16, “External Memory Interface,” contains additional information about ex
nal memory operations.

9.1 INPUT/OUTPUT PORT OVERVIEW

All four 8x931 I/O ports are bidirectional. Each port contains a latch, an output driver, and a
put buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory o
tions. Port 0 drives the lower address byte onto the parallel address bus, and port 2 dri
upper address byte onto the bus. The data is multiplexed with the lower address byte on
Port 1 and port 3 provide both general-purpose I/O and special alternate functions.

Table 9-1. Input/Output Port Pin Descriptions

Pin
Name Type Alternate

Pin Name Alternate Description Alternate
Type

P0.7:0 I/O AD7:0/KSI7:0 Address/Data Lines, Keyboard Scan Input I/O

P1.0 I/O T2/KSO0 Timer 2 Clock Input/Output, Keyboard Scan Output I/O

P1.1 I/O T2EX/KSO1 Timer 2 External Input, Keyboard Scan Output I/O

P1.5:2 I/O KSO5:2 Keyboard Scan Output O

P1.6 I/O RXD/KSO6 Receive Serial Data, Keyboard Scan Output I/O

P1.7 I/O TXD/KSO7 Transmit Serial Data, Keyboard Scan Output O

P2.7:0 I/O A15:8/KSO15:8 Address Lines, Keyboard Scan Output O

P3.0 I/O OVRI# Overcurrent Sense Input I

P3.1 I/O SOF# Start of Frame O

P3.2 I/O INT0# External Interrupt 0 I

P3.3 I/O INT1# External Interrupt 1 I

P3.4 I/O T0/KSO16 Timer 0 Input/Keyboard Scan Output I/O

P3.5 I/O T1/KSO17 Timer 1 Input/Keyboard Scan Output I/O

P3.6 I/O WR#/KSO19 Write Signal to External Memory/Keyboard Scan
Output

O

P3.7 I/O RD#/KSO18 Read Signal to External Memory/Keyboard Scan
Output

O

9-1

8x931AA, 8x931HA USER’S MANUAL

ead
ignal
” sig-

odify-
e in-

ource
its al-

t

,
n of

, shown
e 9-4
9.2 I/O CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 9-1 for ports 1 and 3. A CPU
“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “r
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” s
transfers the logical level of the port pin. Some port data instructions activate the “read latch
nal while others activate the “read pin” signal. Latch instructions are referred to as read-m
write instructions (see “Read-Modify-Write Instructions” on page 9-5). Each I/O line may b
dependently programmed as input or output.

9.3 PORT 1 AND PORT 3

Figure 9-1 shows the structure of ports 1 and 3, which have internal pullups. An external s
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for
ternate input or output function (Table 9-1).

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
1, 3). To use a pin for general-purpose input, set the bit in the Px register. This turns off the outpu
driver FET.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set
the “alternate output function” signal controls the output level (Figure 9-1). The operatio
ports 1 and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 9-6.

9.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0
in Figure 9-2, differs from the other ports in not having internal pullups. Figure 9-3 on pag
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
0, 2). To use a pin for general-purpose input, set the bit in the Px register to turn off the output
driver FET.
9-2

INPUT/OUTPUT PORTS
Figure 9-1. Port 1 and Port 3 Structure

Figure 9-2. Port 0 Structure

Read
Latch

Read
Pin

Write to
Latch

Internal
Bus

Alternate
Output

Function

D

CL

Q

Q#

P3.x
Latch

Internal
Pullup

P3.x

Alternate
Input

Function

A2239-01

VCC

Read
Latch

Read
Pin

Address/
Data Control

D

CL

Q

Q#

P0.x

A2238-01

VCC

Write to
Latch

Internal
Bus P0.x

Latch 1

0

9-3

8x931AA, 8x931HA USER’S MANUAL

ata bus.
Figure 9-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. “External Memory
Access” on page 9-7 discusses the operation of port 0 and port 2 as the external address/d

NOTE
Port 0 and port 2 are precluded from use as general purpose I/O ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port 0 outputs are
open drain.

Read
Latch

Read
Pin

Address

Control

D

CL

Q

Q#

P2.x
Latch

VCC

Internal
Pullup

A2240-01

P2.x

Write to
Latch

Internal
Bus

1

0

9-4

INPUT/OUTPUT PORTS

e” in-
ination

tions.
 write
h rath-
levels
cannot

c zero.
9.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called “read-modify-writ
structions. Table 9-2 contains a complete list of these special instructions. When the dest
operand is a port, or a port bit, these instructions read the latch rather than the pin.

It is not obvious that the last three instructions in Table 9-2 are read-modify-write instruc
These instructions read the port (all eight bits), modify the specifically addressed bit, and
the new byte back to the latch. These read-modify-write instructions are directed to the latc
er than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic)
at the pin. For example, a port bit used to drive the base of an external bipolar transistor
rise above the transistor’s base-emitter junction voltage (a value lower than VIL). With a logic one
written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logi
A read of the latch rather than the pin returns the correct logic-one value.

Table 9-2. Read-Modify-Write Instructions

Instruction Description

ANL logical AND, e.g., ANL P1, A

ORL logical OR, e.g., ORL P2, A

XRL logical EX-OR, e.g., XRL P3, A

JBC jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL

CPL complement bit, e.g., CPL P3.0

INC increment, e.g., INC P2

DEC decrement, e.g., DEC P2

DJNZ decrement and jump if not zero, e.g., DJNZ P3, LABEL

MOV PX.Y,
C

move carry bit to bit Y of port X

CLR PX.Y clear bit Y of port X

SETB PX.Y set bit Y of port x
9-5

8x931AA, 8x931HA USER’S MANUAL

ional”
 current
direc-
ches.
 by a

 this
es 100
ather
 when
d on for
ne at
 pair

ssoci-
s are
9.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirect
ports. When configured as an input, the pin impedance appears as logic one and sources
(see the 8x931 datasheet) in response to an external logic-zero condition. Port 0 is a “true bi
tional” pin. The pin floats when configured as input. Resets write logical one to all port lat
If logical zero is subsequently written to a port latch, it can be returned to input conditions
logical one written to the latch. For additional electrical information, refer to the current 8x931
datasheet.

NOTE
Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid
logic transition (see Figure 9-4). This increases switch speed. The extra pullup briefly sourc
times the normal internal circuit current. The internal pullups are field-effect transistors r
than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turne
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic o
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the a
ated nFET is switched off. This is a traditional CMOS switch convention. Current strength
1/10 that of pFET #3.

Figure 9-4. Internal Pullup Configurations

Q#
From
Port

Latch

P3P2P1

n

Port

Input Data

Read Port Pin

2 Osc. Periods

A2242-01

VCCVCCVCC
9-6

INPUT/OUTPUT PORTS

sig-
rite) to

sses.

ruction.

ere it is
uring

VX @
ister)
xternal
rbed

e Port
ge the
9.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see VOL specifi-
cations in the 8x931 data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a logic-one
condition (Figure 9-4 on page 9-6). A logic-zero input turns off pFET #3. This leaves only pFET
#2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink 3.2
mA at logic zero (see VOL1 in the 8x931 data sheet). However, the port 0 pins require external
pullups to drive external gate inputs. See the latest revision of the 8x931 datasheet for complete
electrical design information. External circuits must be designed to limit current requirements to
these conditions.

9.8 EXTERNAL MEMORY ACCESS

Port 2 outputs the upper address byte; the lower address byte and the data are multiplexed on port
0. Port 0 uses a strong internal pullup FET to output ones or a strong internal pulldown FET to
output zeros for the lower address byte and the data. Port 0 is in a high-impedance state for data
input. Port 2 uses a strong internal pullup FET to output ones or a strong internal pulldown FET
to output zeros for the upper address byte.

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 15, “External Memory Interface”). External program memories utilize
nal PSEN# as a read strobe. Accesses to external data memory use RD# (read) or WR# (w
strobe the memory.

During instruction fetches, external program memory transfer instructions with 16-bit addre

External data memory transfers use an 8-bit or 16-bit address bus, depending on the inst
Table 9-3 lists the instructions that can be used for these bus widths.

Whenever a 16-bit address is used, the high byte of the address comes out on Port 2, wh
held for the duration of the read or write cycle. The Port 2 drivers use the strong pullups d
the entire time that they are emitting address bits that are 1s. This occurs when the MO
DPTR instruction is executed. During this time, the Port 2 latch (the special function reg
does not have to contain 1s, and the contents of the Port 2 SFR are not modified. If the e
memory cycle is not immediately followed by another external memory cycle, the undistu
contents of the Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @ Ri), the contents of the Port 2 SFR remain at th
2 pins throughout the external memory cycle. In this case, Port 2 pins can be used to pa
external data memory.

Table 9-3. Instructions for External Data Moves

Bus Width Instructions

8 MOVX @Ri, A; MOVX A, @Ri

16 MOVX @DPTR, A; MOVX A, @DPTR
9-7

8x931AA, 8x931HA USER’S MANUAL
In either case, the low byte of the address is time-multiplexed with the data byte on Port 0. The
ADDRESS/DATA signal drives both FETs in the Port 0 output buffers. Thus, in external bus
mode the Port 0 pins are not open-drain outputs and do not require external pullups.

During any access to external memory, the CPU writes 0FFH to the Port 0 latch (the special func-
tion register), thus obliterating the information in the Port 0 SFR.

NOTE
Avoid MOV P0 instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives VOL. For write cycles, valid data is written to port 0 just
prior to the write (WR#) pin asserting VOL. Data remains valid until WR# is deactivated. For read
cycles, data returned from external memory must appear at port 0 before the read (RD#) pin is
deactivated (refer to the 8x931 datasheet for specifications).
9-8

10
Timer/Counters

n

CHAPTER 10
TIMER/COUNTERS

This chapter describes the timer/counter peripherals on the 8x931. When operating as a timer, a
timer/counter runs for a programmed length of time, then issues an interrupt request. When op-
erating as a counter, a timer/counter counts negative transitions on an external pin. After a preset
number of counts, the counter issues an interrupt request.

10.1 TIMER/COUNTER OVERVIEW

The 8x931 contains three general-purpose, 16-bit timer/counters. Although they are identified as
timer 0, timer 1, and timer 2, you can independently configure each to operate in a variety of
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used sep-
arately or in cascade, to maintain the count. The timer registers and associated control and capture
registers are implemented as addressable special function registers (SFRs). Four of the SFRs pro-
vide programmable control of the timers as follows:

• Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer 0 and timer 1

• Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 10-1 describes the external signals referred to in this chapter. Table 10-2 briefly describes
the SFRs referred to in this chapter. For a map of the SFR address space, see Table C-1 on page
C-2.

10.2 TIMER/COUNTER OPERATION

The block diagram in Figure 10-1 depicts the basic logic of the timers. Here timer registers THx
and TLx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRx) turns the timer on by allowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin INTx# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle (once every six states). That is, at the
internal clock frequency divided by six (FCLK/6) or at the external oscillator frequency (FOSC/12).
Exceptions are the timer 2 clock-out and baud rate modes, in which the timer register is incre-
mented at the internal clock rate (FCLK). See “Clock and Reset Unit” on page 2-7. Table 2-5 o
page 2-12 and Figure 2-5 on page 2-10 show the relationship between FOSC, FCLK, state times, and
peripheral cycles. Also see the 8x931 clock circuit block diagram in Figure 2-4 on page 2-9.
10-1

8x931AA, 8x931HA USER’S MANUAL

 high in
 in the

ripheral

led at
NOTE
The timing calculations in this chapter are based on the value of FCLK (FOSC/2).
Setting the low clock (PCON.5) bit forces the internal clock (FCLK) distributed
to the CPU and peripherals to 3MHz. This bit is automatically set after a reset.
Clearing this bit through firmware returns FCLK to the normal clock frequency
(FOSC/2).

For counter operation (C/Tx# = 1), the timer register counts the negative transitions on the Tx ex-
ternal input pin. The external input is sampled during every S5P2 state. “Clock and Reset Unit”
on page 2-9 describes the notation for the states in a peripheral cycle. When the sample is
one cycle and low in the next, the counter is incremented. The new count value appears
register during the next S3P1 state after the transition was detected. Since it takes two pe
cycles to recognize a negative transition, the maximum count rate is FCLK/12. There are no restric-
tions on the duty cycle of the external input signal, but to ensure that a given level is samp
least once before it changes, it should be held for at least one full peripheral cycle.

Table 10-1. External Signals

Signal
Name Type Description Alternate

Function

T2 I/O Timer 2 Clock Input/Output. This signal is the external clock input
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

P1.0

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

P1.1

INT1:0# I External Interrupts 1:0. These inputs set the IE1:0 interrupt flags in
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = 0 selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

P3.3:2

T1:0 I Timer 1:0 External Clock Inputs. When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4
10-2

TIMER/COUNTERS

Figure 10-1. Basic Logic of the Timer/Counters

Table 10-2. Timer/Counter and Watchdog Timer SFRs

Mnemonic Description Address

TL0
TH0

Timer 0 Timer Registers. Used separately as 8-bit counters or in cascade
as a 16-bit counter. Counts an internal clock signal with frequency FCLK/6
(timer operation) or an external input (event counter operation).

8AH
8CH

TL1
TH1

Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade
as a 16-bit counter. Counts an internal clock signal with frequency FCLK/6
(timer operation) or an external input (event counter operation).

8BH
8DH

TL2
TH2

Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a
16-bit counter. Counts an internal clock signal with frequency FCLK/6 (timer
operation) or an external input (event counter operation).

CCH
CDH

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags,
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.

88H

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits,
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

89H

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

C8H

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and
down count enable bits.

C9H

RCAP2L
RCAP2H

Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values
to and receive values from the timer registers (TL2,TH2).

CAH
CBH

A5197-01

TRx

TLx
(8 Bits)

THx
(8 Bits) TFx

Interrupt
Request

6

Tx

Overflow

x = 0, 1, or 2

FCLK

C/Tx#

0

1

10-3

8x931AA, 8x931HA USER’S MANUAL

e

rrupt

 with
. The
erflow

igure
10.3 TIMER 0

Timer 0 functions as either a timer or event counter in four modes of operation. Figures 10-2,
10-3, and 10-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 10-5) and bits 5,
4, 1, and 0 of the TCON register (Figure 10-6). The TMOD register selects the method of timer
gating (GATE0), timer or counter operation (T/C0#), and mode of operation (M10 and M00). The
TCON register provides timer 0 control functions: overflow flag (TF0), run control (TR0), inter-
rupt flag (IE0), and interrupt type control (IT0).

For normal timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the se-
lected input. Setting GATE0 and TR0 allows external pin INT0# to control timer operation. This
setup can be used to make pulse width measurements. See “Pulse Width Measurements” on pag
10-10.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TF0 flag generating an inte
request.

10.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer which is set up as an 8-bit timer (TH0 register)
a modulo 32 prescalar implemented with the lower five bits of the TL0 register (Figure 10-2)
upper three bits of the TL0 register are indeterminate and should be ignored. Prescalar ov
increments the TH0 register.

10.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with TH0 and TL0 connected in cascade (F
10-2). The selected input increments TL0.

Figure 10-2. Timer 0/1 in Mode 0 and Mode 1

A5198-01

GATEx

INTx#

TRx

TLx
(8 Bits)

THx
(8 Bits) TFx

Interrupt
Request

6

Tx

Overflow

Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
x = 0 or 1

FCLK

C/Tx#

0

1

10-4

TIMER/COUNTERS

s (Fig-
nter.
N in
f
icted
Halt)”
10.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TL0 register) that automatically reloads from the
TH0 register (Figure 10-3). TL0 overflow sets the timer overflow flag (TF0) in the TCON register
and reloads TL0 with the contents of TH0, which is preset by firmware. When the interrupt re-
quest is serviced, hardware clears TF0. The reload leaves TH0 unchanged. See “Auto-reload Set-
up Example” on page 10-9.

Figure 10-3. Timer 0/1 in Mode 2, Auto-reload

10.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TL0 and TH0 operate as separate 8-bit timer
ure 10-4). This mode is provided for applications requiring an additional 8-bit timer or cou
TL0 uses the timer 0 control bits C/T0# and GATE0 in TMOD, and TR0 and TF0 in TCO
the normal manner. TH0 is locked into a timer function (counting FCLK /6) and takes over use o
the timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restr
when timer 0 is in mode 3. See the last paragraph of “Timer 1” on page 10-6 and “Mode 3 (
on page 10-9.

A5199-01

GATEx

INTx#

TRx

TLx
(8 Bits) TFx

Interrupt
Request

6

Tx

Overflow

x = 0 or 1

FCLK

Reload

THx
(8 Bits)

C/Tx#

0

1

10-5

8x931AA, 8x931HA USER’S MANUAL

ount

ts 7,
 timer
. The
ter-

ud rate

ent-
r op-
Width

rrupt

Figure 10-4. Timer 0 in Mode 3, Two 8-bit Timers

10.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 10-2 and
10-3 show the logical configuration for modes 0, 1, and 2. Timer 1’s mode 3 is a hold-c
mode.

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 10-5) and bi
6, 3, and 2 of the TCON register (Figure 10-6). The TMOD register selects the method of
gating (GATE1), timer or counter operation (T/C1#), and mode of operation (M11 and M01)
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), in
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the ba
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATE1 = 0), setting TR1 allows timer register TL1 to be increm
ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control time
eration. This setup can be used to make pulse width measurements. See “Pulse
Measurements” on page 10-10.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag, generating an inte
request.

A5200-01

GATE0

INT0#

TR0

TL0
(8 Bits) TF0

Interrupt
Request

6

T0

Overflow

FCLK TF1
OverflowTH0

(8 Bits)

TR1

Interrupt
Request

C/T0#

0

1

10-6

TIMER/COUNTERS

 For
ud rate
d on.
When timer 0 is in mode 3, it uses timer 1’s overflow flag (TF1) and run control bit (TR1).
this situation, use timer 1 only for applications that do not require an interrupt (such as a ba
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off an

Figure 10-5. TMOD: Timer/Counter Mode Control Register

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

Bit
Number

Bit
Mnemonic Function

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATE0 Timer 0 Gate:

When GATE0 = 0, run control bit TR0 gates the input signal to the timer
register. When GATE0 = 1 and TR0 = 1, external signal INT0 gates the
timer input.

2 C/T0# Timer 0 Counter/Timer Select:

C/T0# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/T0# = 1 selects counter operation: timer 0 counts
negative transitions on external pin T0.

1, 0 M10, M00 Timer 0 Mode Select:

M10 M00
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TL0)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL0). Reloaded

from TH0 at overflow.
1 1 Mode 3: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer

using timer 1’s TR1 and TF1 bits
10-7

8x931AA, 8x931HA USER’S MANUAL

Figure 10-6. TCON: Timer/Counter Control Register

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Function

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

Set/cleared by firmware to turn timer 1 on/off.

5 TF0 Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TR0 Timer 0 Run Control Bit:

Set/cleared by firmware to turn timer 0 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IE0 Interrupt 0 Flag:

Set by hardware when an external interrupt is detected on the INT0# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 IT0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).
10-8

TIMER/COUNTERS

imer 1
 para-

e timer
t repre-
xamples
ters.

 2
s

r
10.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register) with
a modulo-32 prescalar implemented with the lower five bits of the TL1 register (Figure 10-2).
The upper three bits of the TL1 register are ignored. Prescalar overflow increments the TH1 reg-
ister.

10.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (Figure
10-2). The selected input increments TL1.

10.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the TH1
register on overflow (Figure 10-3). Overflow from TL1 sets overflow flag TF1 in the TCON reg-
ister and reloads TL1 with the contents of TH1, which is preset by firmware. The reload leaves
TH1 unchanged. See “Auto-reload Setup Example” on page 10-9.

10.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt t
when the TR1 run control bit is not available (i.e., when timer 0 is in mode 3). See the final
graph of “Timer 1” on page 10-6.

10.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. Th
applications presented in this section are intended to demonstrate timer setup, and do no
sent the only arrangement nor necessarily the best arrangement for a given task. These e
employ timer 0, but timer 1 can be set up in the same manner using the appropriate regis

10.5.1 Auto-reload Setup Example

Timer 0 can be configured as an eight-bit timer (TL0) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode
for timer 0, C/T0# = 0 to select FCLK/6 as the timer input, and GATE0 = 0 to select TR0 a
the timer run control.

2. Enter an eight-bit initial value (n0) in timer register TL0, so that the timer overflows afte
the desired number of peripheral cycles.

3. Enter an eight-bit reload value (nR) in register TH0. This can be the same as n0 or
different, depending on the application.

4. Set the TR0 bit in the TCON register (Figure 10-6) to start the timer. Timer overflow
occurs after FFH + 1 - n0 peripheral cycles, setting the TF0 flag and loading nR into TL0
from TH0. When the interrupt is serviced, hardware clears TF0.
10-9

8x931AA, 8x931HA USER’S MANUAL

 and
in Fig-
Figure

te gen-
D and
e. Set-

clock
 TF2

s 10-7
5. The timer continues to overflow and generate interrupt requests every FFH + 1 - nR
peripheral cycles.

6. To halt the timer, clear the TR0 bit.

10.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEx and TRx allows an external waveform at pin INTx# to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 1
for timer 0, C/T0# = 0 to select FCLK/6 as the timer input, and GATE0 = 1 to select INT0 as
timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register TH0/TL0, or read and store
the current contents of the register.

3. Set the TR0 bit in the TCON register (Figure 10-6) to enable INT0.

4. Apply the pulse to be measured to pin INT0. The timer runs when the pulse waveform is
high.

5. Clear the TR0 bit to disable INT0.

6. Read timer register TH0/TL0 to obtain the new value.

7. Calculate pulse width = 6TCLK × (new value - initial value).

8. Example: FOSC = 12 MHz, FCLK = 6 MHz, TCLK = 0.16667 µs. If the new value = 10,00010
counts and the initial value = 0, the pulse width = 6(0.16667) x (10,000 – 0) = 1 µs ×
10,000 = 10 ms.

10.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two 8-bit timer registers, TH2
TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD) as shown
ure 10-11 on page 10-16) and the timer/counter 2 control register (T2CON) as shown in
10-12 on page 10-17) control the operation of timer 2.

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud ra
erator mode, and programmable clock-out mode. Select the operating mode with T2MO
TCON register bits as shown in Table 10-3 on page 10-15. Auto-reload is the default mod
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the divided-down system
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting
allows TL2 to be incremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figure
through 10-10 show the timer 2 configuration for each mode.
10-10

TIMER/COUNTERS
10.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 10-7). An overflow
condition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

Figure 10-7. Timer 2: Capture Mode

Interrupt
Request

T2EX

TF2
6

T2

Overflow

RCAP2H

TR2

RCAP2L

TH2
(8 Bits)

EXEN2

EXF2

Capture

A5201-01

FCLK

C/T2#

0

1
TL2

(8 Bits)
10-11

8x931AA, 8x931HA USER’S MANUAL
10.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

10.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 10-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 10-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by firmware.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to-low tran-
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

Figure 10-8. Timer 2: Auto-reload Mode (DCEN = 0)

Interrupt
Request

T2EX

TF2

6

T2

Overflow

TR2

TH2
(8 Bits)

TL2
(8 Bits)

EXEN2

EXF2

Reload

A5202-01

FCLK

RCAP2H RCAP2L

C/T2#

0

1

10-12

TIMER/COUNTERS
10.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 10-9). External pin T2EX con-
trols the direction of the count (Table 10-1 on page 10-2). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load-
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

Figure 10-9. Timer 2: Auto-reload Mode (DCEN = 1)

Interrupt
Request

T2

Overflow

TR2

TH2
(8 Bits)

TL2
(8 Bits)

FFH FFH

6

T2EX

Count
Direction
1 = Up
0 = Down

TF2

EXF2

Toggle

(Down Counting Reload Value)

(Up Counting Reload Value)

RCAP2LRCAP2H

A5203-01

FCLK

C/T2#

0

1

10-13

8x931AA, 8x931HA USER’S MANUAL

igure
the in-
lue.
2. In
quen-
P2L

5.8

.

e

2L

load

er 2 as
d rates
AP2H
10.6.4 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 10-3. For details regarding this
mode of operation, refer to “Baud Rates” on page 13-10.

10.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (F
10-10). The generated clock signal appears on pin T2. The input clock increments TL0 at
ternal clock frequency (FCLK). The timer repeatedly counts to overflow from a preloaded va
At overflow, the contents of the RCAP2H and RCAP2L registers are loaded into TH2/TL
this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out fre
cy as a function of FCLK (Table 2-4 on page 2-10) and the value in the RCAP2H and RCA
registers:

For a 12MHz system clock (FCLK = 6 MHz), timer 2 has a programmable frequency range of 4
Hz to 3 MHz.

Timer 2 is programmed for the clock-out mode as follows:

1. Set the T2OE bit in T2MOD. This gates the timer register overflow to the ÷2 counter

2. Clear the C/T2# bit in T2CON to select FCLK as the timer input signal. This also gates th
output of the ÷2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the re
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use tim
a baud rate generator and a clock generator simultaneously. For this configuration, the bau
and clock frequencies are not independent since both functions use the values in the RC
and RCAP2L registers.

Clock-out Frequency
FCLK

2 (65535 - RCAP2H, RCAP2L)×--=
10-14

TIMER/COUNTERS

Figure 10-10. Timer 2: Clock Out Mode

 .

Table 10-3. Timer 2 Modes of Operation

Mode RCLK OR TCLK
(in T2CON)

CP/RL2#
(in T2CON)

T2OE
(in T2MOD)

Auto-reload Mode 0 0 0

Capture Mode 0 1 0

Baud Rate Generator Mode 1 X X

Programmable Clock-Out X 0 1

Interrupt
Request

T2EX

T2OE

RCAP2H

TR2

RCAP2L

TH2
(8 Bits)

EXEN2

EXF2

TL2
(8 Bits)

2

A5204-01

T2

C/T2#

0

1

FCLK
10-15

8x931AA, 8x931HA USER’S MANUAL

Figure 10-11. T2MOD: Timer 2 Mode Control Register

T2MOD Address: S:C9H
Reset State: xxxx xx00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0

— — — — — — T2OE DCEN

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T2OE Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.
10-16

TIMER/COUNTERS

Figure 10-12. T2CON: Timer 2 Control Register

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit
Number

Bit
Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK = 1 or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.
10-17

11
Serial I/O Port

ers are

e RXD
n and
lds re-

isters.
ft reg-
wever,
te will
spec-

rt.
CHAPTER 11
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter provides instructions for programming the serial port and generating the se-
rial I/O baud rates with timer 1 and timer 2.

11.1 OVERVIEW

The serial I/O port provides both synchronous and asynchronous communication modes. It oper-
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-
cation, and automatic address recognition. The serial port also operates in a single synchronous
mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in “Baud Rates” on page 11-10.

The serial port signals are defined in Table 11-1, and the serial port special function regist
described in Table 11-2. Figure 11-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on th
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pi
sends and receives messages on the RXD pin (Figure 11-1). The SBUF register, which ho
ceived bytes and bytes to be transmitted, actually consists of two physically different reg
To send, firmware writes a byte to SBUF; to receive, firmware reads SBUF. The receive shi
ister allows reception of a second byte before the first byte has been read from SBUF. Ho
if firmware has not read the first byte by the time the second byte is received, the second by
overwrite the first. The UART sets interrupt bits TI and RI on transmission and reception, re
tively. These two bits share a single interrupt request and interrupt vector.

The serial port control (SCON) register (Figure 11-2) configures and controls the serial po

Table 11-1. Serial Port Signals

Function
Name Type Description Multiplexed

With

TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In
modes 1, 2, and 3, TXD transmits serial data.

P1.7

RXD I/O Receive Data. In mode 0, RXD transmits and receives serial
data. In modes 1, 2, and 3, RXD receives serial data.

P1.6
11-1

8x931AA, 8x931HA USER’S MANUAL

11.2 MODES OF OPERATION

The serial I/O port can operate in one synchronous and three asynchronous modes.

11.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSb) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud rate of FOSC/12. Figure 11-3 on page 11-6
shows the timing for transmission and reception in mode 0.

11.2.1.1 Transmission (Mode 0)

Follow these steps to begin a transmission:

1. Write to the SCON register, clearing bits SM0, SM1, and REN.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the LSb (D0) onto the RXD pin. At S3P1 of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the
tenth cycle, hardware drives the RXD pin high and asserts TI (S1P1) to indicate the end of the
transmission.

11.2.1.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1, and RI and set
the REN bit.

Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (Figure 11-3).
In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the first

Table 11-2. Serial Port Special Function Registers

Mnemonic Description Address

SBUF Serial Buffer. Two separate registers, accessed with same address
comprise the SBUF register. Writing to SBUF loads the transmit buffer;
reading SBUF accesses the receive buffer.

99H

SCON Serial Port Control. Selects the serial port operating mode. SCON enables
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt
bits.

98H

SADDR Serial Address. Defines the individual address for a slave device. A9H

SADEN Serial Address Enable. Specifies the mask byte that is used to define the
given address for a slave device.

B9H
11-2

SERIAL I/O PORT
clock-signal pulse, and the LSb (D0) is sampled on the RXD pin at S5P2. The D0 bit is then shift-
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSb (D7) is shift-
ed into the shift register, and hardware asserts RI (S1P1) to indicate a completed reception.
Firmware can then read the received byte from SBUF.

Figure 11-1. Serial Port Block Diagram

A4123-01

SBUF
(Receive)

Receive
Shift Register

SBUF
(Transmit)

Read SBUFWrite SBUF

Mode 0
Transmit

TxD

RxD

SCON

TIRI

Interrupt
Request

Serial I/O
Control

IB Bus

Load SBUF
11-3

8x931AA, 8x931HA USER’S MANUAL
SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

7 FE

SM0

Framing Error Bit:

To select this function, set the SMOD0 bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

Serial Port Mode Bit 0:

To select this function, clear the SMOD0 bit in the PCON register.
Firmware writes to bits SM0 and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SM0 (above) to select the serial port
operating mode.

SM0 SM1 Mode Description Baud Rate†

0 0 0 Shift register FOSC/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FOSC/64†† or FOSC/32††

1 1 3 9-bit UART Variable
†FOSC = Oscillator frequency.
††Select by programming the SMOD1 bit in the PCON register (see
section “Baud Rates” on page 11-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To disable reception, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

Figure 11-2. SCON: Serial Port Control Register
11-4

SERIAL I/O PORT
2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

SCON (Continued) Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

Figure 11-2. SCON: Serial Port Control Register (Continued)
11-5

8x931AA, 8x931HA USER’S MANUAL

Figure 11-3. Mode 0 Timing

Figure 11-4. Data Frame (Modes 1, 2, and 3)

A4124-02

TXD

RXD D1

Shift
S6P2 S6P2 S6P2 S6P2

Write to
SBUF

S3P1 S6P1

D2D0 D6 D7

S6P2S6P2

Transmit

TI

TXD

S3P1 S6P1
Write to
SCON

RI

Shift
S6P2 S6P2 S6P2 S6P2

RXD

S1P1
Receive

Set REN, Clear RI

D0 D1 D6 D7

S6P2

S5P2
S6P2

S1P1

S6P2

S6P2

D0 D7 D8D1 D2 D3 D4 D5 D6

Stop Bit

Ninth Data Bit (Modes 2 and 3 only)Start Bit

Data Byte

A2261-01
11-6

SERIAL I/O PORT

cy,

he

ion.

en ini-

aming
 page
lid stop
ssion
gister

t, only
cannot
11.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation:

• Mode 1. Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 11-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted
on the TXD pin and received on the RXD pin. When a message is received, the stop bit is
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1
or timer 2 (see “Baud Rates” on page 11-10).

• Modes 2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 11-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSb
first), one programmable ninth data bit, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequen
(FOSC).

— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

11.2.2.1 Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SM0 and SM1 bits, and clear t
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmiss

11.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is th
tiated by a detected high-to-low transition on the RXD pin.

11.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the fr
bit error detection feature, set the SMOD0 bit in the PCON register (see Figure 15-1 on
15-3). When this feature is enabled, the receiver checks each incoming data frame for a va
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmi
by two CPUs. If a valid stop bit is not found, the hardware sets the FE bit in the SCON re
(see Figure 11-2).

Firmware may examine the FE bit after each reception to check for data errors. Once se
firmware or a reset can clear the FE bit. Subsequently received frames with valid stop bits
clear the FE bit.
11-7

8x931AA, 8x931HA USER’S MANUAL

d the RI

s to re-
e waiting

ication

muni-
mand

it in the
mand

nfigu-
eived

bit.
11.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (see Figure 11-2). When the multiprocessor
communication feature is enabled, the serial port can differentiate between data frames (ninth bit
clear) and address frames (ninth bit set). This allows the microcontroller to function as a slave
processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the
received address matches the slave’s address, the receiver hardware sets the RB8 bit an
bit in the SCON register, generating an interrupt.

NOTE
The ES bit must be set in the IEN0 register to allow the RI bit to generate an
interrupt. The IEN0 register is described in Chapter 8, Interrupts.

The addressed slave’s firmware then clears the SM2 bit in the SCON register and prepare
ceive the data bytes. The other slaves are unaffected by these data bytes because they ar
to respond to their own addresses.

11.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor commun
feature is enabled (i.e., the SM2 bit is set in the SCON register).

Implemented in hardware, automatic address recognition enhances the multiprocessor com
cation feature by allowing the serial port to examine the address of each incoming com
frame. Only when the serial port recognizes its own address does the receiver set the RI b
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by com
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this co
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the rec
command frame address matches the device’s address and is terminated by a valid stop

NOTE
The multiprocessor communication and automatic address recognition features
cannot be enabled in mode 0 (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identified by a given address and a broad-
cast address.
11-8

SERIAL I/O PORT

e. To
follow-

 A, bit 0
 only,

laves
t (e.g.,

laves
it 2 set

t, bit 1

with

 most
11.5.1 Given Address

Each device has an individual address that is specified in the SADDR register; the SADEN reg-
ister is a mask byte that contains don't-care bits (defined by zeros) to form the device’s given ad-
dress. These don't-care bits provide the flexibility to address one or more slaves at a tim
address a device by its individual address, the SADEN mask byte must be 1111 1111 The
ing example illustrates how a given address is formed:

The following is an example of how to use given addresses to address different slaves:

The SADEN byte is selected so that each slave may be addressed separately. For Slave
(the LSb) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A
the master must send an address where bit 0 is clear (e.g., 1111 0000).

For Slave A, bit 1 is a 0; for Slaves B and C, bit 1 is a don’t-care bit. To communicate with S
B and C, but not Slave A, the master must send an address with bits 0 and 1 both se
1111 0011).

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is a 0. To communicate with S
A and B, but not Slave C, the master must send an address with bit 0 set, bit 1 clear, and b
(e.g., 1111 0101).

To communicate with Slaves A, B, and C, the master must send an address with bit 0 se
clear, and bit 2 clear (e.g., 1111 0001).

11.5.2 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers
zeros defined as don't-care bits, e.g.:

The use of don't-care bits provides flexibility in defining the broadcast address, however, in
applications, a broadcast address is 0FFH.

SADDR

SADEN

Given

=

=

=

0101 0110

1111 1100

0101 01XX

Slave A: SADDR

SADEN

Given

=

=

=

1111 0001

1111 1010

1111 0X0X

Slave C: SADDR

SADEN

Given

=

=

=

1111 0010

1111 1101

1111 00X1

Slave B: SADDR

SADEN

Given

=

=

=

1111 0011

1111 1001

1111 0XX1

SADDR

SADEN

(SADDR) OR (SADEN)

=

=

=

0101 0110

1111 1100

1111 111X
11-9

8x931AA, 8x931HA USER’S MANUAL

all of

BH.

adcast
s-com-
The following is an example of using broadcast addresses:

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is set. To communicate with
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address F

11.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00H, that is, the given and bro
addresses are xxxx xxxx (all don't-care bits). This ensures that the serial port is backward
patible with MCS® 51 microcontrollers that do not support automatic address recognition.

11.6 BAUD RATES

You must select the baud rate for the serial port transmitter and receiver when operating in modes
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 11-3 summarizes the baud rates that can be used for the
four serial I/O modes.

NOTE
Setting the low clock (PCON.5) bit forces the internal clock (FCLK) frequency
distributed to the CPU and peripherals to 3MHz. This bit is automatically set
after a reset. Clearing this bit through firmware returns FCLK to the normal
clock frequency (FOSC /2).

11.6.1 Baud Rate for Mode 0

The baud rate for mode 0 is fixed at FOSC /12.

Slave A: SADDR

SADEN

Broadcast

=

=

=

1111 0001

1111 1010

1111 1X11

Slave C: SADDR

SADEN

Broadcast

=

=

=

1111 0010

1111 1101

1111 1111

Slave B: SADDR

SADEN

Broadcast

=

=

=

1111 0011

1111 1001

1111 1X11

Table 11-3. Summary of Baud Rates

Mode No. of
Baud Rates

Send and Receive
at the Same Rate

Send and Receive
at Different Rates

0 1 N/A N/A

1 Many †† Yes Yes

2 2 Yes No

3 Many †† Yes Yes

 †† Baud rates are determined by overflow of timer 1 and/or timer 2.
11-10

SERIAL I/O PORT

OD
11.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by the SMOD1 bit in the PCON register (Figure
15-1 on page 15-3). The following expression defines the baud rate:

11.6.3 Baud Rates for Modes 1 and 3

In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

11.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

11.6.3.2 Selecting Timer 1 as the Baud Rate Generator

To select timer 1 as the baud rate generator:

• Disable the timer interrupt by clearing the ET1 bit in the IEN0 register (Figure 6-12 on page
6-25).

• Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 11-5 on page 11-7).

• Select timer mode 0–3 by programming the M1 and M0 bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TM
= 0010B). The resulting baud rate is defined by the following expression:

Timer 1 can generate very low baud rates with the following setup:

• Enable the timer 1 interrupt by setting the ET1 bit in the IEN0 register.

• Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).

• Use the timer 1 interrupt to initiate a 16-bit firmware reload.

Table 11-4 lists commonly used baud rates and shows how they are generated by timer 1.

Serial I/O Mode 2 Baud Rate 2SMOD1 Fosc

64
-----------×=

Serial I/O Modes 1 and 3 Baud Rate 2SMOD1 Timer 1 Overflow Rate
32

--×=

Serial I/O Modes 1 and 3 Baud Rate 2SMOD1 Fosc

32 12 256 TH1)(–[]××--×=
11-11

8x931AA, 8x931HA USER’S MANUAL
11.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure
11-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by firmware.

The timer 2 baud rate is expressed by the following formula:

11.6.3.4 Selecting Timer 2 as the Baud Rate Generator

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bits in the T2CON register as shown in Table 11-5. (You may select differ-
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 into its
baud rate generator mode (Figure 11-5). In this mode, a rollover in the TH2 register does not set
the TF2 bit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the EXF2
bit in the T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2).
You can use the T2EX pin as an additional external interrupt by setting the EXEN2 bit in T2CON.

NOTE
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

Table 11-4. Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3

Baud
Rate

Oscillator
Frequency

(FOSC)
SMOD1

Timer 1

C/T# Mode Reload
Value

62.5 Kbaud (Max) 12.0 MHz 1 0 2 FFH

19.2 Kbaud 11.059 MHz 1 0 2 FDH

9.6 Kbaud 11.059 MHz 0 0 2 FDH

4.8 Kbaud 11.059 MHz 0 0 2 FAH

2.4 Kbaud 11.059 MHz 0 0 2 F4H

1.2 Kbaud 11.059 MHz 0 0 2 E8H

137.5 Baud 11.986 MHz 0 0 2 1DH

110.0 Baud 6.0 MHz 0 0 2 72H

110.0 Baud 12.0 MHz 0 0 1 FEEBH

Serial I/O Modes 1 and 3 Baud Rate
Timer 2 Overflow Rate

16
--=
11-12

SERIAL I/O PORT

P2H

.

Note that timer 2 increments every state time (2TOSC) when it is in the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L” denotes the contents of RCA
and RCAP2L taken as a 16-bit unsigned integer:

NOTE
When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Table 11-6 lists commonly used baud rates and shows how they are generated by timer 2

Table 11-5. Selecting the Baud Rate Generator(s)

RCLCK
Bit

TCLCK
Bit

Receiver
Baud Rate Generator

Transmitter
Baud Rate Generator

0 0 Timer 1 Timer 1

0 1 Timer 1 Timer 2

1 0 Timer 2 Timer 1

1 1 Timer 2 Timer 2

Serial I/O Modes 1 and 3 Baud Rate
Fosc

32 65536 RCAP2H RCAP2L),(–[]×---=
11-13

8x931AA, 8x931HA USER’S MANUAL
Figure 11-5. Timer 2 in Baud Rate Generator Mode

Table 11-6. Timer 2 Generated Baud Rates

Baud Rate
Oscillator
Frequency

(FOSC)
RCAP2H RCAP2L

375.0 Kbaud 12 MHz FFH FFH

9.6 Kbaud 12 MHz FFH D9H

4.8 Kbaud 12 MHz FFH B2H

2.4 Kbaud 12 MHz FFH 64H

1.2 Kbaud 12 MHz FEH C8H

 300.0 baud 12 MHz FBH 1EH

110.0 baud 12 MHz F2H AFH

300.0 baud 6 MHz FDH 8FH

110.0 baud 6 MHz F9H 57H

T2EX

T2

Timer 1 Overflow

TR2

TH2
(8 Bits)

TL2
(8 Bits)

EXEN2

EXF2

A5205-01

FCLK

RCAP2H RCAP2L

C/T2#

0

1

Interrupt
Request

0

1

SMOD1

1

0

RCLCK

16

1

0

TCLCK

RX
Clock

TX
Clock

2

16

Note availability of additional external interrupt.
11-14

12
Keyboard Control

CHAPTER 12
KEYBOARD CONTROL

This chapter describes the 8x931 keyboard control interface.

12.1 OVERVIEW

The 8x931 keyboard control interface consists of 20 keyboard scan output lines, eight keyboard
scan input lines, and four LED drivers. The output lines, input lines, and LEDs are controlled by
the KBCON SFR, shown in Figure 12-2 below.

KBCON Address: F8H
Reset State: 0xx0 0000B

Keyboard Control Register. This register controls the keyboard scan input and output activity, enables
and configures the keyboard scan interrupt, and drives the keyboard LEDs.

7 0

IE2 — KSEN IT2 LED3 LED2 LED1 LED0

Bit
Number

Bit
Mnemonic Function

7 IE2 Interrupt 2 Flag:

Set when external interrupt 2 is detected if the KSEN bit is set. Firmware
must clear this bit when the interrupt is serviced.

6 — Reserved:

Write a zero to this bit.

5 KSEN Keyboard Scan Enable:

Setting this bit enables the pullup resistors on the KSI input lines, enables
the keyboard scan interrupt (INT2#), and enables the LED drivers.
NOTE: The EX2 bit in the IEN0 SFR must also be set to enable the KSI

external interrupt.

4 IT2 Interrupt 2 Type Control Bit:

If set, a negative edge detect on any of the KSI pins causes IE2 to be set.
When clear, IE2 acts as a level 0 triggered interrupt.

3:0 LED3:0 LED Driver Control:

Clearing one of these bits turns on the associated LED. Setting a bit turns off
the associated LED.
NOTE: The KSEN (Keyboard Scan Enable) bit must be set in order to

activate the LED drivers. After reset, the LED driver control bits are
cleared. This means that when KSEN is set, the LEDs will turn on.
Firmware must set the LED driver control bits to turn off the LEDs.

Figure 12-1. KBCON: Keyboard Control Register
12-1

8x931AA, 8x931HA USER’S MANUAL
12.2 KEYBOARD SCAN IMPLEMENTATION

The keyboard scan matrix supports up to 160 keys using 20 keyboard scan outputs (KSO) and
eight keyboard scan inputs (KSI). The KSOs are implemented as quasi-bidirectional ports with
weak internal pullup resistors. To reduce overall system cost, each KSI is implemented as a
Schmitt-trigger input incorporating an on-chip pullup resistor that may be enabled or disabled
through firmware.

A typical implementation of the keyboard scan matrix is shown in Figure 12-2. Note that the pul-
lup resistors are inactive until the pullup enable bit (KSEN in KBCON) is set.

Table 12-1. Keyboard Control Signals

Signal
Name Type Description Multiplexed

With

KSO19
KSO18
KSO17:16
KSO15:8
KSO7:0

O Keyboard Scan Output. Quasi-bidirectional ports with weak
internal pullup resistors used for the output side of the keyboard
scan matrix.

P3.7/RD#
P3.6/WR#
P3.5:4/T1:0
A15:8/P2.7:0
P1.7:0

KSI7:0 I Keyboard Scan Input. Schmitt-trigger inputs with firmware-
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.

AD7:0/P0.7:0

LED3:0 O LED Drivers. These drive LEDs connected directly to VCC. The
current each driver is capable of sinking is given as VOL2 in the
datasheet.

—

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Pin Descriptions”.
12-2

KEYBOARD CONTROL

ware

et in

upts

n

llups
lag
Figure 12-2. Keyboard Scan Matrix Application

12.2.1 Keyboard Interrupt Logic

Firmware must perform the keyboard scan polling operation by generating a running 0 through
the KSO outputs. The sampling operation is interrupt-driven using external interrupt 2 (INT2#).
All KSI inputs are ANDed together so that a negative edge (or level 0) on any of the KSI inputs
causes INT2# to be generated, setting KBCON’s IE2 bit. When this interrupt occurs, firm
must read the KSI inputs to determine which one(s) caused the interrupt.

In order for the keyboard scan interrupt to work properly, the following bits must be s
KBCON (Figure 12-1) and IEN1 (Figure 5-11 on page 5-25):

• The global interrupt enable bit must be set (EA of IEN0) — to allow the maskable interr
to be individually enabled.

• The enable bit for external interrupt 2 (INT2#) must be set (EX2 of IEN1) — to allow a
interrupt to be triggered in hardware.

• The keyboard scan enable bit must be set (KSEN of KBCON) — to activate the KSI pu
and enable the keyboard scan interrupt flag (IE2 of KBCON). If KSEN is set, the IE2 f
may be set even if the hardware interrupt is disabled (i.e., EX2 = 0).

• Additionally, the Interrupt 2 Type control bit (IT2 of KBCON) must be set or cleared to
specify whether the interrupt will be triggered on negative edge or level 0.

A5319-01

R

R

KSI0

KSO20

KSO0

KSI7

Keyboard
Data and
Interrupt

8x931Hx

Pullup
Enable

KSEN

KBCON.5

VCC

VCC

0

1

12-3

8x931AA, 8x931HA USER’S MANUAL
12.3 LED DRIVERS

The LED drivers enable external LEDs to be connected directly between VCC and the LED driver
pins without the need for external resistors. The current each driver is capable of sinking is given
as VOL2 in the datasheet.

NOTE
The KSEN (keyboard scan enable) bit must be set to activate the LED drivers.

Figure 12-3. LED Driver Application

A5321-01

LED3:0

Power Supply

8x931

VCC
12-4

13
Minimum Hardware
Setup

shown.
e USB

rating
ion or
See the
rm tim-
CHAPTER 13
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of the 8x931 and describes a minimum
hardware setup. Topics covered include power, ground, clock source, and device reset. For pa-
rameter values, refer to the device data sheet.

13.1 MINIMUM HARDWARE SETUP

Figure 13-1 shows a minimum hardware setup that employs the on-chip oscillator for the system
clock and provides power-on reset. Control signals, Ports 0–3, and the USB ports are not
See “Clock Sources” on page 13-2 and “Power-on Reset” on page 13-7. PLLSEL selects th
operating rate. Refer to Table 2-4 on page 2-10.

Figure 13-1. Minimum Setup

13.2 ELECTRICAL ENVIRONMENT

The 8x931 is a high-speed CHMOS device. To achieve satisfactory performance, its ope
environment should accommodate the device signal waveforms without introducing distort
noise. Design considerations relating to device performance are discussed in this section.
device data sheet for voltage and current requirements, operating frequency, and wavefo
ing.

A4452-01

8X931
Microcontroller

XTAL2

VSS

VCC

VCC

VCC

VCC (ROM)

VSS (ROMless)

XTAL1 RST
C1

C2

0.3µF

1µF

AVCC

ECAP

EA#

PLLSEL
13-1

8x931AA, 8x931HA USER’S MANUAL

or
on-

amic
 or the
.

e fre-
 as an
tor de-
rasitic

ith high

1 and

 PD
n.

ing
e chip
ts

e.
13.2.1 Power and Ground Pins

Power the 8x931 from a well-regulated power supply designed for high-speed digital loads. Use
short, low impedance connections to the power (VCC) and ground (VSS) pins.

13.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pins to VSS or VCC. Untermi-
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

For the 8x931HA, if the USB downstream ports are not used, the two data lines are still required
to be pulled low externally using 15K pulldown resistors so inputs are not floating.

13.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion, follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.1 µF bypass capacitors between VCC/AV CC and each VSS pin.
Place the capacitors close to the device to minimize path lengths.

Multi-layer printed circuit boards with separate VCC and ground planes help minimize noise. F
additional information on noise reduction, see Application Note AP-125, “Designing Microc
troller Systems for Electrically Noisy Environments.”

13.3 CLOCK SOURCES

The 8x931 can use an external clock (Figure 13-3), an on-chip oscillator with crystal or cer
resonator (Figure 13-2), or an on-chip phase-locked oscillator (locked to the external clock
on-chip oscillator) as its clock source. For USB operating rates, see Table 2-3 on page 2-9

13.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTAL1 to XTAL2 as th
quency-determining element (Figure 13-2). The crystal operates in its fundamental mode
inductive reactance in parallel resonance with capacitance external to the crystal. Oscilla
sign considerations include crystal specifications, operating temperature range, and pa
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. W
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTAL2 are protected by on-chip electrostatic discharge (ESD) devices, D
D2, which are diodes parasitic to the RF FETs. They serve as clamps to VCC and VSS. Feedback
resistor RF in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the
bit in the PCON register (Figure 14-1 on page 14-3) to disable the clock during powerdow

Noise spikes at XTAL1 and XTAL2 can disrupt microcontroller timing. To minimize coupl
between other digital circuits and the oscillator, locate the crystal and the capacitors near th
and connect to XTAL1, XTAL2, and VSS with short, direct traces. To further reduce the effec
of noise, place guard rings around the oscillator circuitry and ground the metal crystal cas
13-2

MINIMUM HARDWARE SETUP

eramic
tion.

 as
OS

e clock

at ex-

power
e (i.e.,
mains
For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Application Note AP-155, “Oscillators for Microcontrollers,” in the Embedded
Applications handbook. See Table 1.3 on page 1-6 for the order number.

13.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. C
resonator applications may require slightly different capacitor values and circuit configura
Consult the manufacturer’s data sheet for specific information.

Figure 13-2. CHMOS On-chip Oscillator

13.3.3 External Clock

To operate the 8x931 from an external clock, connect the clock source to the XTAL1 pin
shown in Figure 13-3. Leave the XTAL2 pin floating. The external clock driver can be a CM
gate. If the clock driver is a TTL device, its output must be connected to VCC through a 4.7 kΩ
pullup resistor.

For external clock drive requirements, see the device data sheet. Figure 13-4 shows th
drive waveform. The external clock source must meet the minimum high and low times (TCHCX
and TCLCX) and the maximum rise and fall times (TCLCH and TCHCL) to minimize the effect of ex-
ternal noise on the clock generator circuit. Long rise and fall times increase the chance th
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 when
is applied, due to the interaction between the internal amplifier and its feedback capacitanc
the Miller effect). Once the input waveform requirements are met, the input capacitance re
under 20 pF.

A4143-03

XTAL2

XTAL1

C1

C2

VCC

PD#

To Internal
Timing Circuit

In
te

rn
al

RF

Quartz Crystal
or Ceramic Resonator D1

D2

E
xt

er
na

l

13-3

8x931AA, 8x931HA USER’S MANUAL

Figure 13-3. External Clock Connection for the 8x931

Figure 13-4. External Clock Drive Waveforms

XTAL2

VSS

XTAL1

N/C

External
Clock

CMOS
Clock Driver

A4142-03

Note: If TTL clock driver is used, connect a 4.7kΩ pullup resistor from driver output to VCC.

0.7 VCC

A4119-01

0.45 V

VCC – 0.5

0.2 VCC – 0.1

TCHCL

TCLCX

TCLCL

TCLCH TCHCX
13-4

MINIMUM HARDWARE SETUP

 exam-

lator
 pow-

on

E. This
t all of
, then
 sus-

n” on
13.4 RESET

A device reset initializes the 8x931 and vectors the CPU to address 0000H. A reset is a means of
exiting the idle and powerdown modes or recovering from firmware malfunctions, and could be
a USB reset initiated by the host or upstream hub.

NOTE
A reset is required after applying power.

To achieve a valid reset, VCC must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for at least two machine cycles (24 oscillator periods) af-
ter the oscillator has stabilized.

Device reset is initiated in two ways:

• externally, by asserting the RST pin

• over the bus, by a USB-initiated reset

These reset mechanisms are ORed to create a single reset signal for the 8x931.

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold
start. A cold start reset (POF = 1) is a reset that occurs after power has been off or VCC has fallen
below 3 V, so the contents of volatile memory are indeterminate. POF is set by hardware when
VCC rises from less than 3 V to its normal operating level. See “Power Off Flag” on page 14-1. A
warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for
ple, an external reset used to terminate the idle or powerdown modes.

13.4.1 Externally-initiated Resets

To reset the 8x931, hold the RST pin at a logic high for at least two machine cycles (24 oscil
periods) while the oscillator is running. Reset can be accomplished automatically at the time
er is applied by capacitively coupling RST to VCC (see Figure 13-1 on page 13-1 and “Power-
Reset” on page 13-7). The RST pin has a Schmitt trigger input and a pulldown resistor.

13.4.2 USB-initiated Resets

The 8x931 can be reset by the host or upstream hub if a reset signal is detected by the SI
reset signal is defined as an SE0 held longer than 2.5 µs. A USB-initiated reset will rese
the 8x931 hardware, even if the device is suspended (in which case it would first wake-up
reset). See “USB Power Control” on page 14-7 for additional information about USB-related
pend and resume.

A peripheral that is reset must be re-enumerated. This procedure is given in “Enumeratio
page 8-2.

NOTE
You must ensure that the time from connection of this USB device to the bus
until the entire reset process is complete (including firmware initialization of
13-5

8x931AA, 8x931HA USER’S MANUAL

B
 all
a USB

forced

an ex-
fter the
e-bit
 page

during
es for
cillator
riven to
he clock

set rou-
 their

register

0. Fig-

T is
 rea-
the 8x931) is less than 10 ms. After 10 ms, the host may attempt to
communicate with the 8x931 to set its device address. If the 8x931 firmware
cannot respond to the host at this time, the host may disable the device after
three attempts to communicate.

13.4.2.1 USB Reset Separation

The 8x931 features an optional USB reset that functions independently from the chip reset. When
the PCON1 SFR’s URDIS bit is set, the 8x931 core and peripherals will not reset when a US
reset signal is detected. After an 8x931 with URDIS set detects a USB reset signal, it resets
the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and generates
reset interrupt. For a complete description of the optional USB reset for the 8x931, see “USB Re-
set Separation” on page 5-17.

13.4.3 Reset Operation

When a reset is initiated, whether externally or over the bus, the port pins are immediately
to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the USB-initiated reset signals are combined internally. For
ternal reset the voltage on the RST pin must be held high for at least two machine cycles a
oscillator and on-chip PLL stabilize (approximately 5 ms). For USB-initiated resets, a fiv
counter in the reset logic maintains the signal for the required time. Refer to Table 2-3 on
2-9.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled
State 5 Phase 2 of every machine cycle. ALE and PSEN will maintain their current activiti
19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 os
periods after the external reset signal has been applied to the RST pin. The port pins are d
their reset state as soon as a valid high is detected on the RST pin, regardless of whether t
is running.

When a reset is detected, the CPU responds by triggering the internal reset routine. The re
tine loads the SFRs, including the ACC, B, stack pointer, and data pointer registers, with
reset values (see Table C-1 on page C-2). Reset does not affect on-chip data RAM or the
file. (However, following a cold start reset, these are indeterminate because VCC has fallen too
low or has been off.) Following a synchronizing operation, the CPU vectors to address 000
ure 13-5 shows the reset timing sequence.

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. After RS
pulled low, it will take 1 to 2 machine cycles for ALE and PSEN# to start clocking. For this
son, other devices can not be synchronized to the internal timings of the 8x931.
13-6

MINIMUM HARDWARE SETUP

rg-
 of the
s. At
 of
 their
o
.

NOTE
Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8x931 without a reset may improperly initialize the program
counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

13.4.4 Power-on Reset

To automatically generate a reset when power is applied, connect the RST pin to the VCC pin
through a 0.3 µF capacitor as shown in Figure 13-1 on page 13-1.

When VCC is applied, the RST pin rises to VCC, then decays exponentially as the capacitor cha
es. The time constant must be such that RST remains high (above the turn-off threshold
Schmitt trigger) long enough for the oscillator to start and stabilize, plus two machine cycle
power up, VCC should rise within approximately 10 ms. Oscillator start-up time is a function
the crystal frequency. During power up, the port pins are in a random state until forced to
reset state by the asynchronous logic. Reducing VCC quickly to 0 causes the RST pin voltage t
momentarily fall below 0 V. This voltage is internally limited and does not harm the device

Figure 13-5. Reset Timing Sequence

A4457-01

RST

ALE

PSEN#

PO

S5 S6 S1 S2 S3 S4 S5 S6 S1

INST

S2 S3 S4 S5 S6 S1 S2 S3 S4

Sample RST Internal reset signal

ADDR INST ADDR INST ADR

11 Osc. Periods

ADDR INST ADDR

12 Osc. Periods

19 Osc. Periods

Sample RST

INST
13-7

14
Special Operating
Modes

d state,

.

lock,

 sus-
Power

een a

s
r-
CHAPTER 14
SPECIAL OPERATING MODES

This chapter describes the idle, powerdown, low-clock, and on-circuit emulation (ONCE) device
operating modes and the USB function suspend and resume operations. The SFRs associated with
these operations (PCON and PCON1) are also described.

14.1 OVERVIEW

The idle, low clock, and powerdown modes are power reduction modes for use in applications
where power consumption is a concern. User instructions activate these modes by setting bits in
the PCON register. Program execution halts, but resumes when the mode is exited by an interrupt.
While in idle or powerdown modes, the VCC pin is the input for backup power.

Following chip reset, the 8x931 operates in low-clock mode, wherein the CPU and on-chip pe-
ripherals are clocked at a reduced rate until bus enumeration is accomplished. This reduces ICC to
meet the 100 mA USB requirement.

Suspend and resume are low current modes used when the USB bus is idle. The 8x931 enters sus-
pend when there is a continuous idle state on the bus lines for more than 3.0 msec. When a device
is in suspend state, it draws less than 500 µA from the bus. Once a device is in the suspen
its operation can be resumed by receiving resume signaling on the bus.

ONCE is a test mode that electrically isolates the 8x931 from the system in which it operates.

Table 14-1 on page 14-6 lists the condition of the out pins for the various operating modes

14.2 POWER CONTROL REGISTERS

The PCON special function register (Figure 14-1) provides bits for selecting: the idle, low-c
and powerdown modes, the power off flag, and two general purpose flags.

The PCON1 SFR (Figure 14-2) provides USB power control, including the USB global
pend/resume and USB function suspend. The PCON1 SFR is discussed further in “USB
Control” on page 14-7.

14.2.1 Power Off Flag

The Power Off Flag (POF) located at PCON.4, is set by hardware when VCC rises from 0 to 5
Volts. POF can also be set or cleared by software. This allows the user to distinguish betw
“cold start” reset and a “warm start” reset.

A cold start reset is one that is coincident with the VCC being turned on to the device after it wa
turned off. A warm start reset occurs while VCC is still applied to the device and could be gene
ated, for example, by an exit from Power Down.
14-1

8x931AA, 8x931HA USER’S MANUAL

 would
ediate-
Immediately after reset, the user’s software can check the status of the POF bit. POF = 1
indicate a cold start. The software then clears POF and commences its tasks. POF = 0 imm
ly after reset would indicate a warm start.

NOTE
VCC must remain above 3 volts for POF to retain a 0.
14-2

SPECIAL OPERATING MODES

Figure 14-1. PCON: Power Control Register

PCON Address: 87H
Reset State: 001X 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes and two general-purpose flags.

7 0

SMOD1 SMOD0 LC POF GF1 GF0 PD IDL

Bit
Number

Bit
Mnemonic Function

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 11-10.

6 SMOD0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SM0 bit.See the
SCON register (Figure 11-2 on page 11-4).

5 LC Low-clock Mode Enable:

Setting this bit forces the internal clock (FCLK) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns FCLK to the
normal clock frequency.

4 POF Power Off Flag:

Set by hardware on the rising edge of Vcc. set or cleared by software.
This flag allows detection of a reset caused by a power failure. Vcc must
remain above 3 volts to retain this bit.

3 GF1 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GF0 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.
14-3

8x931AA, 8x931HA USER’S MANUAL

PCON1 Address: DFH
Reset State: xxxx x000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0

— — — URDIS URST RWU GRSM GSUS

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Write zeros to these bits.

4 URDIS USB Reset Disable:

When cleared by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 51 microcontroller core, USB blocks
and all peripherals.

When set by firmware, the core and peripherals will not reset when a
USB reset signal is detected. Upon detecting a USB reset signal, the
8x931 resets all the USB blocks (FIFOs, FIU, SIE, and transceiver), sets
the URST bit and generates a USB reset interrupt (refer to the
description of URST).

3 URST USB Reset Flag:

This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IEN1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware when resume signaling
is done.
NOTE: Do not set this bit unless the USB function is suspended

(GSUS = 1 and GRSM = 0). See Figure 14-3 on page 14-11.

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 14-2. PCON1: USB Power Control Register
14-4

SPECIAL OPERATING MODES
1 GRSM Global Resume Bit:

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt†
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 14-3
on page 14-11.

0 GSUS Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.† During the global suspend ISR, firmware should
set the PD bit to enter the suspend mode. Cleared by hardware when a
resume occurs. See Figure 14-3 on page 14-11.

PCON1 (Continued) Address: DFH
Reset State: xxxx x000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0

— — — URDIS URST RWU GRSM GSUS

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 14-2. PCON1: USB Power Control Register (Continued)
14-5

8x931AA, 8x931HA USER’S MANUAL
14.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to approximately 40% of
normal. In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known
states while the peripherals continue to be clocked (Figure 2-4 on page 2-9). The CPU status be-
fore entering idle mode is preserved. That is, the program counter, program status word register,
and register file retain their data for the duration of idle mode. The contents of the SFRs and RAM
are also retained. The status of the port pins depends upon the location of the program memory:

• Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are driving the port SFR value (Table 14-1).

• External program memory: the ALE and PSEN# pins are pulled high; the port 0 pins are
floating; and the pins of parallel ports 1 and 3 are driving the port SFR value (Table 14-1);
port 2 pins are weakly pulled high.

14.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. The 8x931 enters idle mode upon execution
of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last instruction
executed.

CAUTION
If the IDL bit and the PD bit are set simultaneously, the 8x931 enters
powerdown mode.

Table 14-1. Pin Conditions in Various Modes

Pin

Reset Idle Mode Powerdown Mode Once Mode

— Internal
Program
Memory

External
Memory

Internal
Program
Memory

External
Memory

—

ALE Weak High 1 1 0 0 Float

PSEN# Weak High 1 1 0 0 Float

Port 0 Pins Float Data Float Data Float Float

Port 1 Pins Weak High Data Data Data Data Float

Port 2 Pins Weak High Data Weak High Data Weak High Float

Port 3 Pins Weak High Data Data Data Data Float

SOF# Weak High Data Data Data Data Weak High

DP0 Float Data Data Float Float Weak High

DM0 Float Data Data Float Float Float

DP5:2 Float Data Data Float Float Float

DM5:2 Float Data Data Float Float Float

UPWEN# Weak High Data Data Data Data Float
14-6

SPECIAL OPERATING MODES

to put
mode
14.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

• Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose flags
(GF1 and GF0 in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GF0.

• Reset the chip. A logic high on the RST pin clears the IDL bit in the PCON register directly
and asynchronously. This restores the clocks to the CPU. Program execution momentarily
resumes with the instruction immediately following the instruction that activated the idle
mode and may continue for a number of clock cycles before the internal reset algorithm
takes control. Reset initializes the 8x931 and vectors the CPU to address 0000H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

14.4 USB POWER CONTROL

The 8x931 supports USB power control through firmware, including global suspend/resume and
remote wake-up. For flow charts of these operations, see Figure 14-3 on page 14-11.

14.4.1 Global Suspend Mode

When a global suspend is detected by the 8x931, the global suspend bit (GSUS in PCON1) is set
and the global suspend/resume interrupt is generated. Global suspend is defined as bus inactivity
for more than 3 ms on the USB root port. A device that is already in suspend mode will not change
state. Hardware does not invoke any particular power-saving mode on detection of a global sus-
pend. You must implement power control through firmware within the global suspend/resume
ISR.

NOTE
Firmware must set the PD bit (PCON.1 in Figure 14-1 on page 14-3).

For global suspend on a bus powered device, firmware must put the 8x931 into powerdown mode
to meet the USB limit of 500 µA. For self-powered devices, there is no hard requirement
the 8x931 into powerdown mode. To reduce power consumption, idle mode and low clock
can be used instead.
14-7

8x931AA, 8x931HA USER’S MANUAL

lize
tarts

s with
m
14.4.1.1 Powerdown (Suspend) Mode

The powerdown mode places the 8x931 in a very low power state. Powerdown mode stops the
oscillator and freezes all clocks at known states (Figure 2-4 on page 2-7). The CPU status prior
to entering powerdown mode is preserved (i.e., the program counter, program status word regis-
ter, and register file retain their data for the duration of powerdown mode). In addition, the SFRs
and RAM contents are preserved. The status of the port pins depends on the location of the pro-
gram memory:

• Internal program memory: the ALE and PSEN# pins are pulled low and the pins of parallel
ports 0 - 3 are driving the port SFR value (Table 14-1 on page 14-6).

• External program memory: the ALE and PSEN# pins are pulled low; the port 0 pins are
floating; and the pins of ports 1 and 3 are reading data, and Port 2 pins are weakly pulled
high. (Table 14-1).

NOTE
VCC may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, that VCC is not reduced until power-
down is invoked.

14.4.1.2 Entering Powerdown (Suspend) Mode

To enter powerdown mode, set the PCON register PD bit. The 8x931 enters powerdown mode
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is the
last instruction executed.

CAUTION
Do not put the 8x931 into powerdown mode unless the USB suspend signal is
detected on the USB lines (GSUS = 1). Otherwise, the device will not be able
to wake up from powerdown mode by a resume signal sent through the USB
lines. See “USB Power Control” on page 14-7.

14.4.1.3 Exiting Powerdown (Suspend) Mode

CAUTION
If V CC was reduced during the powerdown mode, do not exit powerdown until
VCC is restored to the normal operating level.

There are two ways (other than USB signaling) to exit the powerdown mode:

1. Generate an enabled external interrupt (including the keyboard scan interrupt). The
interrupt signal must be held active long enough for the oscillator to restart and stabi
(normally less than 10 ms). Hardware clears the PD bit in the PCON register which s
the oscillator and restores the clocks to the CPU and peripherals. Execution resume
the interrupt service routine. Upon completion of the interrupt service routine, progra
execution resumes with the instruction immediately following the instruction that
activated powerdown mode.
14-8

SPECIAL OPERATING MODES

 reset
r con-
.

ys-
ing

en the
ce rou-
as
To enable an external interrupt, set the IEN0 register EX0 and/or EX1 bit[s]. The external
interrupt used to exit powerdown mode must be configured as level-sensitive and must be
assigned the highest priority. Holding the interrupt pin (INT0#, INT1#, or the keyboard
scan interrupt INT2#) low restarts the oscillator and bringing the pin high completes the
exit. The duration of the interrupt signal must be long enough to allow the oscillator to
stabilize (normally less than 10 ms).

2. Generate a reset. A logic high on the RST pin clears the PD bit in the PCON register
directly and asynchronously. This starts the oscillator and restores the clocks to the CPU
and peripherals. Program execution momentarily resumes with the instruction
immediately following the instruction that activated powerdown and may continue for a
number of clock cycles before the internal reset algorithm takes control. Reset initializes
the 8x931 and vectors the CPU to address 0000H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powerdown mode should not write to a port pin or to the
external RAM.

14.4.2 Global Resume Mode

Upon detection of a global resume, the 8x931 sets the global resume bit (GRSM of PCON1),
clears the global suspend bit (GSUS of PCON1), and generates the global suspend/resume inter-
rupt. The 8x931 restarts the oscillator as soon as resume signaling is detected on the USB lines.
A resume condition is defined as a “J to anything” transition. This could be a K transition, or
signaling on the root port. A resume condition could be an enabled downstream port o
nect/disconnect of a downstream port in the disconnected, disabled, or suspended states

NOTE
Since the 8x931AA microcontroller does not support a hub interface, there are
no downstream ports to signal a resume condition. A resume condition can still
be caused by any of the other conditions mentioned above, however. Specific
details of the 8x931AA are covered in Appendix E, “8x931AA Design
Considerations”.

Upon detection of a resume condition, the 8x931 applies power to the USB transceivers, the cr
tal oscillator, and the PLL (although the PLL output is still gated-off). The device begins tim
two different time points, T1 and T2, as described in Chapter 11 of the Universal Serial Bus Spec-
ification.

After the clocks are restarted, the CPU program continues execution from where it was wh
device was put into powerdown mode. The device then services the resume interrupt servi
tine. After executing the resume ISR, the 8x931 continues operation from the point where it w
interrupted by the suspend interrupt.
14-9

8x931AA, 8x931HA USER’S MANUAL

 USB
the ex-
nd the
14.4.3 USB Remote Wake-up

The 8x931 can initiate resume signaling to the USB lines through remote wake-up of the USB
function while it is in powerdown mode. While in powerdown mode, remote wake-up has to be
initiated through assertion of an enabled external interrupt. The external interrupt has to be en-
abled and it must be configured with level trigger and with higher priority than a suspend/resume
interrupt. A function resume restarts the clocks to the 8x931 and program execution branches to
an external interrupt service routine.

Within this external interrupt service routine, you must ensure GRSM = 0. If GRSM is clear, set
the remote wake-up bit (RWU in PCON1 — Figure 14-2) to drive resume signaling on the
lines to the host or upstream hub and to the enabled downstream ports). After executing
ternal ISR, the program continues execution from where it was put into powerdown mode a
8x931 resumes normal operation.
14-10

SPECIAL OPERATING MODES

Figure 14-3. Suspend/Resume Program with/without Remote Wake-up

A5307-01

† If GSUS is cleared, the USB device will not be able to detect resume signaling from the host.

...
...

RETI (from external ISR)

Resume Command
from Host

USB device detects resume,
hardware sets GRSM,

clears GSUS and
starts oscillator

When oscillator stabilizes,
program begins execution

at location immediately
following the

'setb PD' command.

External ISR entered

Suspend is detected by
USB device, setting GSUS

and causing interrupt

Suspend ISR should
shut down all

external peripherals

Suspend ISR sets PD bit
† (GSUS must not

be cleared)

Setting PD bits causes
USB device to enter
powerdown mode.

Entire function must draw
less than 500 µA from USB.

Suspend Mode Entered

Remote Wake-up using
an external interrupt

Hold external interrupt pin
(INT0#, INT1#, or INT2#)

low until oscillator stabilizes.
Normally 10ms or less

Program returns to
command immediately
following the 'setb PD'

command in the original
Suspend ISR

Suspend Command

External ISR serviced

Host sends Resume
 down USB

Host sends Suspend
 down USB
14-11

8x931AA, 8x931HA USER’S MANUAL

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up (Continued)

A5090-01

Global Resume already
applied by host.

GSUS cleared by
hardware. No need to send
Remote Wake-up to host.

Software sets RWU bit

...
...

(continued) (continued)

GRSM bit = 0?
†

GRSM = 0

GRSM = 1

Hardware clears GSUS bit

RWU will clear
automatically when

RESUME signaling is done

Software clears GRSM

Software enables
external peripherals

RETI
(from suspend ISR)

† Check to see if host has driven a resume onto the bus before function drives resume onto bus.
14-12

SPECIAL OPERATING MODES
14-13

14.5 LOW-CLOCK MODE

Low-clock mode is the default operation mode for the 8x931 upon reset. After reset, the CPU and
peripherals (excluding the USB module) default to a 3 MHz clock rate. The USB module always
runs at full speed. Low-clock mode ensures that the ICC drawn by the 8x931, while in the unenu-
merated state following chip reset, is less than one unit load (100 mA).

After USB enumeration (and given that the request for more than one unit load of ICC is granted),
firmware can clear the LC bit in PCON to clock the CPU and on-chip peripherals at the normal
rate.

14.5.1 Entering Low-clock Mode

Low-clock mode can be invoked through firmware anytime the device is unconfigured by the
host PC. To invoke low-clock mode, set the LC bit in the PCON register (Figure 14-1).

NOTE
The device reset routine sets the LC bit placing the 8x931 in low-clock mode.

14.5.2 Exiting Low-clock Mode

To switch the clock of the CPU and the peripherals to the hardware-selected clock rate, clear the
LC bit in the PCON register (Figure 14-1). The hardware clock rate selection determines the high-
est operating clock rate for the 8x931.

14.6 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8x931-based
systems without removing the chip from the circuit board. A clamp-on emulator or test CPU is
used in place of the 8x931 which is electrically isolated from the system.

14.6.1 Entering ONCE Mode

To enter the ONCE mode:

1. Assert RST to initiate a device reset.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN# =
high, ALE = low, and EA# = high.

3. Deassert RST, then remove the logic levels from PSEN# and ALE.

These actions cause the 8x931 to enter the ONCE mode. The pins of parallel ports 0 - 3, ALE,
and PSEN# pins are floating (Table 14-1 on page 14-6). Thus the device is electrically isolated
from the remainder of the system which can then be tested by an emulator or test CPU. Note that
in the ONCE mode the device oscillator remains active.

14.6.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

15
External Memory
Interface

CHAPTER 15
EXTERNAL MEMORY INTERFACE

This chapter covers various aspects of the external memory interface. It describes the signals as-
sociated with external memory operations and external bus cycle timing. This chapter also gives
the status of the pins for ports P0 and P2 during bus cycles and bus idle, and includes several ex-
ternal memory design examples.

15.1 OVERVIEW

The 8x931 interfaces with a variety of external memory devices. Data transfer operations (8 bits)
are multiplexed on the lower address bits (A7:0).

The external memory interface comprises the external bus (ports 0 and 2) and the bus control sig-
nals described in Table 15-1. Figure 15-1 shows the structure of the external address bus.

Figure 15-1. Bus Structure

A5358-01

D7:0

A15:8

A7:0

A15:8
P2

P0
A7:0

Microcontroller RAM / EPROM /
Flash

AD7:0
Latch
15-1

8x931AA, 8x931HA USER’S MANUAL
15.2 EXTERNAL BUS CYCLES

This section describes the bus cycles the 8x931 executes to fetch code, read data, and write data
in external memory.

NOTE
For simplicity, the accompanying figures depict the bus cycle waveforms in
idealized form and do not provide precise timing information. For bus cycle
timing parameters refer to the 8x931AA, 8x931HA datasheet (order number:
273108-01).

An “i nactive external bus” exists when the 8x931 is not executing external bus cycles. This occurs
under any of the three following conditions:

• Bus Idle (The chip is in normal operating mode but no external bus cycles are executing.)

• The chip is in idle mode

• The chip is in powerdown mode

Table 15-1. External Memory Interface Signals

Signal
Name Type Description Alternate

Function

A15:8 O Address Lines. Upper byte of external memory address. P2.7:0/KSO15:8

AD7:0 I/O Address/Data Lines. Lower byte of external memory address
multiplexed with data

P0.7:0/KSI7:0

ALE O Address Latch Enable. ALE signals the start of an external bus
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0. An external latch can use ALE to
demultiplex the address from the address/data bus (AD7:0).

—

EA# I External Access. Directs program memory accesses to on-chip
or off-chip code memory. For EA# strapped to ground, all program
memory accesses are off-chip. For EA# strapped to VCC, program
accesses on-chip ROM if the address is within the range of the on-
chip ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For devices without on-chip ROM, EA# must be
strapped to ground.

—

PSEN# O Program Store Enable. Read signal output. Asserted for read
accesses to external program memory.

—

RD# O Read. Read signal output. Asserted for read accesses to external
data memory.

P3.7/KSO19

WR# O Write. Write signal output to external memory. P3.6/KSO18
15-2

EXTERNAL MEMORY INTERFACE

d the

ally
’s are
ess.

 pro-
e cycle
ion of
15.2.1 Bus Cycle Definitions

There are three types of bus cycles: code fetch, data read, and data write. The external bus struc-
ture is the same as for MCS® 51 microcontrollers. The upper address bits (A15:8) are on port 2,
and the lower address bits (A7:0) are multiplexed with the data (D7:0) on port 0.

Normally, two program fetches are generated during each machine cycle, even if the instruction
being executed doesn’t need more code bytes, the CPU simply ignores the extra fetch an
Program Counter is not incremented.

If the Program Memory is external, then the Program Memory read strobe PSEN# is norm
activated twice per machine cycle. If access to external Data Memory occurs, two PSEN#
skipped. This is a result of the address bus and data bus being used for Data Memory acc

NOTE
A Data Memory bus cycle takes twice as much time as a Program Memory bus
cycle.

When the CPU is executing from internal Program Memory, PSEN# is not activated, and
gram addresses are not emitted. However, ALE continues to be activated twice per machin
and is available as a clock output signal. Note that one ALE is skipped during the execut
the MOVX instruction.

Figure 15-2. External Code Fetch

ALE

PSEN#

Port 0

Port 2

A5359-01

INSTR INA7:0

A15:8A15:8

A7:0
15-3

8x931AA, 8x931HA USER’S MANUAL

Figure 15-3. External Data Read

Figure 15-4. External Data Write

ALE

RD#

PSEN#

Port 0

Port 2

A5360-01

Data InA7:0 from RI or DPL

A15:8 from PCHP2.7:0 or A15:8 from DPH

A7:0 from PCL Inst. In

A5361-01

ALE

WR#

PSEN#

Port 0

Port 2

Data OutA7:0 from RI or DPL

A15:8 from PCHP2.7:0 or A15:8 from DPH

A7:0 from PCL Inst. In
15-4

EXTERNAL MEMORY INTERFACE

an orig-
15.3 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 9,
“Input/Output Ports”.

When port 0 and port 2 are used as the external memory bus, the signals on the port pins c
inate from three sources:

• the 8x931 CPU (address bits, data bits)

• the port SFRs: P0 and P2 (logic levels)

• an external device (data bits)

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Table 15-2
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the
external bus is idle or executing a bus cycle.

15.3.1 Port 0 and Port 2 Pin Status

The port pins have the same signals as those on the 8XC51FX. For an external memory instruc-
tion using a 16-bit address, the port pins carry address and data bits during the bus cycle. How-
ever, if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven onto
the pins. These pin signals can be used to select 256-bit pages in external memory.

During a bus cycle, the CPU always writes FFH to P0, and the former contents of P0 are lost. A
bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held at high
impedance, and the contents of P2 are driven onto the port 2 pins.

Table 15-2. Port 0 and Port 2 Pin Status In Normal Operating Mode

Port 8-bit/16-bit
Addressing Bus Cycle Bus Idle

Port 0 8 or 16 AD7:0 (1) High Impedance

Port 2
8 P2 (2) P2

16 A15:8 P2

NOTES:
1. During external memory accesses, the CPU writes FFH to

the P0 register and the register contents are lost.
2. The P2 register can be used to select 256-byte pages in

external memory.
15-5

8x931AA, 8x931HA USER’S MANUAL
15.4 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents several external memory designs for 8x931 systems. Many designs are pos-
sible. The examples apply for both 8x931AA and 8x931HA devices.

15.4.1 Example 1: 11-bit Bus, External RAM

Figure 15-5 shows a hardware configuration for accessing up to 2K bytes of external RAM. The
CPU in this case is executing from internal ROM. Port 0 serves as a multiplexed address/data bus
to the RAM, 3 lines of port 2 are being used to page the RAM. If the Program Memory is internal,
the other bits of P2 are available as input/output. The CPU generates RD# and WR# signals as
needed during external RAM accesses.

Figure 15-5. Bus Diagram for Example 1: 8x931AA/HA

A4463-01

RD#
P3 P2

I/O
page bits

WR#
WE# OE#

ALE

P0P1
Microcontroller

with on-chip
code memory

RAM

DATA

ADDR

EA#

VCC

Latch

WE# CE#
15-6

EXTERNAL MEMORY INTERFACE
15.4.2 Example 2: 16-bit Bus, External ROM

The hardware configuration for external program execution is shown in Figure 15-6 below. Note
that the 16 I/O lines (ports 0 and 2) are dedicated to bus functions during external Program Mem-
ory fetches. Port 0 (P0 in Figure 15-6) serves as a multiplexed address/data bus. It emits the low
byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the
arrival of the code byte from the Program Memory. During the time that the low byte of the Pro-
gram Counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an ad-
dress latch. Meanwhile, port 2 (P2 in Figure 15-6) emits the high byte of the Program Counter
(PCH). Then PSEN# strobes the EPROM and the code byte is read into the microcontroller.

Figure 15-6. Bus Diagram for Example 2: 8x931AA/HA

A5005-01

PSEN#

ALE

P0P1

P3
P2

Microcontroller
without on-chip
code memory

EPROM

ADDR

EA#

Latch

OE#

INSTR
15-7

8x931AA, 8x931HA USER’S MANUAL
15.4.3 Example 3: 16-bit Bus, External EPROM and RAM

In this example, an 8x931AA/HA operates with a 16-bit external address bus interfaced to 64
Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-7). The 8x931AA/HA will assert RD# and
WR# signals as needed during external RAM accesses. The read strobe to external EPROM,
PSEN#, is used for external program fetches.

Figure 15-7. Bus Diagram for Example 3: 8x931AA/HA

A4287-03

A7:0

Latch

A15:8

A/D7:0

EPROM
(64 Kbytes)

OE#

CE#

A15:8

A7:0

D7:0

PSEN#

Microcontroller
(without on-chip
code memory)

RD#WR#

EA#

P2

ALE

P0

D7:0

A15:8

A7:0

RAM
(64 Kbytes)

CE#

OE# WE#

DataCode
15-8

16
Verifying Nonvolatile
Memory

 on-

he pro-
tes, an
 data

ss. The
crypt-
ernal

ory
CHAPTER 16
VERIFYING NONVOLATILE MEMORY

This chapter discusses the 83931 on-chip memory and provides the procedure for verifying on-
chip nonvolatile memory.

16.1 83931 MEMORY

The MCS® 51 architecture provides separate 64-Kbyte address spaces for program memory and
data memory (see “8x931 Memory” on page 2-11). Table 2-1 on page 2-3 lists the available
chip ROM and RAM memory options for the 83931.

16.2 NONVOLATILE MEMORY

For ROM devices (83931), on-chip program memory is located at the lowest addresses of t
gram memory address space. ROM devices also make provision for storing signature by
encryption array, and lock bits in on-chip nonvolatile memory outside the program and
memory address spaces.

In some applications, it is desirable that program code be secure from unauthorized acce
83931 offers two types of protection for on-chip program code. On-chip program code is en
ed when read out for verification if the encryption array is programmed. Lock bits restrict ext
access to on-chip program memory.

16.3 VERIFYING ON-CHIP NONVOLATILE MEMORY

This section provides instructions for verifying the contents of the following nonvolatile mem
functions on the 83931 ROM device:

• on-chip program memory (8 Kbytes)

• lock bits (3 bits)

• signature bytes (3 bytes)

The 83931 is verified in the same manner as MCS 51 microcontrollers. Verify operations differ
from normal device operation. Verify operations are performed with the device installed in a
ROM or EPROM programmer. The CPU does not execute instructions. Memory accesses are
made one byte at a time using addresses externally applied to ports P3:4-5, P2:0-5 and P1. See
Table 16-2 on page 16-3 for pin usage during verify operations. For a complete list of device sig-
nal descriptions, see Appendix B.

To preserve the security of on-chip program code, the encryption array cannot be verified.
16-1

8x931AA, 8x931HA USER’S MANUAL
16.3.1 Verify Modes

Table 16-2 lists the verify modes and provides details about the setup. The encryption array, lock
bits, and signature bytes reside in nonvolatile memory outside the program and data memory ad-
dress spaces.

16.3.2 General Setup

Figure 16-1 shows the general setup for verifying nonvolatile memory on the 83931. The control-
ler must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controller as
shown in Table 16-2 to verify on-chip program memory, signature bytes and lockbits. Data ap-
pears on port 0. Connect RST, ALE, and EA# to VCC and PSEN# to ground.

Table 16-1. Signal Descriptions (Verify Mode)

Signal
Name Type Description Alternate

Function

P0.7:0 O Port 0. Eight-bit, open-drain, bidirectional I/O port. For verify
operations, use as the data port. See Table 16-2 and Figure 16-1.

—

P1.7:0 I Port 1. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use for low byte of address. See Table 16-2 and
Figure 16-1.

—

P2.7:0 I Port 2. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use P2.5:0 as A8-13 and P2.6 and P2.7 to
ground. See Table 16-2 and Figure 16-1.

—

P3.7:0 I Port 3. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use P3.4 and P3.5 as A14 and A15, P3.3 to
ground. For P3.6 and P3.7, see Table 16-2 and Figure 16-1.

—

ALE I Address Latch Enable. For verify operations, connect this pin to
VCC

—

EA# I External Enable. For verify operations, connect this pin to VCC. —

PSEN# I Program Store Enable. For verify operations, connect this pin to
VSS

—

RST I Reset. For verify operations, connect this pin to VCC. —
16-2

VERIFYING NONVOLATILE MEMORY

Figure 16-1. Setup for Verifying Nonvolatile Memory

16.3.3 Verify Algorithm

Use this procedure to verify program code, signature bytes, and lock bits stored in nonvolatile
memory on the 83931. To preserve the secrecy of the encryption key byte sequence, the encryp-
tion array cannot be verified. Verification can be performed on a block of bytes. The procedure
for verifying the 83931 is as follows:

1. Set up the microcontroller for operation in the appropriate mode according to Table 16-2.

2. Input the 16-bit address on ports P1 and P2.0 - P2.5 and P3.4:5.

3. Wait for the data on port P0 to become valid (TAVQV = 48 clock cycles), then compare the
data with the expected value.

4. Repeat steps 1 through 3 until all memory locations are verified.

Table 16-2. Verify Modes

Verify Modes RST PSEN# EA# ALE P3[7:3] P2[7:0] P1[7:0]

Verify On-chip Program Memory 1 0 1 1 11AA0 00AAAAAA AAAAAAAA

Verify Signature Bytes 1 0 1 1 00 . . 0 00. AAAAAAAA

Verify Lock bit 1 0 1 1 10 . . 0 00.

A4520-01

PSEN#

P2.7

P2.6

P3.7 Control Signals
(see Table 16-2)P3.6

P3.3

RST

4 MHz
to

6 MHz

XTAL1

A0 - A7

A8 - A13

A15

P1

+5V

P2.0 - P2.5

P3.5

Data

VSS

A14 P3.4

VCC

+5V

XTAL2

Address
(16 Bits)

EA#

P0

ALE
16-3

8x931AA, 8x931HA USER’S MANUAL
16.3.4 Verifying On-chip Program Memory

To verify that on-chip program memory is correctly programmed, perform the procedure de-
scribed in “Verify Algorithm” on page 16-3 using the verify on-chip program memory mode (Ta-
ble 16-2). For information about using on-chip program memory, see “Considerations for On-
chip Program Code Memory” on page 16-5.

16.3.5 Verifying the Lock Bits

The 8x931 provides lock bits for protecting program code stored in the on-chip program memory
from unauthorized access. To verify that the lock bits are correctly programmed, perform the pro-
cedure described in “Verify Algorithm” on page 16-3 using the verify lock bit mode (Table 16-2).

16.3.6 Verifying the Signature Bytes

The 83931 contains factory-programmed signature bytes. These bytes are located in nonvolatile
memory outside the program and data memory address space at 30H, 31H, 60H. To read the sig-
nature bytes, perform the procedure described in “Verify Algorithm” on page 16-3 using the ver-
ify signature mode (Table 16-2). Signature byte values are listed in Table 16-4.

Table 16-3. Lock Bit Function

Program Lock Bits
Protection Type

 LB1 LB2 LB3

1 U U U No program lock features enabled. (Code verify will still be
encrypted by the encryption array if programmed.)

2 P U U MOVC instructions executed from external program memory
are disabled from fetching code bytes from internal memory,
EA is sampled and latched upon reset.

3 P P U Same as 2, verify disabled.

4 P P P Same as 3, external execution is disabled.

P = Programmed
U = Unprogrammed
Any other combination of the Lock Bits is undefined.

Table 16-4. Contents of the Signature Bytes

ADDRESS CONTENTS DEVICE TYPE

30H 89H Indicates Intel devices

31H 59H Indicates 51Fx + USB core product

60H 1AH Indicates 83931AA/HA device
16-4

VERIFYING NONVOLATILE MEMORY

ddress
d that
ution of

 1 and
highest
on, pro-

tions
ddress
16.4 ENCRYPTION ARRAY

The 83931 includes a 64-byte encryption array located in nonvolatile memory outside the pro-
gram and data memory address spaces. To preserve the secrecy of the encryption key byte se-
quence, the encryption array cannot be verified.

Program code verification is performed as usual, except as each byte of program code is read, it
is exclusive-NORed (XNOR) with the corresponding key byte from the encryption array. If the
encryption array is programmed with key bytes, the program code is encrypted during verifica-
tion and can not be used without knowledge of the key byte sequence. If the encryption array is
not programmed (still all 1s), the program code is placed on the data bus in its original, unencrypt-
ed form.

CAUTION
If the encryption feature is implemented, the portion of the on-chip program
code memory that does not contain program code should be filled with
“random” byte values other than FFH to prevent the encryption key sequence
from being revealed.

16.5 CONSIDERATIONS FOR ON-CHIP PROGRAM CODE MEMORY

On-chip, nonvolatile code memory is located at the lowest addresses of program memory a
space. The first instruction following device reset is fetched from 0000H. It is recommende
user program code start at address 0100H. Use a jump instruction to 0100H to begin exec
the program. For information on address spaces, see “8x931 Memory” on page 2-11.

Addresses outside the range of on-chip code memory access external memory. With EA# =
both on-chip and external code memory implemented, you can place program code at the
on-chip memory addresses. When the highest on-chip address is exceeded during executi
gram code fetches automatically rollover from on-chip memory to external memory.

With EA# = 1 and only on-chip program code memory, multi-byte instructions and instruc
that result in call returns or prefetches should be located a few bytes below the maximum a
to avoid inadvertently exceeding the top address.

CAUTION
Execution of program code located in the top few bytes of the on-chip memory
may cause prefetches from the next higher addresses (i.e., external memory).
External memory fetches make use of port 0 and port 2 and may disrupt
program execution if the program uses port 0 or port 2 for a different purpose.
16-5

A
Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the 8x931 instruction set, which is identical to in-
struction set for the MCS® 51 architecture . The appendix includes an opcode map, a detailed de-
scription of each instruction, and the following tables that summarize notation, addressing,
instructions types, instruction lengths and execution times:

• Tables A-1 through A-4 describe the notation used for the instruction operands. Table A-5
describes the notation used for control instruction destinations.

• Table A-6 on page A-3 contains the opcode map for the instruction set.

• The following tables list the instructions giving length (in bytes) and execution time:

Add and Subtract Instructions, Table A-7 on page A-4

Increment and Decrement Instructions, Table A-8 on page A-4

Multiply, Divide, and Decimal-adjust Instructions, Table A-9 on page A-5

Logical Instructions, Table A-10 on page A-5

Move Instructions, Table A-11 on page A-6

Exchange, Push, and Pop Instructions, Table A-12 on page A-7

Bit Instructions, Table A-13 on page A-7

Control Instructions, Table A-14 on page A-8

“Instruction Descriptions” on page A-9 contains a detailed description of each instruction.
A-1

8x931AA, 8x931HA USER’S MANUAL
A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

Register Notation

@Ri 8-bit internal data RAM location (00H–FFH) addressed indirectly via
byte register R0 or R1

Rn Byte register R0–R7 of the currently selected register bank

n Byte register index: n = 0–7

r r r Binary representation of n

Table A-2. Notation for Direct Addresses

Direct
Address. Description

dir8 An 8-bit internal data address. This can be internal data RAM
(00H–7FH) or an SFR address (80H - FFH).

Table A-3. Notation for Immediate Addressing

Immediate
Data Description

#data An 8-bit constant that is immediately addressed in an instruction.

#data16 A 16-bit constant that is immediately addressed in an instruction.

Table A-4. Notation for Bit Addressing

Bit
Address Description

bit A directly addressed bit (bit number = 00H–FFH) in internal data RAM
or an SFR. Bits 00H–7FH are the 128 bits in byte locations 20H–2FH in
the on-chip RAM. Bits 80H–FFH are the 128 bits in the 16 SFR’s with
addresses that end in 0H or 8H: 80H, 88H, 90H, . . . , F0H, F8H.

Table A-5. Notation for Destinations in Control Instructions

Destination
Address Description

rel A signed (two's complement) 8-bit relative address. The destination is
-128 to +127 bytes relative to first byte of the next instruction.

addr11 An 11-bit destination address. The destination is in the same 2-Kbyte
block of memory as the first byte of the next instruction.

addr16 A 16-bit destination address. A destination can be anywhere within
the same 64-Kbyte region as the first byte of the next instruction.
A-2

INSTRUCTION SET REFERENCE
A.2 OPCODE MAP

Table A-6. Instructions for 8x931 Peripheral Controllers

Bin 0 1 2 3 4 5 6-7 8-F

0 NOP AJMP
addr11

LJMP
addr16

RR
A

INC
A

INC
dir8

INC
@Ri

INC
Rn

1 JBC
bit,rel

ACALL
addr11

LCALL
addr16

RRC
A

DEC
A

DEC
dir8

DEC
@Ri

DEC
Rn

2 JB
bit,rel

AJMP
addr11

RET RL
A

ADD
A,#data

ADD
A,dir8

ADD
A,@Ri

ADD
A,Rn

3 JNB
bit,rel

ACALL
addr11

RETI RLC
A

ADDC
A,#data

ADDC
A,dir8

ADDC
A,@Ri

ADDC
A,Rn

4 JC
rel

AJMP
addr11

ORL
dir8,A

ORL
dir8,#data

ORL
A,#data

ORL
A,dir8

ORL
A,@Ri

ORL
A,Rn

5 JNC
rel

ACALL
addr11

ANL
dir8,A

ANL
dir8,#data

ANL
A,#data

ANL
A,dir8

ANL
A,@Ri

ANL
A,Rn

6 JZ
rel

AJMP
addr11

XRL
dir8,A

XRL
dir8,#data

XRL
A,#data

XRL
A,dir8

XRL
A,@Ri

XRL
A,Rn

7 JNZ
rel

ACALL
addr11

ORL
CY,bit

JMP
@A+DPTR

MOV
A,#data

MOV
dir8,
#data

MOV
@Ri,#data

MOV
Rn,#data

8 SJMP
rel

AJMP
addr11

ANL
CY,bit

MOVC
A,@A+PC

DIV
AB

MOV
dir8,dir8

MOV
dir8,@Ri

MOV
dir8,Rn

9 MOV
DPTR,
#data16

ACALL
addr11

MOV
bit,CY

MOVC
A,@A+DPTR

SUBB
A,#data

SUBB
A,dir8

SUBB
A,@Ri

SUBB
A,Rn

A ORL
CY,/bit

AJMP
addr11

MOV
CY,bit

INC
DPTR

MUL
AB

Reserved MOV
@Ri,dir8

MOV
Rn,dir8

B ANL
CY,/bit

ACALL
addr11

CPL
bit

CPL
CY

CJNE
A,#data,rel

CJNE
A,dir8,rel

CJNE
@Ri,#data,
rel

CJNE
Rn,#data,
rel

C PUSH
dir8

AJMP
addr11

CLR
bit

CLR
CY

SWAP
A

XCH
A,dir8

XCH
A,@Ri

XCH
A,Rn

D POP
dir8

ACALL
addr11

SETB
bit

SETB
CY

DA
A

DJNZ
dir8,rel

XCHD
A,@Ri

DJNZ
Rn,rel

E MOVX
A,@DPTR

AJMP
addr11

MOVX
A,@Ri

CLR
A

MOV
A,dir8

MOV
A,@Ri

MOV
A,Rn

F MOVX
@DPTR,A

ACALL
addr11

MOVX
@Ri,A

CPL
A

MOV
dir8,A

MOV
@Ri,A

MOV
Rn,A
A-3

8x931AA, 8x931HA USER’S MANUAL
A.3 INSTRUCTION SET SUMMARY

This section contains tables that summarize the instruction set. For each instruction there is a
short description, its length in bytes, and its execution time in states and machine cycles.

A.3.1 Instruction Summaries

Table A-7. Summary of Add and Subtract Instructions

Add ADD <dest>,<src> dest opnd ← dest opnd + src opnd
Add with Carry ADDC <dest>,<src> (A) ← (A) + src opnd + carry bit
Subtract with Borrow SUBB <dest>,<src> (A) ← (A) - src opnd - carry bit

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

ADD

A,Rn Reg to acc 1 6 1

A,dir8 Dir byte to acc 2 6 1

A,@Ri Indir addr to acc 1 6 1

A,#data Immediate data to acc 2 6 1

ADDC;

SUBB

A,Rn Reg to/from acc with carry 1 6 1

A,dir8 Dir byte to/from acc with carry 2 6 1

A,@Ri Indir RAM to/from acc with carry 1 6 1

A,#data Immediate data to/from acc with carry 2 6 1

Table A-8. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ← (DPTR) + 1
Increment INC byte byte ← byte + 1
Decrement DEC byte byte ← byte – 1

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

INC;

DEC

A acc 1 6 1

Rn Reg 1 6 1

dir8 Dir byte 2 6 1

@Ri Indir RAM 1 6 1

DPTR Data pointer 1 12 2
A-4

INSTRUCTION SET REFERENCE
Table A-9. Summary of Multiply, Divide, and Decimal-adjust Instructions

Multiply MUL AB (B:A) = AxB
Divide DIV AB (A) = Quotient; (B) = Remainder
Decimal-adjust ACC DA A (1)
for Addition (BCD)

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

MUL AB Multiply A and B 1 24 4

DIV AB Divide A by B 1 24 4

DA A Decimal adjust acc 1 6 1

NOTES:
1. See “Instruction Descriptions” on page A-9.

Table A-10. Summary of Logical Instructions

Logical AND ANL <dest>,<src> dest opnd ←dest opnd Λ src opnd
Logical OR ORL <dest>,<src> dest opnd ← dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ← dest opnd ∀ src opnd
Clear CLR A (A) ← 0
Complement CPL A (Ai) ← Ø(Ai)
Rotate RXX A (1)
SWAP A A3:0 ↔ A7:4

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

ANL;

ORL;

XRL;

A,Rn Reg to acc 1 6 1

A,dir8 Dir byte to acc 2 6 1

A,@Ri Indir addr to acc 1 6 1

A,#data Immediate data to acc 2 6 1

dir8,A Acc to dir byte 2 6 1

dir8,#data Immediate data to dir byte 3 12 2

CLR A Clear acc 1 6 1

CPL A Complement acc 1 6 1

RL A Rotate acc left 1 6 1

RLC A Rotate acc left through the carry 1 6 1

RR A Rotate acc right 1 6 1

RRC A Rotate acc right through the carry 1 6 1

SWAP A Swap nibbles within the acc 1 6 1

NOTES:
1. See “Instruction Descriptions” on page A-9.
A-5

8x931AA, 8x931HA USER’S MANUAL
Table A-11. Summary of Move Instructions

Move (1) MOV <dest>,<src> destination ← src opnd
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

MOV

A,Rn Reg to acc 1 6 1

A,dir8 Dir byte to acc 2 6 1

A,@Ri Indir RAM to acc 1 6 1

A,#data Immediate data to acc 2 6 1

Rn,A Acc to reg 1 6 1

Rn,dir8 Dir byte to reg 2 12 2

Rn,#data Immediate data to reg 2 6 1

dir8,A Acc to dir byte 2 6 1

dir8,Rn Reg to dir byte 2 12 2

dir8,dir8 Dir byte to dir byte 3 12 2

dir8,@Ri Indir RAM to dir byte 2 12 2

dir8,#data Immediate data to dir byte 3 12 2

@Ri,A Acc to indir RAM 1 6 1

@Ri,dir8 Dir byte to indir RAM 2 12 2

@Ri,#data Immediate data to indir RAM 2 6 1

DPTR,#data16 Load Data Pointer with a 16-bit const 3 12 2

MOVC
A,@A+DPTR Code byte relative to DPTR to acc 1 12 2

A,@A+PC Code byte relative to PC to acc 1 12 2

MOVX

A,@Ri External mem (8-bit addr) to acc 1 12 2

A,@DPTR External mem (16-bit addr) to acc 1 12 2

@Ri,A Acc to external mem (8-bit addr) 1 12 2

@DPTR,A Acc to external mem (16-bit addr) 1 12 2

NOTES:
1. Instructions that move bits are in Table A-13.
A-6

INSTRUCTION SET REFERENCE
Table A-12. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<src> A ↔ src opnd
Exchange Digit XCHD <dest>,<src> A3:0 ↔ on-chip RAM bits 3:0
Push PUSH <src> SP ← SP + 1; (SP) ← src
Pop POP <dest> dest ← (SP); SP ← SP – 1

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

XCH

A,Rn Acc and reg 1 6 1

A,dir8 Acc and dir addr 2 6 1

A,@Ri Acc and on-chip RAM (8-bit addr) 1 6 1

XCHD A,@Ri Acc and low nibble in on-chip RAM
(8-bit addr)

1 6 1

PUSH dir8 Push dir byte onto stack 2 12 2

POP Dir8 Pop dir byte from stack 2 12 2

Table A-13. Summary of Bit Instructions

Clear Bit CLR bit bit ← 0
Set Bit SETB bit bit ← 1
Complement Bit CPL bit bit ← Øbit
AND Carry with Bit ANL CY,bit CY ← CY Λ bit
AND Carry with Complement of Bit ANL CY,/bit CY ← CY Λ Øbit
OR Carry with Bit ORL CY,bit CY ← CY V bit
ORL Carry with Complement of Bit ORL CY,/bit CY ← CY V Øbit
Move Bit to Carry MOV CY,bit CY ← bit
Move Bit from Carry MOV bit,CY bit ← CY

Mnemonic <src>,<dest> Notes Bytes States Machine
Cycles

CLR
CY Clear carry 1 6 1

bit Clear dir bit 2 6 1

SETB
CY Set carry 1 6 1

bit Set dir bit 2 6 1

CPL
CY Complement carry 1 6 1

bit Complement dir bit 2 6 1

ANL CY,bit AND dir bit to carry 2 12 2

ANL CY,/bit AND complemented dir bit to carry 2 12 2

ORL CY,bit OR dir bit to carry 2 12 2

ORL CY,/bit OR complemented dir bit to carry 2 12 2

MOV CY,bit Move dir bit to carry 2 12 1

bit,CY Move carry to dir bit 2 12 2
A-7

8x931AA, 8x931HA USER’S MANUAL

Table A-14. Summary of Control Instructions

Mnemonic <dest>,<src> Notes Bytes States Machine
Cycles

ACALL addr11 Absolute subroutine call 2 12 2

LCALL addr16 Long subroutine call 3 12 2

RET Return from subroutine 1 12 2

RETI Return from interrupt 1 12 2

AJMP addr11 Absolute jump 2 12 2

LJMP addr16 Long jump 3 12 2

SJMP rel Short jump (relative addr) 2 12 2

JMP @A+DPTR Jump indir relative to the DPTR 1 12 2

JC rel Jump if carry is set 2 12 2

JNC rel Jump if carry not set 2 12 2

JB bit,rel Jump if dir bit is set 3 12 2

JNB bit,rel Jump if dir bit is not set 3 12 2

JBC bit,rel Jump if dir bit is set & clear bit 3 12 2

JZ rel Jump if acc is zero 2 12 2

JNZ rel Jump if acc is not zero 2 12 2

CJNE

A,dir8,rel Compare dir byte to acc and jump
if not equal

3 12 2

A,#data,rel Compare immediate to acc and
jump if not equal

3 12 2

Rn,#data,rel Compare immediate to reg and
jump if not equal

3 12 2

@Ri,#data,rel Compare immediate to indir and
jump if not equal

3 12 2

DJNZ

Rn,rel Decrement reg and jump if not
zero

2 12 2

dir8,rel Decrement dir byte and jump if not
zero

3 12 2

NOP — No operation 1 6 1
A-8

INSTRUCTION SET REFERENCE

nces
A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the 8x931 architecture.

Table A-15 defines the symbols (—, 3, 1, 0,?) used to indicate the effect of the instruction on the
flags in the PSW register. For a conditional jump instruction, “!” indicates that a flag influe
the decision to jump.

ACALL <addr11>

Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15–11 of the incremented PC,
opcode bits 7–5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:

Example: The stack pointer (SP) contains 07H and the label "SUBRTN" is at program memory location
0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.

Bytes: 2

States: 12

Cycles: 2

Table A-15. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

3 The instruction sets or clears the flag, as appropriate.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

CY AC OV

— — —

[Encoding] a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
A-9

8x931AA, 8x931HA USER’S MANUAL
Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC.10:0) ← page address

ADD <A>,<src-byte>

Function: Add

Description: Adds the source operand to the accumulator, leaving the result in the accumulator. If there is
a carry out of bit 7 (CY), the CY flag is set. If byte variables are added, and if there is a carry
out of bit 3 (AC), the AC flag is set. For addition of unsigned integers, the CY flag indicates
that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

Example: The accumulator hods 0C3H (11000011B) and register 0 holds 0AAH (10101010B). The
instruction,

ADD A,R0

will leave 6DH (01101101B) in the accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

Variations

ADD A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: ADD

(A) ← (A) + #data

CY AC OV

3 3 3

[Encoding] 0 0 1 0 0 1 0 0 immed. data
A-10

INSTRUCTION SET REFERENCE
ADD A,dir8

Bytes: 2

States: 6

Cycles: 1

Operation: ADD
(A) ← (A) + (dir8)

ADD A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: ADD
(A) ← (A) + ((Ri))

ADD A,Rn

Bytes: 1

States: 6

Cycles: 1

Operation: ADD
(A) ← (A) + (Rn)

ADDC A,<src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit)

[Encoding] 0 0 1 0 0 1 0 1 direct addr

[Encoding] 0 0 1 0 0 1 1 i

[Encoding] 0 0 1 0 1 r r r
A-11

8x931AA, 8x931HA USER’S MANUAL
Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

Example: The accumulator contains 0C3H (11000011B), register 0 contains 0AAH (10101010B), and
the CY flag is set. After executing the instruction

ADDC A,R0

the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

Variations

ADDC A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: ADDC
(A) ← (A) + (CY) + #data

ADDC A,dir8

Bytes: 2

States: 6

Cycles: 1

Operation: ADDC
(A) ← (A) + (CY) + (dir8)

ADDC A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: ADDC
(A) ← (A) + (CY) + ((Ri))

CY AC OV

3 3 3

[Encoding] 0 0 1 1 0 1 0 0 immed. data

[Encoding] 0 0 1 1 0 1 0 1 direct addr

[Encoding] 0 0 1 1 0 1 1 i
A-12

INSTRUCTION SET REFERENCE
ADDC A,Rn

Bytes: 1

States: 6

Cycles: 1

Operation: ADDC
(A) ← (A) + (CY) + (Rn)

AJMP addr11

Function: Absolute jump

Description: Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7–
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte “page” of program memory as the first byte of the instruction following AJMP.

Flags:

Example: The label "JMPADR" is at program memory location 0123H. After executing the instruction

AJMP JMPADR

at location 0345H, the PC contains 0123H.

Bytes: 2

States: 12

Cycles: 2

Operation: AJMP
(PC) ← (PC) + 2
(PC.10:0) ← page address

ANL <dest>,<src>

Function: Logical-AND

[Encoding] 0 0 1 1 1 r r r

CY AC OV

— — —

[Encoding] a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
A-13

8x931AA, 8x931HA USER’S MANUAL
Description: Performs the bitwise logical-AND (Λ) operation between the specified variables and stores
the results in the destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: If the accumulator contains 0C3H (11000011B) and register 0 contains 55H (01010101B).
After executing the instruction

ANL A,R0

Accumulator 1 contains 41H (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

Variations

ANL dir8,A

Bytes: 2

States: 6

Cycles: 1

Operation: ANL
(dir8) ← (dir8) Λ (A)

ANL dir8,#data

Bytes: 3

States: 12

Cycles: 2

Operation: ANL
(dir8) ← (dir8) Λ #data

CY AC OV

— — —

[Encoding] 0 1 0 1 0 0 1 0 direct addr

[Encoding] 0 1 0 1 0 0 1 1 direct addr immed. data
A-14

INSTRUCTION SET REFERENCE
ANL A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: ANL
(A) ← (A) Λ #data

ANL A,dir8

Bytes: 2

States: 6

Cycles: 1

Operation: ANL
(A) ← (A) Λ (dir8)

ANL A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: ANL
(A) ← (A) Λ ((Ri))

ANL A,Rn

Bytes: 1

States: 6

Cycles: 1

Operation: ANL
(A) ← (A) Λ (Rn)

ANL CY,<src–bit>

Function: Logical-AND for bit variables

[Encoding] 0 1 0 1 0 1 0 0 immed. data

[Encoding] 0 1 0 1 0 1 0 1 direct addr

[Encoding] 0 1 0 1 0 1 1 i

[Encoding] 0 1 0 1 1 r r r
A-15

8x931AA, 8x931HA USER’S MANUAL
Description: If the Boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

Flags:

Example: Set the CY flag if, and only if, P1.0 = 1, ACC. 7 = 1, and OV = 0:

MOV CY,P1.0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag

ANL CY,bit

Bytes: 2

States: 12

Cycle: 2

Operation: ANL
(CY) ← (CY) Λ (bit51)

ANL CY,/bit

Bytes: 2

States: 12

Cycles: 2

Operation: ANL
(CY) ← (CY) Λ Ø (bit)

CJNE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not

equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

CY AC OV

3 — —

[Encoding] 1 0 0 0 0 0 1 0 bit addr

[Encoding] 1 0 1 1 0 0 0 0 bit addr
A-16

INSTRUCTION SET REFERENCE
Flags:

Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CJNE R7,#60H,NOT_EQ

; ;R7 = 60H

NOT_EQ: JC REQ_LOW ; IF R7 < 60H

; ;R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,

WAIT: CJNE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

Variations

CJNE A,#data,rel

Bytes: 3

States: 12

Cycles: 2

Operation: (PC) ← (PC) + 3
IF (A) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF (A) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE A,dir8,rel

Bytes: 3

States: 12

Cycles: 2

CY AC OV

3 — —

[Encoding] 1 0 1 1 0 1 0 0 immed. data rel. addr

[Encoding] 1 0 1 1 0 1 0 1 direct addr rel. addr
A-17

8x931AA, 8x931HA USER’S MANUAL
Operation: (PC) ← (PC) + 3
IF (A) ≠ dir8
THEN

(PC) ← (PC) + relative offset
IF (A) < dir8
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE @Ri,#data,rel

Bytes: 3

States: 12

Cycles: 2

Operation: (PC) ← (PC) + 3
IF ((Ri)) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF ((Ri)) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE Rn,#data,rel

Bytes: 3

States: 12

Cycles: 2

Operation: (PC) ← (PC) + 3
IF (Rn) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF (Rn) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CLR A

Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).

[Encoding] 1 0 1 1 0 1 1 i immed. data rel. addr

[Encoding] 1 01 1 1 r r r immed. data rel. addr
A-18

INSTRUCTION SET REFERENCE
Flags:

Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

clears the accumulator to 00H (00000000B).

Bytes: 1

States: 6

Cycles: 1

Operation: CLR
(A) ← 0

CLR bit

Function: Clear bit

Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

Flags: Only for instructions with CY as the operand.

Example: Port 1 contains 5DH (01011101B). After executing the instruction

CLR P1.2

port 1 contains 59H (01011001B).
Variations

CLR bit

Bytes: 2

States: 6

Cycles: 1

Operation: CLR
(bit51) ← 0

CY AC OV

— — —

[Encoding] 1 1 1 0 0 1 0 0

CY AC OV

3 — —

[Encoding] 1 1 0 0 0 0 1 0 Bit addr
A-19

8x931AA, 8x931HA USER’S MANUAL
CLR CY

Bytes: 1

States: 6

Cycles: 1

Operation: CLR
(CY) ← 0

CPL A

Function: Complement accumulator

Description: Logically complements (Ø) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.

Flags:

Example: The accumulator contains 5CH (01011100B). After executing the instruction

CPL A

the accumulator contains 0A3H (10100011B).

Bytes: 1

States: 6

Cycles: 1

Operation: CPL
(A) ← Ø(A)

CPL bit

Function: Complement bit
Description: Complements (Ø) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL

can operate on the CY or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.

Flags: Only for instructions with CY as the operand.

[Encoding] 1 1 0 0 0 0 1 1

CY AC OV

— — —

[Encoding] 1 1 1 1 0 1 0 0

CY AC OV

3 — —
A-20

INSTRUCTION SET REFERENCE
Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence

CPL P1.1
CPL P1.2

port 1 contains 5BH (01011011B).

Variations

CPL bit

Bytes: 2

States: 6

Cycles: 1

Operation: CPL
(bit) ← Ø(bit)

CPL CY

Bytes: 1

States: 6

Cycles: 1

Operation: CPL
(CY) ← Ø(CY)

DA A

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010–XXXX1111), or if the AC flag is
set, six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX–1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

[Encoding] 1 0 1 1 0 0 1 0 bit addr

[Encoding] 1 0 1 1 0 0 1 1
A-21

8x931AA, 8x931HA USER’S MANUAL
Flags:

Example: The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains 0BEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A,#99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 – 1 = 29.

Bytes: 1

States: 6

Cycles: 1

Operation: DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]
 THEN (A.3:0) ← (A.3:0) + 6
 AND
IF [[(A.7:4) > 9] V [(CY) = 1]]
 THEN (A.7:4) ← (A.7:4) + 6

DEC byte

Function: Decrement

Description: Decrements the specified byte variable by 1. An original value of 00H underflows to 0FFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC OV

3 — —

[Encoding] 1 1 0 1 0 1 0 0
A-22

INSTRUCTION SET REFERENCE
Flags:

Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain 00H
and 40H, respectively. After executing the instruction sequence

DEC @R0
DEC R0
DEC @R0

register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to 0FFH and 3FH,
respectively.

Variations

DEC A

Bytes: 1

States: 6

Cycles: 1

Operation: DEC
(A) ← (A) – 1

DEC dir8

Bytes: 2

States: 6

Cycles: 1

Operation: DEC
(dir8) ← (dir8) – 1

DEC @Ri

Bytes: 1

States: 6

Cycles: 1

Operation: DEC
((Ri)) ← ((Ri)) – 1

CY AC OV

— — —

[Encoding] 0 0 0 1 0 1 0 0

[Encoding] 0 0 0 1 0 1 0 1 dir addr

[Encoding] 0 0 0 1 0 1 1 i
A-23

8x931AA, 8x931HA USER’S MANUAL
DEC Rn

Bytes: 1

States: 6

Cycles: 1

Operation: DEC
(Rn) ← (Rn) – 1

DIV AB

Function: Divide

Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

Flags:

For division by zero:

Example: The accumulator contains 251 (0FBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIV AB

the accumulator contains 13 (0DH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Bytes: 1

States: 24

Cycles: 4

Operation: DIV
(A) ← quotient (A)/(B)
(B) ← remainder (A)/(B)

[Encoding] 0 0 0 1 1 r r r

CY AC OV

0 — 3

CY AC OV

0 — 1

[Encoding] 1 0 0 0 0 1 0 0
A-24

INSTRUCTION SET REFERENCE
DJNZ <byte>,<rel–addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to 0FFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence

DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL3

on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three machine cycles: two for DJNZ and one to alter the pin.

Variations

DJNZ dir8,rel

Bytes: 3

States: 12

Cycles: 2

CY AC OV

— — —

TOGGLE:
MOV R2,#8
CPL P1.7
DJNZ R2,TOGGLE

[Encoding] 1 1 0 1 0 1 0 1 direct addr rel. addr
A-25

8x931AA, 8x931HA USER’S MANUAL
Operation: DJNZ
(PC) ← (PC) + 2
(dir8) ← (dir8) – 1
IF (dir8) > 0 or (dir8) < 0
 THEN
 (PC) ← (PC) + rel

DJNZ Rn,rel

Bytes: 2

States: 12

Cycles: 2

Operation: DJNZ
(PC) ← (PC) + 2
(Rn) ← (Rn) – 1
IF (Rn) > 0 or (Rn) < 0
 THEN
 (PC) ← (PC) + rel

INC <Byte>

Function: Increment

Description: Increments the specified byte variable by 1. An original value of FFH overflows to 00H.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
0FFH and 40H, respectively. After executing the instruction sequence

INC @R0
INC R0
INC @R0

register 0 contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.

Variations

INC A

Bytes: 1

States: 6

Cycles: 1

[Encoding] 1 1 0 1 1 r r r rel. addr

CY AC OV

— — —

[Encoding] 0 0 0 0 0 1 0 0
A-26

INSTRUCTION SET REFERENCE
Operation: INC
(A) ← (A) + 1

INC dir8

Bytes: 2

States: 6

Cycles: 1

Operation: INC
(dir8) ← (dir8) + 1

INC @Ri

Bytes: 1

States: 6

Cycles: 1

Operation: INC
((Ri) ← ((Ri)) + 1

INC Rn

Bytes: 1

States: 6

Cycles: 1

Operation: INC
(Rn) ← (Rn) + 1

INC DPTR

Function: Increment data pointer

Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from 0FFH to 00H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).

Flags:

[Encoding] 0 0 0 0 0 1 0 1 direct addr

[Encoding] 0 0 0 0 0 1 1 i

[Encoding] 0 0 0 0 1 r r r

CY AC OV

— — —
A-27

8x931AA, 8x931HA USER’S MANUAL
Example: Registers DPH and DPL contain 12H and 0FEH, respectively. After the instruction
sequence

INC DPTR
INC DPTR
INC DPTR

DPH and DPL contain 13H and 01H, respectively.

Bytes: 1

States: 12

Cycles: 2

Operation: INC
(DPTR) ← (DPTR) + 1

JB bit,rel

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL2.
Variations

JB bit,rel

Bytes: 3

States: 12

Cycles: 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

[Encoding] 1 0 1 0 0 0 1 1

CY AC OV

— — —

[Encoding] 0 0 1 0 0 0 0 0 bit addr rel. addr
A-28

INSTRUCTION SET REFERENCE
Operation: JB
(PC) ← (PC) + 3
IF (bit51) = 1
 THEN
 (PC) ← (PC) + rel

JBC bit,rel

Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next

instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.

Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.

Flags:

Example: The accumulator contains 56H (01010110B). After the instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.

Variations

JBC bit,rel

Bytes: 3

States: 12

Cycles: 2

Operation: JBC
(PC) ← (PC) + 3
IF (bit) = 1
 THEN
 (bit) ← 0
 (PC) ← (PC) + rel

JC rel

Function: Jump if carry is set

Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

CY AC OV

— — —

[Encoding] 0 0 0 1 0 0 0 0 bit addr rel. addr
A-29

8x931AA, 8x931HA USER’S MANUAL
Flags:

Example: The CY flag is clear. After the instruction sequence

JC LABEL1
CPL CY
JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Bytes: 2

States: 12

Cycles: 2

Operation: JC
(PC) ← (PC) + 2
IF (CY) = 1
 THEN
 (PC) ← (PC) + rel

JMP @A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are
not affected.

Flags:

Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JMP_TBL:

If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.

CY AC OV

! — —

[Encoding] 0 1 0 0 0 0 0 0 rel. addr

CY AC OV

— — —

JMP_TBL:

MOV
JMP
AJMP
AJMP
AJMP
AJMP

DPTR,#JMP_TBL
@A+DPTR
LABEL0
LABEL1
LABEL2
LABEL3
A-30

INSTRUCTION SET REFERENCE
Bytes: 1

States: 12

Cycles: 2

Operation: JMP
(PC.15:0) ← (A) + (DPTR)

JNB bit,rel

Function: Jump if bit not set

Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After
executing the instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

program execution continues at label LABEL2.

Variations

JNB bit,rel

Bytes: 3

States: 12

Cycles: 2

Operation: JNB
(PC) ← (PC) + 3
IF (bit) = 0
 THEN (PC) ← (PC) + rel

JNC rel

Function: Jump if carry not set

[Encoding] 0 1 1 1 0 0 1 1

CY AC OV

— — —

[Encoding] 0 0 1 1 0 0 0 0 bit addr rel. addr
A-31

8x931AA, 8x931HA USER’S MANUAL
Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.

Flags:

Example: The CY flag is set. The instruction sequence

JNC LABEL1
CPL CY
JNC LABEL2

clears the CY flag and causes program execution to continue at label LABEL2.

Bytes: 2

States: 12

Cycles: 2

Operation: JNC
(PC) ← (PC) + 2
IF (CY) = 0
 THEN (PC) ← (PC) + rel

JNZ rel

Function: Jump if accumulator not zero

Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.

Flags:

Example: The accumulator contains 00H. After executing the instruction sequence

JNZ LABEL1
INC A
JNZ LABEL2

the accumulator contains 01H and program execution continues at label LABEL2.

Bytes: 2

States: 12

Cycles: 2

CY AC OV

! — —

CY AC OV

— — —

[Encoding] 0 1 1 1 0 0 0 0 rel. addr
A-32

INSTRUCTION SET REFERENCE
Operation: JNZ
(PC) ← (PC) + 2
IF (A) ≠ 0
 THEN (PC) ← (PC) + rel

JZ rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

Example: The accumulator contains 01H. After executing the instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

the accumulator contains 00H and program execution continues at label LABEL2.

Bytes: 2

States: 12

Cycles: 2

Operation: JZ
(PC) ← (PC) + 2
IF (A) = 0
 THEN (PC) ← (PC) + rel

LCALL addr16

Function: Long call

Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Flags:

CY AC OV

— — —

[Encoding] 0 1 1 0 0 0 0 0 rel. addr

CY AC OV

— — —
A-33

8x931AA, 8x931HA USER’S MANUAL
Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.

Bytes: 3

States: 12

Cycles: 2

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← (addr.15:0)

LJMP addr16

Function: Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction

LJMP JMPADR

at location 0123H, the program counter contains 1234H.

Bytes: 3

States: 12

Cycles: 2

Operation: LJMP
(PC) ← (addr.15:0)

[Encoding] 0 0 0 1 0 0 1 0 addr15–
addr8

addr7–addr0

CY AC OV

— — —

[Encoding] 0 0 0 0 0 0 1 0 addr15–
addr8

addr7–addr0
A-34

INSTRUCTION SET REFERENCE
MOV <dest>,<src>

Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Flags:

Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (0CAH). After executing the instruction sequence

register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain 0CAH (11001010B).

Variations

MOV A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: MOV
(A) ← #data

MOV dir8,#data

Bytes: 3

States: 12

Cycles: 2

Operation: MOV
(dir8) ← #data

CY AC OV

— — —

MOV
MOV
MOV
MOV
MOV
MOV

R0,#30H
A,@R0
R1,A
B,@R1
@R1,P1
P2,P1

;R0 < = 30H
;A < = 40H
;R1 < = 40H
;B < = 10H
;RAM (40H) < = 0CAH
;P2 #0CAH

[Encoding] 0 1 1 1 0 1 0 0 immed. data

[Encoding] 0 1 1 1 0 1 0 1 direct addr immed. data
A-35

8x931AA, 8x931HA USER’S MANUAL
MOV @Ri,#data

Bytes: 2

States: 6

Cycles: 1

Operation: MOV
((Ri)) ← #data

MOV Rn,#data

Bytes: 2

States: 6

Cycles: 1

Operation: MOV
(Rn) ← #data

MOV dir8,dir8

Bytes: 3

States: 12

Cycles: 2

Operation: MOV
(dir8) ← (dir8)

MOV dir8,@Ri

Bytes: 2

States: 12

Cycles: 2

Operation: MOV
(dir8) ← ((Ri))

MOV dir8,Rn

Bytes: 2

States: 12

[Encoding] 0 1 1 1 0 1 1 i immed. data

[Encoding] 0 1 1 1 1 r r r r immed. data

[Encoding] 1 0 0 0 0 1 0 1 direct addr direct addr

[Encoding] 1 0 0 0 0 1 1 i direct addr
A-36

INSTRUCTION SET REFERENCE
Cycles: 2

Operation: MOV
(dir8) ← (Rn)

MOV @Ri,dir8

Bytes: 2

States: 12

Cycles: 2

Operation: MOV
((Ri)) ← (dir8)

MOV Rn,dir8

Bytes: 2

States: 12

Cycles: 2

Operation: MOV
(Rn) ← (dir8)

MOV A,dir8

Bytes: 2

States: 6

Cycles: 1

Operation: MOV
(A) ← (dir8)

MOV A,@Ri

Bytes: 1

States: 6

Cycles: 1

[Encoding] 1 0 0 0 1 r r r direct addr

[Encoding] 1010 011i direct addr

[Encoding] 1 0 1 0 1 r r r direct addr

[Encoding] 1 1 1 0 0 1 0 1 direct addr

[Encoding] 1 1 1 0 0 1 1 i
A-37

8x931AA, 8x931HA USER’S MANUAL
Operation: MOV
(A) ← ((Ri))

MOV A,Rn

Bytes: 1

States: 6

Cycles: 1

Operation: MOV
(A) ← (Rn)

MOV dir8,A

Bytes: 2

States: 6

Cycles: 1

Operation: MOV
(dir8) ← (A)

MOV @Ri,A

Bytes: 1

States: 6

Cycles: 1

Operation: MOV
((Ri)) ← (A)

MOV Rn,A

Bytes: 1

States: 6

Cycles: 1

Operation: MOV
(Rn) ← (A)

[Encoding] 1 1 1 0 1 r r r

[Encoding] 1 1 1 1 0 1 0 1 direct addr

[Encoding] 1 1 1 1 0 1 1 i

[Encoding] 1 1 1 1 1 1 1 r
A-38

INSTRUCTION SET REFERENCE
MOV <dest–bit>,<src–bit>

Function: Move bit data

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:

Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence

MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY

the CY flag is clear and Port 1 contains 39H (00111001B).
Variations

MOV bit,CY

Bytes: 2

States: 12

Cycles: 2

Operation: MOV
(bit51) ← (CY)

MOV CY,bit

Bytes: 2

States: 6
Cycles: 1

Operation: MOV
(CY) ← (bit51)

MOV DPTR,#data16

Function: Load data pointer with a 16-bit constant

Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

Flags:

CY AC OV

3 — —

[Encoding] 1 0 0 1 0 0 1 0 bit addr

[Encoding] 1 0 1 0 0 0 1 0 bit addr

CY AC OV
A-39

8x931AA, 8x931HA USER’S MANUAL
Example: After executing the instruction

MOV DPTR,#1234H

DPTR contains 1234H (DPH contains 12H and DPL contains 34H).

Bytes: 3

States: 12

Cycles: 2

Operation: MOV
(DPTR) ← #data16

MOVC A,@A+<base–reg>

Function: Move code byte

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

Flags:

Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Variations

MOVC A,@A+PC

Bytes: 1

States: 12

— — —

[Encoding] 1 0 0 1 0 0 0 0 data hi data low

CY AC OV

— — —

RELPC: INC
MOVC
RET
DB
DB
DB
DB

A
A,@A+PC

66H
77H
88H
99H
A-40

INSTRUCTION SET REFERENCE
Cycles: 2

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

MOVC A,@A+DPTR

Bytes: 1

States: 12

Cycles: 2

Operation: MOVC
(A) ← ((A) + (DPTR))

MOVX <dest>,<src>

Function: Move external

Description: Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of R0 or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves, the data is multiplexed with the lower address bits on port 0.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using R0 or R1.

Flags:

Example: An external 256-byte RAM using multiplexed address/data lines (e.g., an Intel 8155
RAM/I/O/Timer) is connected to port 0. Port 3 provides control lines for the external RAM.
ports 1 and 2 are used for normal I/O. R0 and R1 contain 12H and 34H. Location 34H of the
external RAM contains 56H. After executing the instruction sequence

MOVX A,@R1
MOVX @R0,A

the accumulator and external RAM location 12H contain 56H.

[Encoding] 1 0 0 0 0 0 1 1

[Encoding] 1 0 0 1 0 0 1 1

CY AC OV

— — —
A-41

8x931AA, 8x931HA USER’S MANUAL
Variations

MOVX A,@DPTR

Bytes: 1

States: 12

Cycles: 2

Operation: MOVX
(A) ← ((DPTR))

MOVX A,@Ri

Bytes: 1

States: 12

Cycles: 2

Operation: MOVX
(A) ← ((Ri))

MOVX @DPTR,A

Bytes: 1

States: 12

Cycles: 2

Operation: MOVX
((DPTR)) ← (A)

MOVX @Ri,A

Bytes: 1

States: 12

Cycles: 2

Operation: MOVX
((Ri)) ← (A)

[Encoding] 1 1 1 0 0 0 0 0

[Encoding] 1 1 1 0 0 0 1 i

[Encoding] 1 1 1 1 0 0 0 0

[Encoding] 1 1 1 1 0 0 1 i
A-42

INSTRUCTION SET REFERENCE
MUL AB

Function: Multiply

Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (0FFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.

Flags:

Example: The accumulator contains 80 (50H) and register B contains 160 (0A0H). After executing the
instruction

MUL AB

which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.

Bytes: 1

States: 24

Cycles: 4

Operation: MUL
(A) ← low byte of (A) X (B)
(B) ← high byte of (A) X (B)

NOP

Function: No operation

Description: Execution continues at the following instruction. Affects the PC register only.

Flags:

Example: You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states.
A simple CLR-SETB sequence generates an one-cycle pulse, so four additional cycles must
be inserted. You can insert the four additional cycles (if no interrupts are enabled) with the
following instruction sequence:

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

Bytes: 1

States: 6

CY AC OV

0 — 3

[Encoding] 1 0 1 0 0 1 0 0

CY AC OV

— — —
A-43

8x931AA, 8x931HA USER’S MANUAL
Cycles: 1

Operation: NOP
(PC) ← (PC) + 1

ORL <dest> <src>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be an accumulator or direct address.

The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: The accumulator contains 0C3H (11000011B) and R0 contains 55H (01010101B). After
executing the instruction

ORL A,R0

the accumulator contains 0D7H (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL dir8,A

Bytes: 2

States: 6

Cycles: 1

Operation: ORL
(dir8) ← (dir8) V (A)

[Encoding] 0 0 0 0 0 0 0 0

CY AC OV

— — —

[Encoding] 0 1 0 0 0 0 1 0 direct addr
A-44

INSTRUCTION SET REFERENCE
ORL dir8,#data

Bytes: 3

States: 12

Cycles: 2

Operation: ORL
(dir8) ← (dir8) V #data

ORL A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: ORL
(A) ← (A) V #data

ORL A,dir8

Bytes: 2

States: 6

Cycles: 1

Operation: ORL
(A) ← (A) V (dir8)

ORL A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: ORL
(A) ← (A) V ((Ri))

ORL A,Rn

Bytes: 1

States: 6

[Encoding] 0 1 0 0 0 0 1 1 direct addr immed. data

[Encoding] 0 1 0 0 0 1 0 0 immed. data

[Encoding] 0 1 0 0 0 1 0 1 direct addr

[Encoding] 0 1 0 0 0 1 1 i
A-45

8x931AA, 8x931HA USER’S MANUAL
Cycles: 1

Operation: ORL
(A) ← (A) V (Rn)

ORL CY,<src–bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

Example: Set the CY flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:

MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.

Variations

ORL CY,bit

Bytes: 2

States: 12

Cycles: 2

Operation: ORL
(CY) ← (CY) V (bit51)

ORL CY,/bit

Bytes: 2

States: 12

Cycles: 2

Operation: ORL
(CY) ← (CY) V¬ (bit51)

POP dir8
Function: Pop from stack

[Encoding] 0 1 0 0 1 r r r

CY AC OV

3 — —

[Encoding] 0 1 1 1 0 0 1 0 bit addr

[Encoding] 1 0 1 0 0 0 0 0 bit addr
A-46

INSTRUCTION SET REFERENCE
Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence

POP DPH
POP DPL

the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction

POP SP

the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Bytes: 2

States: 12

Cycles: 2

Operation: POP
(dir8) ← ((SP))
(SP) ← (SP) – 1

PUSH dir8
Function: Push onto stack

Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

Flags:

Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence

PUSH DPL
PUSH DPH

the stack pointer contains 0BH and on-chip RAM locations 0AH and 0BH contain 01H and
23H, respectively.

Bytes: 2

States: 12

CY AC OV

— — —

[Encoding] 1 1 0 1 0 0 0 0 direct addr

CY AC OV

— — —
A-47

8x931AA, 8x931HA USER’S MANUAL
Cycles: 2

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (dir8)

RET
Function: Return from subroutine

Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack

pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

Flags:

Example: The stack pointer contains 0BH and on-chip RAM locations 0AH and 0BH contain 01H and
23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.

Bytes: 1

States: 12

Cycles: 2

Operation: RET
(PC).15:8 ← ((SP))
(SP) ← (SP) – 1
(PC).7:0 ← ((SP))
(SP) ← (SP) – 1

RETI

Function: Return from interrupt

Description: RETI pops the high and low bytes of the PC successively from the stack and uses them as
the 16-bit return address. The stack pointer is decremented by two. No other registers are
affected, the PSW is not automatically restored to its pre-interrupt status.

Hardware restores the interrupt logic to accept additional interrupts at the same priority level
as the one just processed. Program execution continues at the return address, which
normally is the instruction immediately after the point at which the interrupt request was
detected. If an interrupt of the same or lower priority is pending when the RETI instruction is
executed, that one instruction is executed before the pending interrupt is processed.

Flags:

[Encoding] 1 1 0 0 0 0 0 0 direct addr

CY AC OV

— — —

[Encoding] 0 0 1 0 0 0 1 0

CY AC OV
A-48

INSTRUCTION SET REFERENCE
Example: The stack pointer contains 0BH. An interrupt was detected during the instruction ending at
location 0122H. On-chip RAM locations 0AH and 0BH contain 01H and 23H, respectively.
After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.

Bytes: 1

States 12

Cycles: 2

Operation:
RETI
(PC).15:8 ←((SP))
(SP) ← (SP) – 1
(PC).7:0 ¨ ((SP))
(SP) ←(SP) – 1

RL A

Function: Rotate accumulator left

Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0
position.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction,

RL A

the accumulator contains 8BH (10001011B); the CY flag is unaffected.

Bytes: 1

States: 6

Cycles: 1

Operation: RL
(A).a+1 ← (A).a
(A).0 ← (A).7

RLC A

Function: Rotate accumulator left through the carry flag

— — —

[Encoding] 0 0 1 1 0 0 1 0

CY AC OV

— — —

[Encoding] 0 0 1 0 0 0 1 1
A-49

8x931AA, 8x931HA USER’S MANUAL
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit 0 position.

Flags:

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RLC A

the accumulator contains 8AH (10001010B) and the CY flag is set.

Bytes: 1

States: 6

Cycles: 1

Operation: RLC
(A).a+1 ← (A).a
(A).0 ← (CY)
(CY) ← (A).7

RR A

Function: Rotate accumulator right

Description: Rotates the 8 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 position.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction

RR A

the accumulator contains 0E2H (11100010B) and the CY flag is unaffected.

Bytes: 1

States: 6

Cycles: 1

Operation: RR
(A).a ← (A).a+1
(A).7 ← (A) .0

CY AC OV

3 — —

[Encoding] 0 0 1 1 0 0 1 1

CY AC OV

— — —

[Encoding] 0 0 0 0 0 0 1 1
A-50

INSTRUCTION SET REFERENCE
RRC A

Function: Rotate accumulator right through carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.

Flags:

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RRC A

the accumulator contains 62 (01100010B) and the CY flag is set.

Bytes: 1

States: 6

Cycles: 1

Operation: RRC
(A).a ← (A).a+1
(A).7 ← (CY)
(CY) ← (A).0

SETB <bit>

Function: Set bit

Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.

Flags: No flags are affected except the CY flag for instruction with CY as the operand.

Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence

SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35H (00110101B).

SETB bit

Bytes: 2

States: 6

CY AC OV

3 — —

[Encoding] 0 0 0 1 0 0 1 1

CY AC OV

3 — —
A-51

8x931AA, 8x931HA USER’S MANUAL
Cycles: 1

Operation: SETB
(bit51) ← 1

SETB CY

Bytes: 1

States: 6

Cycles: 1

Operation: SETB
(CY) ← 1

SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction

SJMP RELADR

assembles into location 0100H. After executing the instruction, the PC contains 0123H.

(Note: In the above example, the instruction following SJMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H–0102H) = 21H. Put
another way, an SJMP with a displacement of 0FEH would be a one-instruction infinite
loop.)

Bytes: 2

States: 12

Cycles: 2

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel

[Encoding] 1 1 0 1 0 0 1 0 bit addr

[Encoding] 1 1 0 1 0 0 1 1

CY AC OV

— — —

[Encoding] 1 0 0 0 0 0 0 0 rel. addr
A-52

INSTRUCTION SET REFERENCE
SUBB A,<src–byte>

Function: Subtract with borrow

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.
When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

Flags:

Example: The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction

SUBB A,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Variations

SUBB A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: SUBB
(A) ← (A) – (CY) – #data

SUBB A,dir8

Bytes: 2

CY AC OV

3 3 3

[Encoding] 1 0 0 1 0 1 0 0 immed. data
A-53

8x931AA, 8x931HA USER’S MANUAL
States: 6

Cycles: 1

Operation: SUBB
(A) ← (A) – (CY) – (dir8)

SUBB A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: SUBB
(A) ← (A) – (CY) – ((Ri))

SUBB A,Rn

Bytes: 1

States: 6

Cycles: 1

Operation: SUBB
(A) ← (A) – (CY) – (Rn)

SWAP A

Function: Swap nibbles within the accumulator

Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3–0 and bits 7–
4). This operation can also be thought of as a 4-bit rotate instruction.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction

SWAP A

the accumulator contains 5CH (01011100B).

Bytes: 1

States: 6

Cycles: 1

[Encoding] 1 0 0 1 0 1 0 1 direct addr

[Encoding] 1 0 0 1 0 1 1 i

[Encoding] 1 0 0 1 1 r r r

CY AC OV

— — —

[Encoding] 1 1 0 0 0 1 0 0
A-54

INSTRUCTION SET REFERENCE
A-55

Operation: SWAP
(A).3:0 → ← (A).7:4

XCH A,<byte>

Function: Exchange accumulator with byte variable

Description: Loads the accumulator with the contents of the specified variable, at the same time writing

the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:

Example: R0 contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction

XCH A,@R0

RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).

Variations

XCH A,dir8

Bytes: 2

States: 6

Cycles: 1

Operation: XCH
(A) → ← (dir8)

XCH A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: XCH
(A) → ← ((Ri))

XCH A,Rn

Bytes: 1

States: 6

Cycles: 1

CY AC OV

— — —

[Encoding] 1 1 0 0 0 1 0 1 direct addr

[Encoding] 1 1 0 0 0 1 1 i

[Encoding] 1 1 0 0 1 r r r

8x931AA, 8x931HA USER’S MANUAL
Operation: XCH
(A) → ← (Rn)

Variations

XCHD A,@Ri

Function: Exchange digit

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a

hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.

Flags:

Example: R0 contains the address 20H, the accumulator contains 36H (00110110B), and on-chip
RAM location 20H contains 75H (01110101B). After executing the instruction

XCHD A,@R0

on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-
lator.

Bytes: 1

States: 6

Cycles: 1

Operation: XCHD
(A).3:0 → ← ((Ri)).3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation (∀) between the specified variables,

storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source addressing can be register, direct, register-indirect, or immediate;
when the destination is a direct address, the source can be the accumulator or immediate
data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

Flags:

CY AC OV

— — —

[Encoding] 1 1 0 1 0 1 1 i

CY AC OV

— — —
A-56

INSTRUCTION SET REFERENCE
Example: The accumulator contains 0C3H (11000011B) and R0 contains 0AAH (10101010B). After
executing the instruction

XRL A,R0

the accumulator contains 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.
Variations

XRL dir8,A

Bytes: 2

States: 6

Cycles: 1

Operation: XRL
(dir8) ← (dir8) ∀ (A)

XRL dir8,#data

Bytes: 3

States: 12

Cycles: 2

Operation: XRL
(dir8) ← (dir8) ∀ #data

XRL A,#data

Bytes: 2

States: 6

Cycles: 1

Operation: XRL
(A) ← (A) ∀ #data

XRL A,dir8

Bytes: 2

[Encoding] 0 1 1 0 0 0 1 0 direct addr

[Encoding] 0 1 1 0 0 0 1 1 direct addr immed. data

[Encoding] 0 1 1 0 0 1 0 0 immed. data
A-57

8x931AA, 8x931HA USER’S MANUAL
States: 6

Cycles: 1

Operation: XRL
(A) ← (A) ∀ (dir8)

XRL A,@Ri

Bytes: 1

States: 6

Cycles: 1

Operation: XRL
(A) ← (A) ∀ ((Ri))

XRL A,Rn

Bytes: 1

States: 6

Cycles: 1

Operation: XRL
(A) ← (A) ∀ (Rn)

[Encoding] 0 1 1 0 0 1 0 1 direct addr

[Encoding] 0 1 1 0 0 1 1 i

[Encoding] 0 1 1 0 1 r r r
A-58

B
Pin Descriptions

APPENDIX B
PIN DESCRIPTIONS

This appendix provides reference information regarding the external signals of the 8x931. The
8x931 is available in dual in-line (64-pin S-DIP, 8x931HA only), quad flatpack (64-pin QFP), and
plastic leaded chip carrier (68-pin PLCC) packages. See Figures B-1 through B-5. Tables B-4
through B-6 list the signals by functional category. Table B-7 describes each of the signals. It lists
the signal type (input, output, power, or ground) and the alternative functions of multi-function
pins.

Figure B-1. 8x931HA 68-pin PLCC Package

DP4
DM4
DP5
DM5
VCC
DP0
DM0
ECAP
VSSP
VCCP
VSS
DP3
DM3
VSSP
DP2
DM2
LED0

A
8

/ P
2.

0
/ K

S
O

8
A

9
/ P

2.
1

/ K
S

O
9

A
10

 /
P

2.
2

/ K
S

O
10

A
11

 /
P

2.
3

/ K
S

O
11

A
12

 /
P

2.
4

/ K
S

O
12

A
13

 /
P

2.
5

/ K
S

O
13

A
14

 /
P

2.
6

/ K
S

O
14

A
15

 /
P

2.
7

/ K
S

O
15

V
S

S
V

C
C

P
E

A
#

A
LE

P
S

E
N

#
U

P
W

E
N

#
V

S
S

P
R

es
er

ve
d

(N
C

)
R

es
er

ve
d

(N
C

)

A5340-02

AD7 / P0.7 / KSI7
AD6 / P0.6 / KSI6
AD5 / P0.5 / KSI5
AD4 / P0.4 / KSI4
AD3 / P0.3 / KSI3
AD2 / P0.2 / KSI2
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

VSSP
VCC

P3.0 / OVRI#
P3.1 / SOF#
P3.2 / INT0#
P3.3 / INT1#

P3.4 / T0 / KSO16
P3.5 / T1 / KSO17

P3.6 / WR# / KSO18

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

View of component as
mounted on PC board

8x931Hx

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

P
3.

7
/ R

D

/ K
S

O
19

P
1.

0
/ T

2
/ K

S
O

0
P

1.
1

/ T
2E

X
 /

K
S

O
1

P
1.

2
/ K

S
O

2
P

1.
3

/ K
S

O
3

P
1.

4
/ K

S
O

4
P

1.
5

/ K
S

O
5

P
1.

6
/ R

X
D

 /
K

S
O

6
 P

1.
7

/ T
X

D
 /

K
S

O
7

LE
D

3
LE

D
2

X
T

A
L1

X
T

A
L2

A
V

C
C

R
S

T
P

LL
S

E
L

LE
D

1

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

Note:
Reserved pins must be left unconnected.
B-1

8x931AA, 8x931HA USER’S MANUAL
Figure B-2 illustrates a diagram of the 8x931HA SDIP package. Table B-2 and Table B-5 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

Figure B-2. 8x931HA 64-pin SDIP Package

59
60

58
57

63
64

62
61

51
52

50
49

55
56

54
53

43
44

42
41

47
48

46
45

35
36

34
33

39
40

38
37

6
5

7
8

2

PSEN#AVCC

ECAP
VCCP

VSS
VSSP

DM0DP3

DP0DM3

DP5
DM5

DM2
DP2

DM4LED0

DP4LED1

VSSPPLLSEL
UPWEN#RST

ALEXTAL2
EA#XTAL1

VCCPLED2

VSSLED3
A15 / P2.7 / KSO15P1.7 / TXD / KSO7
A14 / P2.6 / KSO14P1.6 / RXD / KSO6
A13 / P2.5 / KSO13P1.5 / KSO5
A12 / P2.4 / KSO12P1.4 / KSO4
A11 / P2.3 / KSO11P1.3 / KSO3
A10 / P2.2 / KSO10P1.2 / KSO2
A9 / P2.1 / KSO9P1.1 / T2EX / KSO1
A8 / P2.0 / KSO8P1.0 / T2 / KSO0
AD7 / P0.7 / KSI7P3.7 / RD# / KSO19

AD6 / P0.6 / KSI6P3.6 / WR# / KSO18
AD5 / P0.5 / KSI5P3.5 / T1 / KSO17
AD4 / P0.4 / KSI4P3.4 / T0 / KSO16
AD3 / P0.3 / KSI3P3.3 / INT1#
AD2 / P0.2 / KSI2P3.2 / INT0#
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

P3.1 / SOF#
P3.0 / OVRI#

VCC 1

8x931Hx

A5249-02

3
4

14
15
16

10
9

11
12

22
21

23
24

18
17

19
20

30
29

31
32

26
25

27
28

56

View of
component
as mounted
on PC board

13

VSSP
B-2

PIN DESCRIPTIONS
Figure B-3 illustrates a diagram of the 8x931HA QFP package. Table B-3 and Table B-6 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

Figure B-3. 8x931HA 64-pin QFP Package

DP4
DM4
DP5
DM5
DP0
DM0
ECAP
VSSP
VCCP
VSS
DP3
DM3
DP2
DM2
LED0
LED1

A
D

7
/ P

0.
7

/ K
S

I7
A

8
/ P

2.
0

/ K
S

O
8

A
9

/ P
2.

1
/ K

S
O

9
A

10
 /

P
2.

2
/ K

S
O

10
A

11
 /

P
2.

3
/ K

S
O

11
A

12
 /

P
2.

4
/ K

S
O

12
A

13
 /

P
2.

5
/ K

S
O

13
A

14
 /

P
2.

6
/ K

S
O

14
A

15
 /

P
2.

7
/ K

S
O

15
V

S
S

V
C

C
P

E
A

#
A

LE
P

S
E

N
#

U
P

W
E

N
#

V
S

S
P

AD6 / P0.6 / KSI6
AD5 / P0.5 / KSI5
AD4 / P0.4 / KSI4
AD3 / P0.3 / KSI3
AD2 / P0.2 / KSI2
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

VSSP
VCC

P3.0 / OVRI#
P3.1 / SOF#
P3.2 / INT0#
P3.3 / INT1#

P3.4 / T0 / KSO16
P3.5 / T1 / KSO17

P3.6 / WR# / KSO18

P
3.

7
/ R

D

/ K
S

O
19

P
1.

0
/ T

2
/ K

S
O

0
P

1.
1

/ T
2E

X
 /

K
S

O
1

P
1.

2
/ K

S
O

2
P

1.
3

/ K
S

O
3

P
1.

4
/ K

S
O

4
P

1.
5

/ K
S

O
5

P
1.

6
/ R

X
D

 /
K

S
O

6
 P

1.
7

/ T
X

D
 /

K
S

O
7

LE
D

3
LE

D
2

X
T

A
L1

X
T

A
L2

A
V

C
C

R
S

T
P

LL
S

E
L

A5342-02

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

View of component as
mounted on PC board

8x931Hx

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
B-3

8x931AA, 8x931HA USER’S MANUAL
Figure B-4 illustrates a diagram of the 8x931AA QFP package. Table B-3 and Table B-6 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

Figure B-4. 8x931AA 64-pin QFP Package

Reserved (NC)
Reserved (NC)
Reserved (NC)
Reserved (NC)
DP0
DM0
ECAP
VSSP
VCCP
VSS
Reserved (NC)
Reserved (NC)
Reserved (NC)
Reserved (NC)
LED0
LED1

A
D

7
/ P

0.
7

/ K
S

I7
A

8
/ P

2.
0

/ K
S

O
8

A
9

/ P
2.

1
/ K

S
O

9
A

10
 /

P
2.

2
/ K

S
O

10
A

11
 /

P
2.

3
/ K

S
O

11
A

12
 /

P
2.

4
/ K

S
O

12
A

13
 /

P
2.

5
/ K

S
O

13
A

14
 /

P
2.

6
/ K

S
O

14
A

15
 /

P
2.

7
/ K

S
O

15
V

S
S

V
C

C
P

E
A

#
A

LE
P

S
E

N
#

F
S

S
E

L
V

S
S

P

AD6 / P0.6 / KSI6
AD5 / P0.5 / KSI5
AD4 / P0.4 / KSI4
AD3 / P0.3 / KSI3
AD2 / P0.2 / KSI2
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

VSSP
VCC
P3.0

P3.1 / SOF#
P3.2 / INT0#
P3.3 / INT1#

P3.4 / T0 / KSO16
P3.5 / T1 / KSO17

P3.6 / WR# / KSO18

P
3.

7
/ R

D

/ K
S

O
19

P
1.

0
/ T

2
/ K

S
O

0
P

1.
1

/ T
2E

X
 /

K
S

O
1

P
1.

2
/ K

S
O

2
P

1.
3

/ K
S

O
3

P
1.

4
/ K

S
O

4
P

1.
5

/ K
S

O
5

P
1.

6
/ R

X
D

 /
K

S
O

6
 P

1.
7

/ T
X

D
 /

K
S

O
7

LE
D

3
LE

D
2

X
T

A
L1

X
T

A
L2

A
V

C
C

R
S

T
P

LL
S

E
L

A5347-02

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

View of component as
mounted on PC board

8x931Ax

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

Notes:
Reserved pins must be left unconnected..
B-4

PIN DESCRIPTIONS
Figure B-5 illustrates a diagram of the 8x931AA PLCC package. Table B-1 and Table B-4 contain indexes of
the pin arrangement. Table B-7 contains the signal descriptions for all pins.

Figure B-5. 8x931AA 68-pin PLCC Package

Reserved (NC)
Reserved (NC)
Reserved (NC)
Reserved (NC)
VCC
DP0
DM0
ECAP
VSSP
VCCP
VSS
Reserved (NC)
Reserved (NC)
VSSP
Reserved (NC)
Reserved (NC)
LED0

A
8

/ P
2.

0
/ K

S
O

8
A

9
/ P

2.
1

/ K
S

O
9

A
10

 /
P

2.
2

/ K
S

O
10

A
11

 /
P

2.
3

/ K
S

O
11

A
12

 /
P

2.
4

/ K
S

O
12

A
13

 /
P

2.
5

/ K
S

O
13

A
14

 /
P

2.
6

/ K
S

O
14

A
15

 /
P

2.
7

/ K
S

O
15

V
S

S
V

C
C

P
E

A
#

A
LE

P
S

E
N

#
F

S
S

E
L

V
S

S
P

R
es

er
ve

d
(N

C
)

R
es

er
ve

d
(N

C
)

A5348-02

AD7 / P0.7 / KSI7
AD6 / P0.6 / KSI6
AD5 / P0.5 / KSI5
AD4 / P0.4 / KSI4
AD3 / P0.3 / KSI3
AD2 / P0.2 / KSI2
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

VSSP
VCC
P3.0

P3.1 / SOF#
P3.2 / INT0#
P3.3 / INT1#

P3.4 / T0 / KSO16
P3.5 / T1 / KSO17

P3.6 / WR# / KSO18

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

View of component as
mounted on PC board

8x931Ax

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

P
3.

7
/ R

D

/ K
S

O
19

P
1.

0
/ T

2
/ K

S
O

0
P

1.
1

/ T
2E

X
 /

K
S

O
1

P
1.

2
/ K

S
O

2
P

1.
3

/ K
S

O
3

P
1.

4
/ K

S
O

4
P

1.
5

/ K
S

O
5

P
1.

6
/ R

X
D

 /
K

S
O

6
 P

1.
7

/ T
X

D
 /

K
S

O
7

LE
D

3
LE

D
2

X
T

A
L1

X
T

A
L2

A
V

C
C

R
S

T
P

LL
S

E
L

LE
D

1

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

Note:
Reserved pins must be left unconnected.
B-5

8x931AA, 8x931HA USER’S MANUAL

Table B-1. 68-pin PLCC Pin Assignment

Pin Name Pin Name Pin Name

1 VSS 24 P3.4/T0/KSO16 47 VSSP

2 A15/P2.7/KSO15 25 P3.5/T1/KSO17 48 Reserved†/ DM3
††

3 A14/P2.6/KSO14 26 P3.6/WR#/KSO18 49 Reserved†/ DP3
††

4 A13/P2.5/KSO13 27 P3.7/RD#/KSO19 50 VSS

5 A12/P2.4/KSO12 28 P1.0/T2/KSO0 51 VCCP

6 A11/P2.3/KSO11 29 P1.1/T2EX/KSO1 52 VSSP

7 A10/P2.2/KSO10 30 P1.2/KSO2 53 ECAP

8 A9/P2.1/KSO9 31 P1.3/KSO3 54 DM0

9 A8/P2.0/KSO8 32 P1.4/KSO4 55 DP0

10 AD7/P0.7/KSI7 33 P1.5/KSO5 56 VCC

11 AD6/P0.6/KSI6 34 P1.6/KSO6/RXD 57 Reserved†/ DM5
††

12 AD5/P0.5/KSI5 35 P1.7/KSO7/TXD 58 Reserved†/ DP5
††

13 AD4/P0.4/KSI4 36 LED3 59 Reserved†/ DM4
††

14 AD3/P0.3/KSI3 37 LED2 60 Reserved†/ DP4
††

15 AD2/P0.2/KSI2 38 XTAL1 61 Reserved (NC)

16 AD1/P0.1/KSI1 39 XTAL2 62 Reserved (NC)

17 AD0/P0.0/KSI0 40 AVCC 63 VSSP

18 VSSP 41 RST 64 FSSEL†/ UPWEN#††

19 VCC 42 PLLSEL 65 PSEN#

20 P3.0/ OVRI#†† 43 LED1 66 ALE

21 P3.1/SOF# 44 LED0 67 EA#

22 P3.2/INT0# 45 Reserved†/ DM2
†† 68 VCCP

23 P3.3/INT1# 46 Reserved†/ DP2
††

† Specific to the 8x931AA
†† Specific to the 8x931HA
B-6

PIN DESCRIPTIONS
Table B-2. 64-pin SDIP Pin Assignment

Pin Name Pin Name Pin Name

1 VCC 23 RST 45 EA#

2 P3.0/OVRI# 24 PLLSEL 46 VCCP

3 P3.1/SOF# 25 LED1 47 VSS

4 P3.2/INT0# 26 LED0 48 A15/P2.7/KSO15

5 P3.3/INT1# 27 DM2 49 A14/P2.6/KSO14

6 P3.4/T0/KSO16 28 DP2 50 A13/P2.5/KSO13

7 P3.5/T1/KSO17 29 DM3 51 A12/P2.4/KSO12

8 P3.6/WR#/KSO18 30 DP3 52 A11/P2.3/KSO11

9 P3.7/RD#/KSO19 31 VSS 53 A10/P2.2/KSO10

10 P1.0/T2/KSO0 32 VCCP 54 A9/P2.1/KSO9

11 P1.1/T2EX/KSO1 33 VSSP 55 A8/P2.0/KSO8

12 P1.2/KSO2 34 ECAP 56 AD7/P0.7/KSI7

13 P1.3/KSO3 35 DM0 57 AD6/P0.6/KSI6

14 P1.4/KSO4 36 DP0 58 AD5/P0.5/KSI5

15 P1.5/KSO5 37 DM5 59 AD4/P0.4/KSI4

16 P1.6/RXD/KSO6 38 DP5 60 AD3/P0.3/KSI3

17 P1.7/TXD/KSO7 39 DM4 61 AD2/P0.2/KSI2

18 LED3 40 DP4 62 AD1/P0.1/KSI1

19 LED2 41 VSSP 63 AD0/P0.0/KSI0

20 XTAL1 42 UPWEN# 64 VSSP

21 XTAL2 43 PSEN#

22 AVCC 44 ALE
B-7

8x931AA, 8x931HA USER’S MANUAL
Table B-3. 64-pin QFP Pin Assignment

Pin Name Pin Name Pin Name

1 AD6/P0.6/KSI6 23 P1.5/KSO5 45 Reserved (NC)†/DM5
††

2 AD5/P0.5/KSI5 24 P1.6/RXD/KSO6 46 Reserved (NC)†/DP5
††

3 AD4/P0.4/KSI4 25 P1.7/TXD/KSO7 47 Reserved (NC)†/DM4
††

4 AD3/P0.3/KSI3 26 LED3 48 Reserved (NC)†/DP4
††

5 AD2/P0.2/KSI2 27 LED2 49 VSSP

6 AD1/P0.1/KSI1 28 XTAL1 50 FSSEL†/UPWEN#††

7 AD0/P0.0/KSI0 29 XTAL2 51 PSEN#

8 VSSP 30 AVCC 52 ALE

9 VCC 31 RST 53 EA#

10 P3.0/OVRI#†† 32 PLLSEL 54 VCCP

11 P3.1/SOF# 33 LED1 55 VSS

12 P3.2/INT0# 34 LED0 56 A15/P2.7/KSO15

13 P3.3/INT1# 35 Reserved (NC)†/DM2
†† 57 A14/P2.6/KSO14

14 P3.4/T0/KSO16 36 Reserved (NC)†/DP2
†† 58 A13/P2.5/KSO13

15 P3.5/T1/KSO17 37 Reserved (NC)†/DM3
†† 59 A12/P2.4/KSO12

16 P3.6/WR#/KSO18 38 Reserved (NC)†/DP3
†† 60 A11/P2.3/KSO11

17 P3.7/RD#/KSO19 39 VSS 61 A10/P2.2/KSO10

18 P1.0/T2/KSO0 40 VCCP 62 A9/P2.1/KSO9

19 P1.1/T2EX/KSO1 41 VSSP 63 A8/P2.0/KSO8

20 P1.2/KSO2 42 ECAP 64 AD7/P0.7/KSI7

21 P1.3/KSO3 43 DM0

22 P1.4/KSO4 44 DP0
† Specific to the 8x931AA
†† Specific to the 8x931HA
B-8

PIN DESCRIPTIONS
Table B-4. 68-pin PLCC Signal Assignments Arranged by Functional Category

Address & Data Input/Output USB

Name Pin Name Pin Name Pin

A15/P2.7/KSO15 2 P1.0/T2/KSO0 28 PLLSEL 42

A14/P2.6/KSO14 3 P1.1/T2EX/KSO1 29 DM0 54

A13/P2.5/KSO13 4 P1.2/KSO2 30 DP0 55

A12/P2.4/KSO12 5 P1.3/KSO3 31 Reserved†/ DM5
†† 57

A11/P2.3/KSO11 6 P1.4/KSO4 32 Reserved†/ DP5
†† 58

A10/P2.2/KSO10 7 P1.5/KSO5 33 Reserved†/ DM2
†† 45

A9/P2.1/KSO9 8 P1.6/KSO6 34 Reserved†/ DP2
†† 46

A8/P2.0/KSO8 9 P1.7/KSO7 35 Reserved†/ DM3
†† 48

AD7/P0.7/KSI7 10 P3.0/ OVRI#†† 20 Reserved†/ DP3
†† 49

AD6/P0.6/KSI6 11 P3.1/SOF# 21 ECAP 53

AD5/P0.5/KSI5 12 P3.2/INT0# 22 Reserved†/ DM4
†† 59

AD4/P0.4/KSI4 13 P3.3/INT1# 23 Reserved†/ DP4
†† 60

AD3/P0.3/KSI3 14 P3.4/T0/KSO16 24 FSSEL†/UPWEN#†† 64

AD2/P0.2/KSI2 15 P3.5/T1/KSO17 25 OVRI#†† 20

AD1/P0.1/KSI1 16 P3.6/WR#/KSO18 26

AD0/P0.0/KSI0 17 P3.7/RD#/KSO19 27

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin

P3.2/INT0# 22 VCCP 51, 68 P3.6/WR#/KSO18 26

P3.3/INT1# 23 VCC 19,56 P3.7/RD#/KSO19 27

RST 41 AVCC 40 PSEN# 65

XTAL1 38 VSS 1,50 ALE 66

XTAL2 39 VSSP 18,47,
52,63

EA# 67

† Specific to the 8x931AA
†† Specific to the 8x931HA
B-9

8x931AA, 8x931HA USER’S MANUAL
Table B-5. 64-pin SDIP Signal Assignments Arranged by Functional Category

Address & Data Input/Output USB

Name Pin Name Pin Name Pin

A15/P2.7/KSO15 48 P1.0/T2/KSO0 10 PLLSEL 24

A14/P2.6/KSO14 49 P1.1/T2EX/KSO1 11 DM0 35

A13/P2.5/KSO13 50 P1.2/KSO2 12 DP0 36

A12/P2.4/KSO12 51 P1.3/KSO3 13 DM5 37

A11/P2.3/KSO11 52 P1.4/KSO4 14 DP5 38

A10/P2.2/KSO10 53 P1.5/KSO5 15 DM2 27

A9/P2.1/KSO9 54 P1.6/RXD/KSO6 16 DP2 28

A8/P2.0/KSO8 55 P1.7/TXD/KSO7 17 DM3 29

AD7/P0.7/KSI7 56 P3.0/OVRI# 2 DP3 30

AD6/P0.6/KSI6 57 P3.1/SOF# 3 ECAP 34

AD5/P0.5/KSI5 58 P3.2/INT0# 4 UPWEN# 42

AD4/P0.4/KSI4 59 P3.3/ INT1# 5 OVRI# 2

AD3/P0.3/KSI3 60 P3.4/T0/KSO16 6 DM4 39

AD2/P0.2/KSI2 61 P3.5/T1/KSO17 7 DP4 40

AD1/P0.1/KSI1 62 P3.6/WR#/KSO18 8

AD0/P0.0/KSI0 63 P3.7/RD#/KSO19 9

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin

P3.2/ INT0# 4 VCC 1 P3.6/WR#/KSO18 8

P3.3/ INT1# 5 VCCP 32,46 P3.7/RD#/KSO19 9

RST 23 AVCC 22 PSEN# 43

XTAL1 20 VSS 31,47 ALE 44

XTAL2 21 VSSP 33,41,
64

EA# 45
B-10

PIN DESCRIPTIONS
Table B-6. 64-pin QFP Signal Assignments Arranged by Functional Category

Address & Data Input/Output USB

Name Pin Name Pin Name Pin

AD6/P0.6/KSI6 1 P3.0/OVRI#†† 10 PLLSEL 32

AD5/P0.5/KSI5 2 P3.1/SOF# 11 ECAP 42

AD4/P0.4/KSI4 3 P3.2/INT0# 12 DM0 43

AD3/P0.3/KSI3 4 P3.3/INT1# 13 DP0 44

AD2/P0.2/KSI2 5 P3.4/T0/KSO16 14 FSSEL†/UPWEN#†† 50

AD1/P0.1/KSI1 6 P3.5/T1/KSO17 15 OVRI#†† 10

AD0/P0.0/KSI0 7 P3.6/WR#/KSO18 16 DP2
†† 36

A15/P2.7/KSO15 56 P3.7/RD#/KSO19 17 DM2
†† 35

A14/P2.6/KSO14 57 P1.0/T2/KSO0 18 DP3
†† 38

A13/P2.5/KSO13 58 P1.1/T2EX/KSO1 19 DM3
†† 37

A12/P2.4/KSO12 59 P1.2/KSO2 20 DP4
†† 48

A11/P2.3/KSO11 60 P1.3/KSO3 21 DM4
†† 47

A10/P2.2/KSO10 61 P1.4/KSO4 22 DP5
†† 46

A9/P2.1/KSO9 62 P1.5/KSO5 23 DM5
†† 45

A8/P2.0/KSO8 63 P1.6/RXD/KSO6 24

AD7/P0.7/KSI7 64 P1.7/TXD/KSO7 25

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin

XTAL1 28 VCC 9 PSEN# 51

XTAL2 29 AVCC 30 ALE 52

RST 31 VSS 39,55 EA# 53

P3.2/INT0# 12 VCCP 40,54 WR# 16

P3.3/INT1# 13 VSSP 8,
41,49

RD# 17

† Specific to the 8x931AA
†† Specific to the 8x931HA
B-11

8x931AA, 8x931HA USER’S MANUAL
Table B-7. Signal Description (Sheet 1 of 3)

Signal
Name Type Description Alternate

Function

A15:8 O Address Lines. Upper byte of external memory address. P2.7:0/KS08:15

AD7:0 I/O Address/Data Lines. Lower byte of external memory address
multiplexed with data

P0.7:0/KSI0:7

ALE O Address Latch Enable. ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

—

AVCC PWR Analog VCC. A separate VCC input for the phase-locked loop
circuitry.

—

DM0, DP0 I/O USB Port 0. Root port. Upstream port to the host PC. DP0 and
DM0 are the differential data plus and data minus signals of USB
port 0. These lines do not have internal pullup resistors. Provide
an external 1.5 KΩ pullup resistor at DP0 so the device indicates
to the host that it is a full-speed device.
NOTE: DP0 low AND DM0 low signals an SE0 (USB reset),

causing the 8x931 to stay in reset.

—

DM2, DP2

DM3, DP3

DM4, DP4

DM5, DP5

I/O USB External Downstream Ports 2, 3, 4, 5. These pins are
the differential data plus and data minus lines for the four USB
external downstream ports. These lines do not have internal
pulldown resistors. Provide an external 15 KΩ pulldown resistor
at each of these pins. If a port is not used, it is still required to
pull these 2 pins low externally (similar to a disconnect) so that
the inputs are not floated.

—

EA# I External Access. Directs program memory accesses to on-
chip or off-chip code memory. For EA# strapped to ground, all
program memory accesses are off-chip. For EA# strapped to
VCC, program accesses on-chip ROM if the address is within the
range of the on-chip ROM; otherwise the access is off-chip. The
value of EA# is latched at reset. For devices without on-chip
ROM, EA# must be strapped to ground.

—

ECAP I External Capacitor. Connect a 1 µF or larger capacitor
between this pin and VSS to ensure proper operation of the
differential line drivers.

—

FSSEL Full Speed Select. Applies to the 8x931AA only. If this pin is
high, full speed USB data rate is selected (12Mbps). If pin is
low, low speed USB data rate is selected (1.5 Mbps). Refer to
Table E-3 on page E-9.

—

INT1:0# I External Interrupts 0 and 1. These inputs set the IE1:0
interrupt flags in the TCON register. Bits IT1:0 in TCON select
the triggering method: edge-triggered (high-to-low) or level
triggered (active low). INT1:0 also serves as external run
control for timer1:0 when selected by GATE1:0# in TCON.

P3.3:2

KSI7:0 I Keyboard Scan Input. Schmitt-trigger inputs with firmware-
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.

AD7:0/P0.7:0
B-12

PIN DESCRIPTIONS
KSO19
KSO18
KSO17:16
KSO15:8
KSO7:0

O Keyboard Scan Output. Quasi-bidirectional ports with weak
internal pullup resistors used for the output side of the keyboard
scan matrix.

P3.7/RD#
P3.6/WR#
P3.5:4/T1:0
A15:8/P2.7:0
P1.7:0

LED3:0 O LED Drivers. Designed to drive LEDs connected directly to
VCC. The current each driver is capable of sinking is given as
VOL2 in the datasheet.

—

OVRI# I Overcurrent Sense. Sense input to indicate an overcurrent
condition for a bus-powered USB device on an external down-
stream port. Active low with an internal pullup.

P3.0

P0.7:0 I/O Port 0. Eight-bit, open-drain, bidirectional I/O port. Port 0 pins
have Schmitt trigger inputs.

AD7:0/KSI7:0

P1.7:0 I/O Port 1. Eight-bit quasi-bidirectional I/O port with internal
pullups.

KSO7:0

P2.7:0 I/O Port 2. Eight-bit quasi-bidirectional I/O port with internal
pullups.

A15:8/KSO15:8

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

I/O Port 3. Eight-bit quasi-bidirectional I/O port with internal
pullups.

OVRI#
SOF#
INT0#
INT1#
T0/KSO16
T1/KSO17
WR#/KSO18
RD#/KSO19

PLLSEL I Phase-locked Loop Select. For normal operation using the
8x931HA, connect PLLSEL to logic high. PLLSEL = 0 is used
for factory test (see Table 2-3 on page 2-9). For 8x931AA
operation, see Table E-3 on page E-9.

—

PSEN# O Program Store Enable. Read signal output. Asserted for read
accesses to external program memory.

—

RD# O Read. Read signal output. Asserted for read accesses to
external data memory.

P3.7/KSO19

RXD I/O Receive Serial Data. RXD sends and receives data in serial
I/O mode 0 and receives data in serial I/O modes 1, 2, and 3.

P1.6

RST I Reset. Reset input to the chip. Holding this pin high for 64
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than VIH1 is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor
which allows the device to be reset by connecting a capacitor
between this pin and VCC.

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

—

Table B-7. Signal Description (Sheet 2 of 3)

Signal
Name Type Description Alternate

Function
B-13

8x931AA, 8x931HA USER’S MANUAL
SOF# O Start of Frame. Start of frame pulse. Active low. Asserted for 8
states when frame timer is locked to USB frame timing and
SOF token or artificial SOF is detected.

P3.1

T1:0 I Timer 1:0 External Clock Input. When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4/KSO17:16

T2 I/O Timer 2 Clock Input/Output. For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

P1.0

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, 0 = down.

P1.1

TXD O Transmit Serial Data. TXD outputs the shift clock in serial I/O
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P1.7

UPWEN# O USB Power Enable. A low signal on this pin applies power to
the external downstream ports.

—

VCC PWR Supply Voltage. Connect this pin to the +5V supply voltage. —

VCCP PWR Supply Voltage for I/O buffers. Connect this pin to the +5V
supply voltage.

—

VSS GND Circuit Ground. Connect this pin to ground. —

VSSP GND Circuit Ground for I/O buffers. Connect this pin to ground. —

WR# O Write. Write signal output to external memory. P3.6/KSO19

XTAL1 I Oscillator Amplifier Input. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator
across XTAL1 and XTAL2. If an external clock source is used,
connect it to this pin.

—

XTAL2 O Oscillator Amplifier Output. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator
across XTAL1 and XTAL2. If an external oscillator is used,
leave XTAL2 unconnected.

—

Table B-7. Signal Description (Sheet 3 of 3)

Signal
Name Type Description Alternate

Function
B-14

C
Registers

n at-
 actu-

ented
ch end-
x value.

the in-
PIN-

anks of
h USB
ndex val-
 “Hub

h de-
tions”
APPENDIX C
REGISTERS

This appendix contains reference information regarding the 8x931 special function registers
(SFRs). The SFR memory map in Table C-1 gives the address of each SFR and its contents fol-
lowing chip reset. An “x” indicates the bit value following chip reset is indeterminate.

Blank locations in Table C-1 are not implemented, i.e., no register exists. If an instructio
tempts to write to an unimplemented SFR location, the instruction executes, but nothing is
ally written. If an unimplemented SFR location is read, it returns an unspecified value.

SFRs shown with double borders are endpoint-indexed. Endpoint-indexed SFRs are implem
as banks of registers similar to registers R0-R7. There is a set or bank of registers for ea
point pair. Endpoint-indexed SFRs are accessed by means of the SFR address and an inde
The EPINDEX register specifies hub/function and the endpoint number (which serves as
dex value). See “Endpoint-indexed SFRs” on page 6-5 and “Hub Endpoint Indexing Using E
DEX” on page 7-11.

SFRs shown with bold borders are port-indexed. Port-indexed SFRs are implemented as b
registers similar to registers R0-R7. There is a set or bank of port-indexed SFRs for eac
downstream port. Port-indexed SFRs are accessed by means of the SFR address and an i
ue. The HPINDEX register contains the port number which serves as the index value. See
Port Indexing Using HPINDEX” on page 7-23.

NOTE
The 8x931HA uses a different SFR map than the 8x931AA. See Table E-4 on
page E-10 for the 8x931AA SFR map.

Tables C-2 through C-6 list the SFRs by functional category. Register definition tables whic
scribe the SFRs and define the bits can be found arranged alphabetically in “SFR Descrip
on page C-6.
C-1

8x931AA, 8x931HA USER’S MANUAL

Table C-1. 8x931HA SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 KBCON
0xx00000

FF

F0 B

00000000

EPINDEX
1xxxxx00

TXSTAT
0xx00000

TXDAT††

xxxxxxxx†
TXCON
0xxx 0100†

TXFLG
00xx1000

TXCNTL
xxxx xxxx†

F7

E8 HIFLG
xxxxxx00

EF

E0 ACC
00000000

EPCON
00d1 0d0d†

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0xx0 0100

RXFLG
00xx1000

RXCNTL
xxxx xxxx†

E7

D8 PCON1
xxxx x000

DF

D0 PSW
00000000

SOFL
00000000

SOFH
00001000

HPINDEX
xxxxx000

HPSC
xxx00000

HPSTAT
100d 0000†

D7

C8 T2CON
00000000

T2MOD
xxxx xx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

HPCON
xxxxx000

CF

C0 FIFLG
xx00 0000

C7

B8 IPL0
x0000000

SADEN
00000000

BF

B0 P3
11111111

IEN1
0000 0000

IPL1
0000 0000

IPH1
0000 0000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

HSTAT
0000 0000

AF

A0 P2
11111111

HIE
xxxxxx00

FIE
xx00 0000

A7

98 SCON
0000 0000

SBUF
xxxxxxxx

HPPWR
xx00001x

9F

90 P1
11111111

HADDR
00000000

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

PCON
001d 0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 51 microcontroller SFRs Port-indexed SFRs

Endpoint-indexed SFRs

† For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 5, “USB Function.”

†† For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate
TXDAT register definition table is provided for this endpoint (see Figure 6-8 on page 6-16).

NOTE: “d” in the SFR reset value denotes configuration/operation dependence. Refer to specific SFR
descriptions for more details.
C-2

REGISTERS
C.1 SFRS BY FUNCTIONAL CATEGORY

Table C-2. Core SFRs

Mnemonic Name Address

ACC Accumulator E0H

B B Register F0H

DPTR Data Pointer (2 bytes) —

DPL Low Byte of DPTR 82H

DPH High Byte of DPTR 83H

KBCON Keyboard Control F8H

PCON Power Control 87H

PCON1 USB Power Control. DFH

PSW Program Status Word D0H

SP Stack Pointer 81H

Table C-3. Interrupt System SFRs

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. A2H

FIFLG USB Function Interrupt Flag Register. C0H

HIE Hub Interrupt Enable Register. A1H

HIFLG Hub Interrupt Flag Register. E8H

IEN0 Interrupt Enable Register 0. A8H

IEN1 Interrupt Enable Register1. B1H

IPL0 Interrupt Priority Low Register 0. B8H

IPH0 Interrupt Priority High Register 0. B7H

IPL1 Interrupt Priority Low Register 1. B2H

IPH1 Interrupt Priority High Register 1. B3H

KBCON Keyboard Control Register. F8H

SOFH Start of Frame High Register. D3H

SOFL Start of Frame Low Register. D2H
C-3

8x931AA, 8x931HA USER’S MANUAL
Table C-4. I/O Port SFRs

Mnemonic Name Address

P0 Port 0 80H

P1 Port 1 90H

P2 Port 2 A0H

P3 Port 3 B0H

Table C-5. Serial I/O SFRs

Mnemonic Name Address

SCON Serial Control 98H

SBUF Serial Data Buffer 99H

SADEN Slave Address Mask B9H

SADDR Slave Address A9H

Table C-6. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. E1H

EPINDEX Endpoint Index Register. F1H

FADDR Function Address Register. 8FH

RXCNTL Receive FIFO Byte-Count Low Register. E6H

RXCON Receive FIFO Control Register. E4H

RXDAT Receive FIFO Data Register. E3H

RXFLG Receive FIFO Flag Register. E5H

RXSTAT Endpoint Receive Status Register. E2H

TXCNTL Transmit Count Low Register. F6H

TXCON Transmit FIFO Control Register. F4H

TXDAT Transmit FIFO Data Register. F3H

TXFLG Transmit Flag Register. F5H

TXSTAT Endpoint Transmit Status Register. F2H
C-4

REGISTERS

Table C-7. USB Hub SFRs

Mnemonic Name Address

HADDR Hub Address Register. 97H

HPCON Hub Port Control. CFH

HPINDEX Hub Port Index Register. D4H

HPPWR Hub Port Power Control. 9AH

HPSC Hub Port Status Change. D5H

HPSTAT Hub Port Status. D7H

HSTAT Hub Status and Configuration. AEH

Table C-8. Timer/Counter SFRs

Mnemonic Name Address

TL0 Timer/Counter 0 Low Byte 8AH

TH0 Timer/Counter 0 High Byte 8CH

TL1 Timer/Counter 1 Low Byte 8BH

TH1 Timer/Counter 1 High Byte 8DH

TL2 Timer/Counter 2 Low Byte CCH

TH2 Timer/Counter 2 High Byte CDH

TCON Timer/Counter 0 and 1 Control 88H

TMOD Timer/Counter 0 and 1 Mode Control 89H

T2CON Timer/Counter 2 Control C8H

T2MOD Timer/Counter 2 Mode Control C9H

RCAP2L Timer 2 Reload/Capture Low Byte CAH

RCAP2H Timer 2 Reload/Capture High Byte CBH
C-5

8x931AA, 8x931HA USER’S MANUAL
C.2 SFR DESCRIPTIONS

This section contains descriptions of all 8x931 SFRs. They are presented in alphabetical order.

NOTE
SFR bits are firmware read/write unless otherwise noted in the bit definition.
SFRs may be accessed only as bytes; they may not be accessed as words.

ACC Address: E0H
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator. Instructions in the MCS® 51 architecture
use the accumulator as both source and destination for calculations and moves.

7 0

Accumulator Contents

Bit
Number

Bit
Mnemonic Function

7:0 ACC.7:0 Accumulator.

B Address: F0H
Reset State: 0000 0000B

B Register. The B register is used during multiply and divide operations. For other instructions, it can
be treated as another scratch pad register.

7 0

B Register Contents

Bit
Number

Bit
Mnemonic Function

7:0 B.7:0 B Register.
C-6

REGISTERS

DPH Address: 83H
Reset State: 0000 0000B

Data Pointer High. DPH is the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS®
51 architecture use DPTR for data moves, code moves, and for a jump instruction (JMP @A+DPTR).
See also DPL.

7 0

DPH Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPH.7:0 Data Pointer High:

Bits 8–15 of the data pointer.

DPL Address: 82H
Reset State: 0000 0000B

Data Pointer Low. DPL is the low byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51
architecture use the 16-bit data pointer for data moves, code moves, and for a jump instruction (JMP
@A+DPTR). See also DPH.

7 0

DPL Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPL.7:0 Data Pointer Low:

Bits 0–7 of the data pointer.
C-7

8x931AA, 8x931HA USER’S MANUAL

EPCON
(Endpoint-indexed)

Address: E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK.

5 CTLEP Control Endpoint:†

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:†

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO.
NOTE: For control endpoints (CTLEP=1), this bit should be set for single

packet mode operation as the recommended firmware model.
However, it is possible to have a control endpoint configured in
dual packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet override this bit if it is cleared, and
place the receive data in the FIFO.

† For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.
C-8

REGISTERS
2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. This bit is hardware read
only. Note that endpoint 0 is enabled for transmission upon reset.

EPCON (Continued)
(Endpoint-indexed)

Address: E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

† For hub endpoint 0 (EPINDEX = 1000 0000), bits 5 and 4 are hard-wired to ‘1’ since hub endpoint 0 is
always a control endpoint.
C-9

8x931AA, 8x931HA USER’S MANUAL

EPINDEX Address: F1H
Reset State: 1xxx xx00B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0

HORF — — — — — EPINX1 EPINX0

Bit
Number

Bit
Mnemonic Function

7 HORF Hub/Function Bit:

1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

6:2 — Reserved:

Write zeros to these bits.

1:0 EPINX1:0 Endpoint Index:

EPINDEX†

0xxx xx00 Function Endpoint 0
0xxx xx01 Function Endpoint 1
0xxx xx10 Function Endpoint 2

EPINDEX†
1xxx xx00 Hub Endpoint 0
1xxx xx01 Hub Endpoint 1

† The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive FIFO
pair. The value in this register plus SFR addresses select the associated bank of endpoint-indexed SFRs
(TXDAT, TXCON, TXFLG, TXCNTL, RXDAT, RXCON, RXFLG, RXCNTL, EPCON, TXSTAT, and
RXSTAT).
C-10

REGISTERS

FADDR Address: 8FH
Reset State:0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0

— A6:0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.
C-11

8x931AA, 8x931HA USER’S MANUAL

FIE Address: A2H
Reset State: xx00 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the three function endpoints.

7 0

— — FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

Bit
Number

Bit
Mnemonic Function

7:6
—

Reserved:

Write zeros to these bits.

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIE0 Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXD0).

0 FTXIE0 Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint 0 (FTXD0).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value is still reflected in the FIFLG register.
C-12

REGISTERS
FIFLG Address: C0H
Reset State: xx00 0000B

Function Interrupt Flag Register. Contains the USB function’s transmit and receive done interrupt
flags for non-isochronous endpoints.

7 0

— — FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXD0 Function Receive Done Flag, Endpoint 0

0 FTXD0 Function Transmit Done Flag, Endpoint 0

NOTES:
1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware. This SFR is bit-addressable.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.
C-13

8x931AA, 8x931HA USER’S MANUAL

HADDR Address: 97H
Reset State: 0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0

— Hub Address

Bit
Number Function

7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

HIE Address: A1H
Reset State: xxxx xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0

— — — — — HRXE0 HTXE0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXE0 HRXE0:

Enable the hub endpoint 0 receive done interrupt (HRXD0).†

0 HTXE0 HTXE0:

Enable the hub endpoint 0 transmit done interrupt (HTXD0).†

† For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.
C-14

REGISTERS
HIFLG Address: E8H
Reset State: xxxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0

— — — — — HRXD0 HTXD0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXD0 Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXD0 Hub Transmit Done, Endpoint 0:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:
1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits

are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXD0 and HTXD0, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.
C-15

8x931AA, 8x931HA USER’S MANUAL

HPCON
(Indexed by HPINDEX)

Address: CFH
Reset State:xxxx x000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

7 0

— — — — — HPCON2 HPCON1 HPCON0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPCON.2:0 Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port
001 — Enable port
010 — Reset and enable port
011 — Suspend port
100 — Resume port

See Table 7-6 on page 7-16 for a complete description of the encoded hub
port control commands.
C-16

REGISTERS
HPINDEX Address D4H
Reset State xxxx x000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

7 0

— — — — — HPIDX2 HPIDX1 HPIDX0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPIDX2:0 bit combinations:

Port 1 = “001” (internal port)
Port 2 = “010”
Port 3 = “011”
Port 4 = “100”
Port 5 = “101”

NOTE: Port 0 = “000” (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.
C-17

8x931AA, 8x931HA USER’S MANUAL
HPPWR Address: 9AH
Reset State: xx00 001x

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.

7 0

— — HPPWR5 HPPWR4 HPPWR3 HPPWR2 HPPWR1 —

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5:2 HPPWR5:2 Port Power Control for USB Ports 5-2:

Bit 5 is power control for port 5, bit 4 for port 4, bit 3 for port 3, and bit 2 for
port 2. These bits are set and cleared by firmware via a USB host request
SetPortFeature with the PORT_POWER feature selector. These bits will
also be cleared by hardware upon detection of an over-current condition.
This is done to prevent oscillation of the UPWEN# pin during an over-
current condition with bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the port in a
disconnected state. A value of ‘0’ turns the downstream port power off.
NOTE: The UPWEN# pin is set to ‘1’ only if all port power enable bits are

‘0,’ due to the use of a ganged (shared) power enable scheme.

1 HPPWR1 Port Power Control for USB Port 1 (read-only):

Port 1 is an internal port and is always powered on. This bit is hard-wired to
‘1.’

0 — Reserved:

Write a zero to this bit.
C-18

REGISTERS
HPSC
(Indexed by HPINDEX)

Address: D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 1: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:

Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=2,3,4,5): This bit is set by hardware upon completion of the
firmware-initiated resume process.

Port 1: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).
C-19

8x931AA, 8x931HA USER’S MANUAL
1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 1: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=2,3,4,5): This bit is set by hardware at the EOF2 point near the
end of a frame due to hardware connects and disconnects.

Port 1: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

HPSC (Continued)
(Indexed by HPINDEX)

Address: D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, low-speed device, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left).
C-20

REGISTERS
HPSTAT
(Indexed by HPINDEX)

Address: D7H
Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

7 DPSTAT DP Status (read-only):

Value of DP for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 1: Hard-wired to ’1’, since there is no DP signal for the embedded port

6 DMSTAT DM Status (read-only):

Value of DM for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=2,3,4,5): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 1: Hard-wired to ’0’, since there is no DM signal for the embedded port.

5 PPSTAT Port Power Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 1: Hard-wired to ’1’, since the internal function is always powered-on.

4 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 1: Hard-wired to ’0’ (full-speed), since port 1 is permanently attached to
the embedded USB function.

NOTES:

Firmware returns the bits of this register in the first word of the 8x931HA response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931HA supports ganged power
control and overcurrent indication.
C-21

8x931AA, 8x931HA USER’S MANUAL
3 PRSTAT Port Reset Status (read-only):

Port x ((x=2,3,4,5): Set and cleared by hardware as a result of initiating a
port x reset by writing to HPCON. ‘1’ = reset signaling is currently asserted
for port x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2
point near end of frame.

Port 1: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1’ = port x is currently suspended. ‘0’ = not suspended.
Sampled only at the EOF2 point near end of frame.

Port 1: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=2,3,4,5): Set and cleared by hardware as controlled by firmware
via HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled
only at the EOF2 point near end of frame.

Port 1: Same as port x.

0 PCSTAT Port Connect Status (read-only):

Port x connect status from previous frame time.

Port x (x=2,3,4,5): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 1: Hard-wired to ‘1’, since the internal function is permanently
connected.

HPSTAT (Continued)
(Indexed by HPINDEX)

Address: D7H
Reset State: 100d 0000B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

NOTES:

Firmware returns the bits of this register in the first word of the 8x931HA response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 8-25.

Overcurrent indication is not represented on a per-port basis because the 8x931HA supports ganged power
control and overcurrent indication.
C-22

REGISTERS
HSTAT Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

OVRIEN HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

7 OVRIEN Overcurrent Detect Enable Bit:

This bit is used to gate off the overcurrent input detect which is
multiplexed with P3.0. When set, a low on P3.0/OVRI# pin will trigger
over current detection logic. When this bit is ’0’ the over current detection
logic is disabled.

6 HRWUPE Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit
is modified through the SetFeature and ClearFeature requests using the
DEVICE_REMOTE_WAKEUP feature selector. When ‘0,’ the hub blocks
resume signaling for connect/disconnect and resume events detected on
downstream ports.
NOTE: Do not set this bit until after the hub is enumerated and the host

issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

5 EP1STL Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1,’ will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of
0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon
receipt of configuration value other than 0001H or a system or USB
reset.
NOTE: This bit must be set in order for the UPWEN# pin to enable

power to the downstream ports. Downstream power cannot be
applied until this is done.

3 OVISC Hub Over-current Indicator Status Change (read/clear-only): †

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

2 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.
† Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is

a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.
C-23

8x931AA, 8x931HA USER’S MANUAL
1 OVI Latest Over-current Indicator (read-only): †

Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

HSTAT (Continued) Address: AEH
Reset State: 0000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

OVRIEN HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

† Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.
C-24

REGISTERS

IEN0 Address: A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IEN0 contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1). The remaining bits enable/disable
the other individual interrupts.

7 0

EA — ET2 ES ET1 EX1 ET0 EX0

Bit
Number

Bit
Mnemonic Function

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by the
other bits of this register, as well as the interrupts enabled by the bits in
the IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which
are always enabled.

6 — Reserved:

Write a zero to this bit.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ET0 Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EX0 External Interrupt 0 Enable:

Setting this bit enables external interrupt 0.

NOTE: Note that because the IEN0 appears in the first SFR column, it is a bit-addressable SFR.
C-25

8x931AA, 8x931HA USER’S MANUAL

IEN1 Address: B1H
Reset State: 0000 0000B

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.

7 0

EX2 — — — — ESR EF ESOF

Bit
Number

Bit
Mnemonic Function

7 EX2 External Interrupt 2 Enable (Keyboard Scan):

Setting this bit enables the external interrupt used for the keyboard scan.
NOTE: Setting this bit causes the 8x931 to trigger a hardware interrupt

when a keyboard scan interrupt occurs, but only if the KSEN bit
in the KBCON register is also set.

6:3 — Reserved:

Write zeros to these bits.

2 ESR Enable Suspend/Resume:

USB global suspend/resume interrupt enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.
C-26

REGISTERS
IPH0 Address: B7H
Reset State: x000 0000B

Interrupt Priority High Control Register 0. IPH0, together with IPL0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0x IPL0x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High.

4 IPH0.4 Serial I/O Port Interrupt Priority Bit High.

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High.

2 IPH0.2 External Interrupt 1 Priority Bit High.

1 IPH0.1 Timer 0 Overflow Interrupt Priority Bit High.

0 IPH0.0 External Interrupt 0 Priority Bit High.
C-27

8x931AA, 8x931HA USER’S MANUAL
IPL0 Address: B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPL0, together with IPH0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0x IPL0x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Write zeros to these bits.

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low.

4 IPL0.4 Serial I/O Port Interrupt Priority Bit Low.

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low.

2 IPL0.2 External Interrupt 1 Priority Bit Low.

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low.

0 IPL0.0 External Interrupt 0 Priority Bit Low.
C-28

REGISTERS

IPH1 Address: B3H
Reset State: 0000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

IPH1.7 — — — — IPH1.2 IPH1.1 IPH1.0

Bit
Number

Bit
Mnemonic Function

7 IPH1.7 Keyboard Scan Interrupt Priority Bit High.

6:3 — Reserved:

Write zeros to these bits.

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High.

1 IPH1.1 USB Function Interrupt Priority Bit High.

0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High.
C-29

8x931AA, 8x931HA USER’S MANUAL

IPL1 Address: B2H
Reset State: 0000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

IPL1.7 — — — — IPL1.2 IPL1.1 IPL1.0

Bit
Number

Bit
Mnemonic Function

7 IPL1.7 Keyboard Scan Interrupt Priority Bit Low.

6:3 — Reserved:

Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low.

1 IPL1.1 USB Function Interrupt Priority Bit Low.

0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low.
C-30

REGISTERS
KBCON Address: F8H
Reset State: 0xx0 0000B

Keyboard Control Register. This register controls the keyboard scan input and output activity, enables
and configures the keyboard scan interrupt, and drives the keyboard LEDs.

7 0

IE2 — KSEN IT2 LED3 LED2 LED1 LED0

Bit
Number

Bit
Mnemonic Function

7 IE2 Interrupt 2 Flag:

Set when external interrupt 2 is detected if the KSEN bit is set. Firmware
must clear this bit when the interrupt is serviced.

6 — Reserved:

Write a zero to this bit.

5 KSEN Keyboard Scan Enable:

Setting this bit enables the pullup resistors on the KSI input lines, enables
the keyboard scan interrupt (INT2#), and enables the LED drivers.
NOTE: The EX2 bit in the IEN0 SFR must also be set to enable the KSI

external interrupt.

4 IT2 Interrupt 2 Type Control Bit:

If set, a negative edge detect on any of the KSI pins causes IE2 to be set.
When clear, IE2 acts as a level 0 triggered interrupt.

3:0 LED3:0 LED Driver Control:

Clearing one of these bits turns on the associated LED. Setting a bit turns off
the associated LED.
NOTE: The KSEN (Keyboard Scan Enable) bit must be set in order to

activate the LED drivers. After reset, the LED driver control bits are
cleared. This means that when KSEN is set, the LEDs will turn on.
Firmware must set the LED driver control bits to turn off the LEDs.
C-31

8x931AA, 8x931HA USER’S MANUAL

P0 Address: 80H
Reset State: 1111 1111B

Port 0. P0 is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port 0 read this register. The other instructions that read port 0 read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to P0, and the former
contents of P0 are lost.

7 0

P0 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P0.7:0 Port 0 Register:

Write data to be driven onto the port 0 pins to these bits.

P1 Address: 90H
Reset State: 1111 1111B

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0

P1 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P1.7:0 Port 1 Register:

Write data to be driven onto the port 1 pins to these bits.
C-32

REGISTERS
P2 Address: A0H
Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0

P2 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P2.7:0 Port 2 Register:

Write data to be driven onto the port 2 pins to these bits.

P3 Address: B0H
Reset State: 1111 1111B

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0

P3 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P3.7:0 Port 3 Register:

Write data to be driven onto the port 3 pins to these bits.
C-33

8x931AA, 8x931HA USER’S MANUAL
PCON Address: 87H
Reset State: 001d 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes and two general-purpose flags.

7 0

SMOD1 SMOD0 LC POF GF1 GF0 PD IDL

Bit
Number

Bit
Mnemonic Function

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 11-10.

6 SMOD0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SM0 bit.See the
SCON register (Figure 11-2 on page 11-4).

5 LC Low-clock Mode Enable:

Setting this bit forces the internal clock (FCLK) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns FCLK to the
normal clock frequency.

4 POF Power Off Flag:

Set by hardware on the rising edge of Vcc. set or cleared by software.
This flag allows detection of a reset caused by a power failure. Vcc must
remain above 3 volts to retain this bit.

3 GF1 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GF0 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.
C-34

REGISTERS

PCON1 Address: DFH
Reset State: xxxx x000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0

— — — URDIS URST RWU GRSM GSUS

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Write zeros to these bits.

4 URDIS USB Reset Disable:

When cleared by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 51 microcontroller core, USB blocks
and all peripherals.

When set by firmware, the core and peripherals will not reset when a
USB reset signal is detected. Upon detecting a USB reset signal, the
8x931 resets all the USB blocks (FIFOs, FIU, SIE, and transceiver), sets
the URST bit and generates a USB reset interrupt (refer to the
description of URST).

3 URST USB Reset Flag:

This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IEN1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware when resume signaling
is done.
NOTE: Do not set this bit unless the USB function is suspended

(GSUS = 1 and GRSM = 0). See Figure 14-2 on page 14-4.
† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.
C-35

8x931AA, 8x931HA USER’S MANUAL
1 GRSM Global Resume Bit:

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt†
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 14-2
on page 14-4.

0 GSUS Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.† During the global suspend ISR, firmware should
set the PD bit to enter the suspend mode. Cleared by hardware when a
resume occurs. See Figure 14-2 on page 14-4.

PCON1 (Continued) Address: DFH
Reset State: xxxx x000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x931.

7 0

— — — URDIS URST RWU GRSM GSUS

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.
C-36

REGISTERS

PSW Address: D0H
Reset State: 0000 0000B

7 0

CY AC F0 RS1 RS0 OV UD P

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions.

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic.

5 F0 Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0–R7).

RS1 RS0 Bank Address

0 0 0 00H–07H
0 1 1 08H–0FH
1 0 2 10H–17H
1 1 3 18H–1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC).
C-37

8x931AA, 8x931HA USER’S MANUAL

RCAP2H, RCAP2L Address: RCAP2H CBH
RCAP2L CAH

Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0

High/Low Byte of Timer 2 Reload/Capture Value

Bit
Number

Bit
Mnemonic Function

7:0 RCAP2H.7:0

RCAP2L.7:0

High byte of the timer 2 reload/recapture register

Low byte of the timer 2 reload/recapture register

RXCNTL†

(Endpoint-indexed)
Address: E6H

Reset State: xxxx xxxxB

Receive FIFO Byte-count Low Register. Ring buffer used to store the byte count for the data packets
received in the receive FIFO specified by EPINDEX.

7 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count.

† Not implemented for hub endpoint 1.
C-38

REGISTERS

RXCON
(Endpoint-indexed)

Address: E4H
Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — — RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO, and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are
not affected by this operation. Hardware clears this bit when the flush
operation is completed.

6:5 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read.
NOTE: FIFO Read Complete only works if STOVW and EDOVW are

cleared.

3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker

X ACK Unchanged Advanced

0 NAK Reversed Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.
NOTE: This bit should always be set, except for testing.

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes.
C-39

8x931AA, 8x931HA USER’S MANUAL

1 ADVWM Advance Write Marker: †

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM, and RXCLR bits
are clear.

0 REVWP Reverse Write Pointer: †

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then receive the last data packet again and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

RXDAT
(Endpoint-indexed)

Address: E3H
Reset: xxxx xxxxB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

RXDAT.7:0

Bit
Number

Bit
Mnemonic Function

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8x931 reads from this register. The write
pointer and read pointer are incremented automatically after a write and
read, respectively.

RXCON (Continued)
(Endpoint-indexed)

Address: E4H
Reset State: 0xx0 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — — RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes.
C-40

REGISTERS

RXFLG
(Endpoint-indexed)

Address: E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

7:6 RXFIF1:0 Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 6-6 on page 6-27). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you

utilize control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

† When set, all transmissions are NAKed.
C-41

8x931AA, 8x931HA USER’S MANUAL
2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag†:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.
NOTE: When this bit is set, the FIFO is in an unknown state. It is

recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag†:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through firmware, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.†

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.†

RXFLG (Continued)
(Endpoint-indexed)

Address: E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
C-42

REGISTERS

RXSTAT
(Endpoint-indexed)

Address: E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): †

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
along with the new RXSEQ value.
NOTE: Always verify this bit after writing to ensure that there is no conflict

with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.
† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model”.
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
C-43

8x931AA, 8x931HA USER’S MANUAL
4 EDOVW End Overwrite Flag: This flag is set by hardware during the handshake
phase of a SETUP stage. It is set after every SETUP packet is received and
must be cleared prior to reading the contents of the FIFO. When set, the
FIFO state (FIF and read pointer) remains locked for this endpoint until this
bit is cleared. This prevents a prior, ongoing firmware read from corrupting
the read pointer after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
NOTE: Make sure the EDOVW bit is cleared prior to reading the contents

of the FIFO.

3 RXSOVW Receive Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read. †††

2 RXVOID Receive Void Condition (read-only):††

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked

2. The EPCON register’s RXSTL bit is set

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

RXSTAT (Continued)
(Endpoint-indexed)

Address: E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model”.
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
C-44

REGISTERS
1 RXERR Receive Error (read-only):††

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXACK bit at the end of data
reception and is mutually exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):††

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXERR bit at the end of data
reception and is mutually exclusive with RXERR.

RXSTAT (Continued)
(Endpoint-indexed)

Address: E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model”.
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
C-45

8x931AA, 8x931HA USER’S MANUAL

SADDR Address: A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit
Number

Bit
Mnemonic Function

7:0 SADDR.7:0

SADEN Address: B9H
Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given
address for multiprocessor communication.

7 0

Mask for SADDR

Bit
Number

Bit
Mnemonic Function

7:0 SADEN.7:0

SBUF Address: 99H
Reset State: xxxx xxxxB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial I/O port. Reading SBUF
reads the receive buffer of the serial I/O port.

7 0

Data Sent/Received by Serial I/O Port

Bit
Number

Bit
Mnemonic Function

7:0 SBUF.7:0
C-46

REGISTERS
SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

7 FE

SM0

Framing Error Bit:

To select this function, set the SMOD0 bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

Serial Port Mode Bit 0:

To select this function, clear the SMOD0 bit in the PCON register.
Firmware writes to bits SM0 and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SM0 (above) to select the serial port
operating mode.

SM0 SM1 Mode Description Baud Rate†

0 0 0 Shift register FOSC/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FOSC/64†† or FOSC/32††

1 1 3 9-bit UART Variable
†FOSC = Oscillator frequency.
††Select by programming the SMOD1 bit in the PCON register (see
section “Baud Rates” on page 11-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To disable reception, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.
C-47

8x931AA, 8x931HA USER’S MANUAL
2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

SCON (Continued) Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function
C-48

REGISTERS
SOFH Address: D3H
Reset State: 0000 1000B

Start-of-frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time an SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TCLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS SOF# Pin Output Disable:

When set, the SOF# pin will be disabled and will respond like a port pin. The
SOF# pin will be driven to ‘1’ when SOFODIS is set. When this bit is clear,
setting the ASOF bit causes the SOF# pin to be toggled with a low pulse for
eight TCLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set. If an
artificial SOF is generated, the time stamp remains at its previous value and
it is up to firmware to update it. These bits are set and cleared by hardware.
C-49

8x931AA, 8x931HA USER’S MANUAL
SOFL Address: D2H
Reset State:0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0

TS7:0

Bit
Number

Bit
Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

SP Address: 81H
Reset State: 0000 0111B

Stack Pointer. The Stack Pointer register is 8-bits wide. It is incremented before data is stored during
PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the stack pointer
is initialized to 07h after reset. This causes the stack to begin at location 08h.

7 0

SP Contents

Bit
Number

Bit
Mnemonic Function

7:0 SP.7:0 Stack Pointer:

Bits 0–7 of the stack pointer.
C-50

REGISTERS
T2CON Address: C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit
Number

Bit
Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK = 1 or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.
C-51

8x931AA, 8x931HA USER’S MANUAL
T2MOD Address: C9H
Reset State: xxxx xx00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0

— — — — — — T2OE DCEN

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T2OE Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.
C-52

REGISTERS
TCON Address: 88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Function

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

Set/cleared by firmware to turn timer 1 on/off.

5 TF0 Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TR0 Timer 0 Run Control Bit:

Set/cleared by firmware to turn timer 0 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IE0 Interrupt 0 Flag:

Set by hardware when an external interrupt is detected on the INT0# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 IT0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).
C-53

8x931AA, 8x931HA USER’S MANUAL

TMOD Address: 89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

Bit
Number

Bit
Mnemonic Function

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATE0 Timer 0 Gate:

When GATE0 = 0, run control bit TR0 gates the input signal to the timer
register. When GATE0 = 1 and TR0 = 1, external signal INT0 gates the
timer input.

2 C/T0# Timer 0 Counter/Timer Select:

C/T0# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/T0# = 1 selects counter operation: timer 0 counts
negative transitions on external pin T0.

1, 0 M10, M00 Timer 0 Mode Select:

M10 M00
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TL0)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL0). Reloaded

from TH0 at overflow.
1 1 Mode 3: TL0 is an 8-bit timer/counter. TH0 is an 8-bit

timer using timer 1’s TR1 and TF1 bits.
C-54

REGISTERS

TH0, TL0 Address: TH0 8CH
TL0 8AH

Reset State: 0000 0000B

TH0, TL0 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 0 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH0.7:0

TL0.7:0

High byte of the timer 0 timer register.

Low byte of the timer 0 timer register.

TH1, TL1 Address: TH1 8DH
TL1 8BH

Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 1 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH1.7:0

TL1.7:0

High byte of the timer 1 timer register.

Low byte of the timer 1 timer register.
C-55

8x931AA, 8x931HA USER’S MANUAL

TH2, TL2 Address:TH2 CDH
TL2 CCH

Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
2.

7 0

High/Low Byte of Timer 2 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH2.7:0

TL2.7:0

High byte of the timer 2 timer register.

Low byte of the timer 2 timer register.

TXCNTL†

(Endpoint-indexed)
Address: F6H

Reset States: xxxx xxxxB

Transmit FIFO Byte-count Register. Ring buffer used to store the byte count for the data packets in the
transmit FIFO specified by EPINDEX.

7 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read††)
Five-bit, ring buffer. Stores transmit byte count for endpoints 0 and 2.

† Byte count registers are not implemented for hub endpoint 1.
†† Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.
C-56

REGISTERS
TXCON
(Endpoint-indexed)

Address: F4H
Reset State: 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT
register.

6:4 — Reserved:

Values read from this bit are indeterminate. Write zeros to these bits.

3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and must
be cleared by firmware.

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)

(1) to origin of next data set (2) to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.
C-57

8x931AA, 8x931HA USER’S MANUAL
1 ADVRM Advance Read Marker Control (non-ATM mode only)†:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This bit
is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)†:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. This bit is effective only when the ADVRM, ATM,
and TXCLR bits are all clear.

TXDAT
(Endpoint-indexed)†

Address: F3H
Reset State: xxxx xxxxB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 TXDAT.7:0 Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

† For hub endpoint 1, TXDAT is used in a different manner. See Figure 7-7 on page 7-12.

TXCON (Continued)
(Endpoint-indexed)

Address: F4H
Reset State: 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer when
ATM = 0, are used for test purposes.
C-58

REGISTERS

TXDAT (For hub endpoint 1 only) EPINDEX=81H† Address: F3H
Reset State: xxxx xxxxB

7 0

— — TXDAT5 TXDAT4 TXDAT3 TXDAT2 TXDAT1 TXDAT0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved:

Values read from this bit(s) are indeterminate.

5:0 TXDAT5:0 Hub Endpoint 1 Status Change (read-only††):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDAT0 hub status change
TXDAT1 port 1 status change
TXDAT2 port 2 status change
TXDAT3 port 3 status change
TXDAT4 port 4 status change
TXDAT5 port 5 status change

A ‘1’ indicates a status change and ‘0’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bit is a ‘1’. If all bits are zero, a NAK handshake is returned.

† TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 6-8 on page 6-16.

†† Bits 5:1 can be set indirectly by firmware by writing to a port’s HPSC SFR. Setting any bit in port x’s
HPSC results in the hardware setting bit x in TXDAT. TXDAT bits can be cleared indirectly in firmware by
clearing all bits in that port’s HPSC.
C-59

8x931AA, 8x931HA USER’S MANUAL
TXFLG
(Endpoint-indexed)

Address: F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIF0 are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
firmware (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF = 1

00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNT for traceability. See
the TXFLUSH bit in TXSTST.
NOTE: To simplify firmware development, configure control endpoints in

single-packet mode.

5:4 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

† When set, all transmissions are NAKed.
C-60

REGISTERS
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag†:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through firmware. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the TXCNT doesn’t agree with the data, hardware sets TXURF. This
indicates that the transmitted data was corrupted by a bit-stuffing or CRC
error.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag†:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

TXFLG (Continued)
(Endpoint-indexed)

Address: F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
C-61

8x931AA, 8x931HA USER’S MANUAL

TXSTAT
(Endpoint-indexed)

Address: F2H
Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): †

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:

Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW Transmit Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. ††

2 TXVOID Transmit Void (read-only): †††

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model”.
C-62

REGISTERS

1 TXERR Transmit Error (read-only):††

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax
with 6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXACK bit at the end of the data
transmission (this bit is mutually exclusive with TXACK). For isochronous
transactions, this bit is not updated until the next SOF.

0 TXACK Transmit Acknowledge (read-only):††

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax with
6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXERR bit at the end of data
transmission (this bit is mutually exclusive with TXERR). For isochronous
transactions, this bit is not updated until the next SOF.

TXSTAT (Continued)
(Endpoint-indexed)

Address: F2H
Reset State: 0xx0 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model”.
C-63

D
Data Flow Model

APPENDIX D
DATA FLOW MODEL

This appendix describes the data flow model for the 8x931 USB transactions. This data flow mod-
el, presented in truth table form, is intended to bridge the hardware and firmware layers of the
8x931. It describes the behavior of the 8x931 in response to a particular USB event, given a
known state/configuration.

The types of data transfer supported by the 8x931 are:

• Non-isochronous transfer (interrupt, bulk)

• Isochronous transfer

• Control transfer

Table D-1. Non-isochronous Transmit Data Flow

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

00 Received IN
token, but no
data or
TXOE = 0.

00 no
chg

no
chg

1 no
chg

no
chg

None NAK No data was
loaded, so
NAK.

Received IN
token,
RXSETUP
=1.

00 no
chg

no
chg

1 no
chg

no
chg

None NAK Control
endpoint only.
Endpoint will
NAK when
RXSETUP =
1 even if
TXSTL = 1.

Data loaded
into FIFO
from CPU,
CNT written.

01 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded
into FIFO,
FIFO error
occurs.

00 no
chg

no
chg

no
chg

1 no
chg

None NAKs
future
transactions

Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-1

8x931AA, 8x931HA USER’S MANUAL
01/10 Received IN
token, data
transmitted,
host ACKs.

00 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data ACK
received, so
no errors.
Read marker
advanced.

Received IN
token, data
transmitted,
no ACK
(time-out).

01/10 1 0 0 no
chg

no
chg

Set
transmit
interrupt

Send data SIE times-out.
Read pointer
reversed.

Received IN
token, but
RXSETUP
= 1 (or
TXOE = 0).

01/10 no
chg

no
chg

1 no
chg

no
chg

None NAK, NAKs
future
transactions
 except
SETUP.

Received
Setup token
(or transmit
disabled), so
IN tokens are
NAKed. (2)

Received IN
token, data
transmitted,
FIFO error
occurs.

01/10 1 0 0 no
chg

1 Set
transmit
interrupt

Send data
with bit-
stuff error.
NAKs
future
transactions
.

Only
underrun FIFO
error can
occur here.
Read pointer
reversed.

Received IN
token with
existing
FIFO error
and TXERR
set.

01/10 1
(no
chg)

0
(no
chg)

1 no
chg

1 (no
chg)

None NAK Treated like a
“void”
condition.

Received IN
token
without
existing
FIFO error
but TXERR
set, data
retransmitte
d, host
ACKs.

00 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data Data is
retransmitted.
TXACK is set
and TXERR is
cleared. The
TXERR was
set by
previous
transaction
when host
time-out.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-2

DATA FLOW MODEL
Data loaded
into FIFO
from CPU,
CNT written.

11 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded
into FIFO,
FIFO error
occurs. CNT
not written
yet.

01/10 no
chg

no
chg

no
chg

1 no
chg

None NAKs future
transactions

Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT

NOTE: no
TXERR, but
TXOVF set.

11 Received IN
token, data
transmitted,
host ACKs.

10/01 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data ACK
received, so
no errors.
Read marker
advanced.

Received IN
token, data
transmitted,
no ACK
(time-out).

11 1 0 0 no
chg

no
chg

Set
transmit
interrupt

Send data SIE times-out.
Read pointer
reversed.

Received IN
token, but
RXSETUP
= 1 (or
TXOE = 0).

11 0 0 1 no
chg

no
chg

None NAK, NAKs
future
transactions

Received
Setup token
(or transmit
disabled), so
IN tokens are
NAKed. (2)

Received IN
token, data
transmitted,
FIFO error
occurs.

11 1 0 0 no
chg

1 Set
transmit
interrupt

Send data
with bit-
stuff error,
NAK future
transactions

Only FIFO
underrun
error can
occur here.
Read pointer
reversed.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-3

8x931AA, 8x931HA USER’S MANUAL
Received IN
token with
existing
FIFO error
and TXERR
set.

11 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None NAK Treated like a
“void”
condition.

Received IN
token
without
existing
FIFO error
but TXERR
set, data
retransmitte
d, host
ACKs.

10/ 01 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data Data is
retransmitted.
TXACK is set
and TXERR is
cleared. The
TXERR was
set by
previous
transaction
when host
time-out.

Data loaded
into FIFO
from CPU,
CNT written.

11 no
chg

no
chg

no
chg

1 no
chg

None N/A Writing into
CNT when
TXFIF = 11
sets TXOVF
bit. Firmware
should always
check TXFIF
bits before
loading.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-4

DATA FLOW MODEL

T
(

0

0

N
1
2

3

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

XFIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

0 Received IN
token, but no
data or TXOE=0.

00 no
chg

no
chg

1 no
chg

no
chg

None Timeout No data was
loaded, so
timeout (i.e.,
no response).
This event
should never
happen.

Data loaded into
FIFO from CPU,
CNT written.

01 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into
FIFO, FIFO
error.

00 no
chg

no
chg

no
chg

1 no
chg

None N/A Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT.

1/10 Received IN
token, data
transmitted with
or without
transmission
error.

00 0 1 0 no
chg

no
chg

None Send data No ACK (time-
out) for ISO.
Read marker
advanced.

Received IN
token, data
transmitted,
FIFO error
occurs.

00 1 0 0 no
chg

1 None Send CRC
with bit-
stuff error

Only underrun
FIFO error can
occur here.
Read marker
advanced.

OTES:
. These are sticky bits, which must be cleared by firmware.
. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

. NOTE: This table assumes TXEPEN and ATM are enabled.
D-5

8x931AA, 8x931HA USER’S MANUAL

.

1

T
(

N
1
2

3

Received IN
token with
existing FIFO
error.

01/10 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None Timeout Treated like a
“void” condition

Received IN
token, but TXOE
= 0.

01/10 0 0 1 no
chg

no
chg

None Timeout Endpoint not
enabled for
transmit, but
no NAK for
ISO.

Data loaded into
FIFO from CPU,
CNT written.

11 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into
FIFO, FIFO error
occurs.

01/10 no
chg

no
chg

no
chg

1 no
chg

None N/A Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT.

Note: no
TXERR, but
TXOVF set.

1 Received IN
token, data
transmitted with
or without
transmission
error.

10/01 0 1 0 no
chg

no
chg

None Send data No ACK (time-
out) for ISO.
Read marker
advanced.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

XFIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

OTES:
. These are sticky bits, which must be cleared by firmware.
. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

. NOTE: This table assumes TXEPEN and ATM are enabled.
D-6

DATA FLOW MODEL

.

T
(

N
1
2

3

Received IN
token, data
transmitted,
FIFO error
occurs.

10/01 1 0 0 no
chg

1 None Send data
with
bitstuffing
error

Only a FIFO
underrun error
can occur
here. Read
marker
advanced.

Received IN
token with
existing FIFO
error.

11 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None Timeout Treated like a
“void” condition

Received IN
token, but TXOE
= 0.

11 0 0 1 no
chg

no
chg

None Timeout Endpoint not
enabled for
transmit, but
no NAK for
ISO.

Receive SOF
indication.

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

None
(SOF
interrupt
 set)

ASOF
set.

None Host never read
last frame’s
ISO. packet.
Read marker
and pointer
advanced,
oldest packet
is flushed from
FIFO.

Data loaded into
FIFO from CPU,
CNT written.

11 no
chg

no
chg

no
chg

1 no
chg

None N/A CNT written
when
TXFIF=11 will
set TXOVF bit.

Firmware
should always
check TXFIF
bits before
loading.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

XFIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

OTES:
. These are sticky bits, which must be cleared by firmware.
. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

. NOTE: This table assumes TXEPEN and ATM are enabled.
D-7

8x931AA, 8x931HA USER’S MANUAL

F
(1

0

)

.

N
1

2
Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

0 Received
OUT token,
but RXIE = 0

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready.

Received
OUT token,
but timed-out
waiting for
data.

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None FIFO not
loaded. Write
pointer
reversed.

Received
OUT token,
no errors.

01 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

Received
OUT token,
data CRC or
bit-stuff error.

00 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write pointer
reversed.
(Possible to
have RXERR
cleared by
hardware
before seen by
firmware.)

Received
OUT token,
FIFO error
occurs.

00 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transactio
ns

Only RXOVF
FIFO error can
occur, requires
firmware
intervention.

Received
OUT token
with FIFO
error already
existing.

00 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to
be a “void”
condition. Will
NAK until
firmware clears
condition.

Received
OUT token,
but data
sequence
mismatch.

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors.

01 0 1 0 1 0 0 Set
receive
interrupt

ACK RXIE or RXSTL
has no effect.(2
RXSETUP will
be set (control
endpoints only)

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-8

DATA FLOW MODEL

.

0

T)

F
(1

N
1

2
Received
SETUP
token, but
timed-out
waiting for
data.

00 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically
and FIFO data
is invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error.

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write pointer
reversed. (2)

Received
SETUP
token, FIFO
error occurs.

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transactio
ns

(2)

Received
SETUP
token with
FIFO error
already
existing.

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received.RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

CPU reads
FIFO,
causes FIFO
error.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAK
future
transactio
ns, except
SETUP

FIFO was
empty when
read. Should
always check
RXFIF bits
before reading.

1 Received
OUT token.

01 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready,
so data is
ignored (CRC or
FIFO error not
possible).

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-9

8x931AA, 8x931HA USER’S MANUAL

.

.

.

.

T

F
(1

N
1

2
Received
SETUP
token, no
errors.

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data.

01 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically
and FIFO data
is invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error.

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write pointer
reversed. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

Received
SETUP
token, FIFO
error occurs.

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transactio
ns

(2) (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing.

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-10

DATA FLOW MODEL

FI
(1:

00 .

d.

NO
1. d.
2.

3.

T

F
(1

N
1

2
CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
set yet.

01 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transactio
ns

Firmware
should check
RXURF bit
before writing
RXFFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transactio
ns

Firmware
should check
RXURF bit
before writing
RXFFRC.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

Received
OUT token,
but RXIE = 0.

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready

Received
OUT token,
but timed-out
waiting for
data.

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None None FIFO not loade
Write pointer
reversed.

Received
OUT token,
no errors.

01 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-11

8x931AA, 8x931HA USER’S MANUAL

e

e

.

o

e

.

nd

FI
(1:

NO
1. d.
2.

3.
Received
OUT token,
data CRC or
bit-stuff error.

00 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write pointer
reversed.
(Possible to hav
RXERR cleared
by hardware
before seen by
firmware.)

Received
OUT token,
FIFO error
occurs.

00 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transaction
s

Only RXOVF
FIFO error can
occur, requires
firmware
intervention.

Received
OUT token
with FIFO
error already
existing.

00 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to b
a “void”
condition. Will
NAK until
firmware clears
condition.

Received
OUT token,
but data
sequence
mismatch.

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data

Received
SETUP
token, no
errors (dual
packet mode
not
recommende
d!).

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data.

00 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically a
FIFO data is
invalid. (2)

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-12

DATA FLOW MODEL

o

e

.

)
e

.

o

e

.

y

ts

01/ .

d.

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, data
CRC or bit-
stuff error
(dual packet
mode not
recommende
d).

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write pointer
reversed, RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, FIFO
error occurs.

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transaction
s

RXIE or RXSTL
has no effect. (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing.

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO,
causes FIFO
error.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAK
future
transaction
s

FIFO was empt
when read.
Should always
check RXFIF bi
before reading.

10 Received
OUT token,
but RXIE = 0.

01/10 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready

Received
OUT token,
but timed-out
waiting for
data.

01/10 no
chg

no
chg

1 no
chg

no
chg

no
chg

None None FIFO not loade
Write pointer
reversed.

Received
OUT token,
no errors.

11 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-13

8x931AA, 8x931HA USER’S MANUAL

e

e

.

o

e

.

FI
(1:

NO
1. d.
2.

3.
Received
OUT token,
data CRC or
bit-stuff error.

01/10 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write pointer
reversed.
(Possible to hav
RXERR cleared
by hardware
before seen by
firmware.)

Received
OUT token,
FIFO error
occurs.

01/10 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transaction
s

Only RXOVF
FIFO error can
occur, requires
firmware
intervention.

Received
OUT token
with FIFO
error already
existing.

01/10 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to b
a “void”
condition. Will
NAK until
firmware clears
condition.

Received
OUT token,
but data
sequence
mismatch.

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data

Received
SETUP
token, no
errors (dual-
packet mode
not
recommende
d).

01/10 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data.

01/10 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically,
forcing new
SETUP to be
received. (2)

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-14

DATA FLOW MODEL

o

)
e

.

e

.

d
it

d
it

11 ,

r

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, data
CRC or bit-
stuff error
(dual-packet
mode not
recommende
d).

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write pointer
reversed. RXIE
or RXSTL has n
effect. (2)

Received
SETUP
token, FIFO
error occurs.

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transaction
s

RXIE or RXSTL
has no effect, (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing.

01/10 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset
automatically,
forcing new
SETUP to be
received. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
set yet.

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transaction
s

Firmware shoul
check RXURF b
before writing
RXFFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transaction
s

Firmware shoul
check RXURF b
before writing
RXFFRC.

Received
OUT token.

11 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready
so data is
ignored (CRC o
FIFO error not
possible).

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-15

8x931AA, 8x931HA USER’S MANUAL

e

.

nd

o

)
e

.

e

.

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, no
errors (dual-
packet mode
not
recommende
d!).

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset
automatically,
forcing new
SETUP to be
received. (2)
RXSETUP will b
set. (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data.

11 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically a
FIFO data is
invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error
(dual-packet
mode not
recommende
d).

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write pointer
reversed. RXIE
or RXSTL has n
effect. (2)

Received
SETUP
token, FIFO
error (dual-
packet mode
not
recommende
d).

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transaction
s

RXIE or RXSTL
has no effect. (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing.

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset
automatically,
forcing new
SETUP to be
received. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC.

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-16

DATA FLOW MODEL

d
it

d
it

FI
(1:

NO
1. d.
2.

3.
CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
written yet.

11 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAKs
future
transaction
s

Firmware shoul
check RXURF b
before writing
FFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAKs
future
transaction
s

Firmware shoul
check RXURF b
before writing
FFRC.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-17

8x931AA, 8x931HA USER’S MANUAL

FI
(1:

00 y,

a

d.

e

n.

.

NO
1. d.
2.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

Received OUT
token, but RXIE
= 0.

00 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read
or timed-out
waiting for dat
packet, but no
NAK sent.

Received OUT
token, but
timed-out
waiting for data.

00 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

FIFO not loade

Received OUT
token, no errors.

01 0 1 0 no
chg

no
chg

None None/
Time-out

Received, no
errors, advanc
write marker.

Received OUT
token, data
CRC or bit-stuff
error.

01 1 0 0 no
chg

no
chg

None None/
Time-out

Bad data still
loaded into
FIFO.

Received OUT
token, FIFO
error occurs.

01 1 0 0 1 no
chg

None None/
Time-out

Only RXOVF
FIFO error can
occur, requires
firmware
intervention.

Received OUT
token with
FIFO error
already existing.

00 1
(no
chg)

0
(no
chg)

1 1
(no
chg)

no
chg

None None/
Time-out

Treated like a
“void” conditio

CPU reads
FIFO, causes
FIFO error.

00 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

FIFO was
empty when
read. Should
always check
RXFIF bits
before reading

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-18

DATA FLOW MODEL

e

d

01/ y.

d.

e

r,

n.

FI
(1:

NO
1. d.
2.

Receive SOF
indication.

no
chg/up
dated

up-
dated

up-
dated

up-
dated

up-
dated

no
chg

None
(SOF
interrupt)

None/
Time-out

Flags are
updated at
SOF. Firmwar
must check for
RXFIF = 00
condition to
detect no ISO
packet receive
this frame.

10 Received OUT
token, but RXIE
= 0.

01/10 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read

Received OUT
token, but
timed-out
waiting for data.

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

FIFO not loade

Received OUT
token, no errors.

11 0 1 0 no
chg

no
chg

None None/
Time-out

Received, no
errors, advanc
write marker.

Received OUT
token, data
CRC or bit-stuff
error.

11 1 0 0 no
chg

no
chg

None None/
Time-out

Possible to
have RXERR
cleared by
hardware
before seen by
firmware.
Reverse write
pointer.

Received OUT
token, FIFO
error occurs.

11 1 0 0 1 no
chg

None None/
Time-out

Only OVF FIFO
error can occu
requires
firmware
intervention.

Received OUT
token with
FIFO error
already existing.

01/10 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

Treated like a
“void” conditio

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-19

8x931AA, 8x931HA USER’S MANUAL

11 y,
e

ld

y

w

FI
(1:

NO
1. d.
2.

CPU reads
FIFO, sets
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

CPU reads
FIFO, causes
FIFO error.

00 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Firmware
should check
RXURF bit
before writing
RXFFRC.

Received OUT
token.

11 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read
but data must b
taken. This
situation shou
never happen.

Received SOF
indication.

no
chg/
up-
dated

up-
dated

up-
dated

up-
dated

up-
dated

no
chg

None
(SOF
interrupt)

None/
Time-out

Error condition
(not handled b
hardware).
Firmware
should not allo
this condition.

CPU reads
FIFO, sets
RXFFRC.

10 or
01

no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

CPU reads
FIFO, causes
FIFO error.
RXFFRC not
set yet.

11 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Firmware
should check
RXURF bit
before writing
RXFFRC.

CPU reads
FIFO, causes
FIFO error. Set
RXFFRC.

10 or
01

no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Firmware
should check
RXURF bit
before writing
RXFFRC.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-20

E
8x931AA Design
Considerations

-2

APPENDIX E
8x931AA DESIGN CONSIDERATIONS

This appendix describes the differences between the hubless 8x931AA and the 8x931HA. The
8x931HA is described in the rest of this document.

E.1 DIFFERENCES BETWEEN THE 8x931AA AND THE 8x931HA

The 8x931AA differs from the 8x931HA in many ways, including:

• The 8x931AA does not support hub operations and has no hub interface, hub repeater, or
hub FIFOs. These features, included in the 8x931HA only, are discussed in “Universal
Serial Bus Module” on page 2-11 and “Hub Operation” on page 8-17.

• The 8x931AA has no hub interrupt. The 8x931HA hub interrupt is discussed in “USB Hub
Interrupt” on page 5-15.

• Because there is no on-chip hub, Chapter 7, “USB Hub” does not apply to the 8x931AA.

• The 8x931AA has no Hub Address Register (HADDR), so its enumeration process is
simpler than the 8x931HA enumeration process given in “Enumeration” on page 8-2. The
8x931AA enumeration process is given in “8x931AA Enumeration Process” on page E

• The hub programming models described in “Hub Operation” on page 8-17 do not apply to
the 8x931AA.

• Since the 8x931AA peripheral controller does not support a hub interface, there are no
downstream ports to signal a resume condition. A resume condition can still be signalled by
any of the other conditions described in “Global Resume Mode” on page 14-9.

• The 8x931HA SFR map given in Appendix C, “Registers” does not apply to the 8x931AA.
The 8x931AA SFRs are given in “8x931AA SFR Map” on page E-10.

• The 8x931AA pin and signal descriptions differ from those described in Appendix B, “Pin
Descriptions”. See “8x931AA Pin Descriptions” on page E-3 and “8x931AA Signal
Descriptions” on page E-6.

• The 8x931AA allows operating frequency selection using the FSSEL pin. See “Operating
Frequencies” on page E-9.
E-1

8x931AA, 8x931HA USER’S MANUAL

ne

ction

e such
ize

. For

er in
r,

he
E.2 8x931AA ENUMERATION PROCESS

The 8x931AA enumeration process is simpler than the 8x931HA bus enumeration process given
in “Enumeration” on page 8-2. The 8x931AA enumeration process has four steps:

1. Get device descriptor. The host requests and reads the device descriptor to determi
maximum packet size.

2. Set address. The host sends the 8x931’s function address in a data packet using function
endpoint 0. Device firmware interprets the data and instructs the CPU to write the fun
address to FADDR.

3. Get device descriptor. The host requests and reads the device descriptor to determin
information as device class, USB specification compliance level, maximum packet s
for endpoint 0, vendor id, product id, etc.

4. Get configuration descriptor. The host requests and reads the device configuration
descriptor to determine such information as the number of interfaces and endpoints;
endpoint transfer type, packet size, and direction; power source; maximum power; etc
detailed information on configuration descriptors, see the “Device Framework” chapt
Universal Serial Bus Specification. When the host requests the configuration descripto
all related interface and endpoint descriptors are returned.

5. Set configuration. The host assigns a configuration value to the device to establish t
current configuration. Devices can have multiple configurations.
E-2

8X931AA DESIGN CONSIDERATIONS
E.3 8x931AA PIN DESCRIPTIONS

Figure E-1. 8x931AA 64-pin QFP Package

Reserved (NC)
Reserved (NC)
Reserved (NC)
Reserved (NC)
DP0
DM0
ECAP
VSSP
VCCP
VSS
Reserved (NC)
Reserved (NC)
Reserved (NC)
Reserved (NC)
LED0
LED1

A
D

7
/ P

0.
7

/ K
S

I7
A

8
/ P

2.
0

/ K
S

O
8

A
9

/ P
2.

1
/ K

S
O

9
A

10
 /

P
2.

2
/ K

S
O

10
A

11
 /

P
2.

3
/ K

S
O

11
A

12
 /

P
2.

4
/ K

S
O

12
A

13
 /

P
2.

5
/ K

S
O

13
A

14
 /

P
2.

6
/ K

S
O

14
A

15
 /

P
2.

7
/ K

S
O

15
V

S
S

V
C

C
P

E
A

#
A

LE
P

S
E

N
#

F
S

S
E

L
V

S
S

P

AD6 / P0.6 / KSI6
AD5 / P0.5 / KSI5
AD4 / P0.4 / KSI4
AD3 / P0.3 / KSI3
AD2 / P0.2 / KSI2
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

VSSP
VCC
P3.0

P3.1 / SOF#
P3.2 / INT0#
P3.3 / INT1#

P3.4 / T0 / KSO16
P3.5 / T1 / KSO17

P3.6 / WR# / KSO18

P
3.

7
/ R

D

/ K
S

O
19

P
1.

0
/ T

2
/ K

S
O

0
P

1.
1

/ T
2E

X
 /

K
S

O
1

P
1.

2
/ K

S
O

2
P

1.
3

/ K
S

O
3

P
1.

4
/ K

S
O

4
P

1.
5

/ K
S

O
5

P
1.

6
/ R

X
D

 /
K

S
O

6
 P

1.
7

/ T
X

D
 /

K
S

O
7

LE
D

3
LE

D
2

X
T

A
L1

X
T

A
L2

A
V

C
C

R
S

T
P

LL
S

E
L

A5347-02

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

View of component as
mounted on PC board

8x931Ax

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

Notes:
Reserved pins must be left unconnected..
E-3

8x931AA, 8x931HA USER’S MANUAL

Figure E-2. 8x931AA 68-pin PLCC

Reserved (NC)
Reserved (NC)
Reserved (NC)
Reserved (NC)
VCC
DP0
DM0
ECAP
VSSP
VCCP
VSS
Reserved (NC)
Reserved (NC)
VSSP
Reserved (NC)
Reserved (NC)
LED0

A
8

/ P
2.

0
/ K

S
O

8
A

9
/ P

2.
1

/ K
S

O
9

A
10

 /
P

2.
2

/ K
S

O
10

A
11

 /
P

2.
3

/ K
S

O
11

A
12

 /
P

2.
4

/ K
S

O
12

A
13

 /
P

2.
5

/ K
S

O
13

A
14

 /
P

2.
6

/ K
S

O
14

A
15

 /
P

2.
7

/ K
S

O
15

V
S

S
V

C
C

P
E

A
#

A
LE

P
S

E
N

#
F

S
S

E
L

V
S

S
P

R
es

er
ve

d
(N

C
)

R
es

er
ve

d
(N

C
)

A5348-02

AD7 / P0.7 / KSI7
AD6 / P0.6 / KSI6
AD5 / P0.5 / KSI5
AD4 / P0.4 / KSI4
AD3 / P0.3 / KSI3
AD2 / P0.2 / KSI2
AD1 / P0.1 / KSI1
AD0 / P0.0 / KSI0

VSSP
VCC
P3.0

P3.1 / SOF#
P3.2 / INT0#
P3.3 / INT1#

P3.4 / T0 / KSO16
P3.5 / T1 / KSO17

P3.6 / WR# / KSO18

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

View of component as
mounted on PC board

8x931Ax

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

P
3.

7
/ R

D

/ K
S

O
19

P
1.

0
/ T

2
/ K

S
O

0
P

1.
1

/ T
2E

X
 /

K
S

O
1

P
1.

2
/ K

S
O

2
P

1.
3

/ K
S

O
3

P
1.

4
/ K

S
O

4
P

1.
5

/ K
S

O
5

P
1.

6
/ R

X
D

 /
K

S
O

6
 P

1.
7

/ T
X

D
 /

K
S

O
7

LE
D

3
LE

D
2

X
T

A
L1

X
T

A
L2

A
V

C
C

R
S

T
P

LL
S

E
L

LE
D

1

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

Note:
Reserved pins must be left unconnected.
E-4

8X931AA DESIGN CONSIDERATIONS

Table E-1. 8x931AA Signals Arranged by Functional Category

Address and Data Input/Output USB

AD7:0 I/O P0.7:0 I/O DM0 I/O

A15:8 I/O P1.7:0 I/O DP0 I/O

P2.7:0 I/O ECAP I

Keyboard Scan I/O P3.7:0 I/O

KSO19:0 O T0 I PLLSEL I

KSI7:0 I T1 I SOF# O

FSSEL O

LED Drivers Processor Control

LED3:0 O EA# I Power & Ground

INT0# I AVCC PWR

Bus Control INT1# I VCC PWR

ALE O RST I VCCP PWR

PSEN# O XTAL1 I VSS GND

RD# O XTAL2 O VSSP GND

WR# O
E-5

8x931AA, 8x931HA USER’S MANUAL
E.4 8x931AA SIGNAL DESCRIPTIONS

Table E-2. 8x931AA Signal Descriptions

Signal
Name Type Description Alternate

Function

A15:8 O Address Lines. Upper byte of external memory address. P2.7:0/KSO15:7

AD7:0 I/O Address/Data Lines. Lower byte of external memory address
multiplexed with data

P0.7:0/KSI7:0

ALE O Address Latch Enable. ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

—

AVCC PWR Analog VCC. A separate VCC input for the phase-locked loop
circuitry.

—

DM0, DP0 I/O USB Port 0. DP0 and DM0 are the data plus and data minus
lines of USB port 0, the upstream differential port. These lines
do not have internal pullup resistors. For low-speed devices,
provide an external 1.5 KΩ pullup resistor at DM0. For full-speed
devices, provide an external 1.5 KΩ pullup resistor at DP0.

NOTE: For the 8x931AA, either DP0 or DM0 must be pulled high.
Otherwise a continuous SEO (USB reset) will be applied to
these inputs causing the 8x931AA to stay in reset.

—

EA# I External Access. Directs program memory accesses to on-
chip or off-chip code memory. For EA# strapped to ground, all
program memory accesses are off-chip. For EA# strapped to
VCC, program accesses on-chip ROM if the address is within the
range of the on-chip ROM; otherwise the access is off-chip. The
value of EA# is latched at reset. For devices without on-chip
ROM, EA# must be strapped to ground.

—

ECAP I External Capacitor. Connect a 1 µF or larger capacitor
between this pin and VSS to ensure proper operation of the
differential line drivers.

—

FSSEL Full-speed Select. See Table E-3 on page E-9. —

INT1:0# I External Interrupts 0 and 1. These inputs set the IE1:0
interrupt flags in the TCON register. Bits IT1:0 in TCON select
the triggering method: edge-triggered (high-to-low) or level
triggered (active low). INT1:0 also serves as external run
control for timer1:0 when selected by GATE1:0# in TCON.

P3.3:2

KSI7:0 I Keyboard Scan Input. Schmitt-trigger inputs with firmware-
enabled internal pullup resistors used for the input side of the
keyboard scan matrix.

AD7:0/P0.7:0

KSO19
KSO18
KSO17:16
KSO15:8
KSO7:0

O Keyboard Scan Output. Quasi-bidirectional ports with weak
internal pullup resistors used for the output side of the keyboard
scan matrix.

P3.7/RD#
P3.6/WR#
P3.5:4/T1:0
A15:8/P2.7:0
P1.7:0
E-6

8X931AA DESIGN CONSIDERATIONS
LED3:0 O LED Drivers. Designed to drive LEDs connected directly to
VCC. The current each driver is capable of sinking is given as
VOL2.

—

P0.7:0 I/O Port 0. Eight-bit, open-drain, bidirectional I/O port. Port 0 pins
have Schmitt trigger inputs.

AD7:0/KSI7:0

P1.7:0 I/O Port 1. Eight-bit quasi-bidirectional I/O port with internal
pullups.

KSO7:0

P2.7:0 I/O Port 2. Eight-bit quasi-bidirectional I/O port with internal
pullups.

A15:8/KSO15:8

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

I/O Port 3. Eight-bit quasi-bidirectional I/O port with internal
pullups. SOF#

INT0#
INT1#
T0/KSO16
T1/KSO17
WR#/KSO18
RD#/KSO19

PLLSEL I Phase-locked Loop Select. See Table E-3 on page E-9. —

PSEN# O Program Store Enable. Read signal output. Asserted for read
accesses to external program memory. —

RD# O Read. Read signal output. Asserted for read accesses to
external data memory.

P3.7/KSO19

RST I Reset. Reset input to the chip. Holding this pin high for 64
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than VIH1 is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor
which allows the device to be reset by connecting a capacitor
between this pin and VCC.

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

—

RXD I/O Receive Serial Data. RXD sends and receives data in serial
I/O mode 0 and receives data in serial I/O modes 1,2, and 3.

P1.6

SOF# O Start of Frame. Start of frame pulse. Active low. Asserted for 8
states (see Table 2-3 on page 2-9) when frame timer is locked
to USB frame timing and SOF token or artificial SOF is
detected.

P3.1

T1:0 I Timer 1:0 External Clock Input. When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4/KSO17:16

T2 I/O Timer 2 Clock Input/Output. For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

P1.0

Table E-2. 8x931AA Signal Descriptions (Continued)

Signal
Name Type Description Alternate

Function
E-7

8x931AA, 8x931HA USER’S MANUAL
T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1=up, 0=down.

P1.1

TXD O Transmit Serial Data. TXD outputs the shift clock in serial I/O
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P1.7

VCC PWR Supply Voltage. Connect this pin to the +5V supply voltage. —

VCCP PWR Supply Voltage for I/O buffers. Connect this pin to the +5V
supply voltage. —

VSS GND Circuit Ground. Connect this pin to ground. —

VSSP GND Circuit Ground for I/O buffers. Connect this pin to ground. —

WR# O Write. Write signal output to external memory. P3.6/KSO19

XTAL1 I Oscillator Amplifier Input. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator
across XTAL1 and XTAL2. If an external clock source is used,
connect it to this pin.

—

XTAL2 O Oscillator Amplifier Output. When implementing the on-chip
oscillator, connect the external crystal or ceramic resonator
across XTAL1 and XTAL2. If an external oscillator is used,
leave XTAL2 unconnected.

—

Table E-2. 8x931AA Signal Descriptions (Continued)

Signal
Name Type Description Alternate

Function
E-8

8X931AA DESIGN CONSIDERATIONS
E.5 OPERATING FREQUENCIES

8x931AA operating frequencies and USB rates are shown in Table E-3.
 .

Table E-3. 8x931AA Operating Frequencies

PLLSEL
 Pin

FSSEL
Pin

LC Bit
(1)

XTAL1
Frequency

(MHz)

USB Rate
(FS/LS)

(2)

Core
Frequency

FCLK
(Mhz)

Comment

0 0 0 6 LS 3 PLL Off

0 0 1 6 LS 3 PLL Off

1 0 0 12 LS 6 PLL Off

1 0 1 12 LS 3 PLL Off

1 1 0 12 FS 6 PLL On

1 1 1 12 FS 3 PLL On

NOTES:
1. Reset and power up routines set the LC bit in PCON to put the 8x931AA in low-clock mode (core

frequency = 3 MHz) for lower ICC prior to device enumeration. Following completion of device
enumeration, firmware should clear the LC bit to exit the low-clock mode. The user may switch the
core frequency back and forth at any time, as needed.

2. USB rates: Low speed = 1.5 Mbps; Full speed = 12 Mbps. The USB sample rate is 4X the USB rate.
E-9

8x931AA, 8x931HA USER’S MANUAL
E.6 8x931AA SFR MAP

The 8x931AA SFR map (Table E-4 on page E-10) is identical to the 8x931HA SFR map, except
the 8x931AA has no hub-related SFRs.

Table E-4. 8x931AA SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 KBCON
0xx00000

FF

F0 B

00000000

EPINDEX
1xxxxx00

TXSTAT
0xx00000

TXDAT
xxxxxxxx†

TXCON
0xxx0100†

TXFLG
00xx1000

TXCNTL
xxxxxxxx†

F7

E8 EF

E0 ACC
00000000

EPCON
00d10d0d†

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0xx00100

RXFLG
00xx1000

RXCNTL
xxxxxxxx†

E7

D8 PCON1
xxxxx000

DF

D0 PSW
00000000

SOFL
00000000

SOFH
00001000

D7

C8 T2CON
00000000

T2MOD
xxxx xx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

CF

C0 FIFLG
xx000000

C7

B8 IPL0
x0000000

SADEN
00000000

BF

B0 P3
11111111

IEN1
00000000

IPL1
00000000

IPH1
00000000

IPH0
00000000

B7

A8 IEN0
00000000

SADDR
00000000

AF

A0 P2
11111111

FIE
xx000000

A7

98 SCON
00000000

SBUF
xxxxxxxx

9F

90 P1
11111111

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

PCON
001d0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS® 51 microcontroller SFRs

Endpoint-indexed SFRs

† For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 6, “USB Function”.

NOTE: “d” in the SFR reset value denotes configuration/operation dependence. Refer to the specific SFR
description for more details.
E-10

Glossary

inol-

.

.

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (“Guide to this Manual” on page 1-1 discusses notational conventions and general term
ogy.)

#data An 8-bit constant that is immediately addressed in an instruction

#data16 A 16-bit constant that is immediately addressed in an instruction

ACK Acknowledgment. Handshake packet indicating a positive
acknowledgment.

accumulator Instructions in the MCS® 51 architecture use the accumulator as
both source and destination for calculations and moves..

addr11 An 11-bit destination address. The destination can be anywhere in
the same 2 Kbyte block of memory as the first byte of the next
instruction.

addr16 A 16-bit destination address. The destination can be anywhere
within the same 64 Kbyte region as the first byte of the next
instruction.

ALU Arithmetic-logic unit. The part of the CPU that processes
arithmetic and logical operations.

assert The term assert refers to the act of making a signal active
(enabled). The polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symbol (#) suffix;
active-high signals have no suffix. To assert RD# is to drive it low;
to assert ALE is to drive it high.

big endien form Method of storing data that places the most significant byte at
lower storage addresses.

bit A binary digit.

bit (operand) An addressable bit in the 8x931 architecture.

bit stuffing Insertion of a ‘0’ bit into a data stream to cause an electrical
transition on the data wires allowing a PLL to remain locked.

bulk transfer Non-periodic, large, “bursty” communication typically used for a
transfer that can use any available bandwidth and can also be
delayed until bandwidth is available.

bus enumeration Detecting and identifying USB devices.

byte Any 8-bit unit of data.
Glossary-1

8x931AA, 8x931HA USER’S MANUAL

FR

.

e
red
ess

m
ode.

e
t

oded
its
clear The term clear refers to the value of a bit or the act of giving it a
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.

code memory See program memory.

control transfer One of four USB transfer types. Control transfers support
configuration/command /status type communications between
client and function.

dir8 An 8-bit direct address. This can be a memory address or an S
address.

DPTR The 16-bit data pointer.

deassert The term deassert refers to the act of making a signal inactive
(disabled). The polarity (high/low) is defined by the signal name
Active-low signals are designated by a pound symbol (#) suffix;
active-high signals have no suffix. To deassert RD# is to drive it
high; to deassert ALE is to drive it low.

device address The address of a device on the Universal Serial Bus. The devic
address is the default address when the USB device is first powe
or reset. Hubs and functions are assigned a unique device addr
by USB firmware.

doping The process of introducing a periodic table Group III or Group V
element into a Group IV element (e.g., silicon). A Group III
impurity (e.g., indium or gallium) results in a p-type material. A
Group V impurity (e.g., arsenic or antimony) results in an n-type
material.

edge-triggered The mode in which a device or component recognizes a falling
edge (high-to-low transition), a rising edge (low-to-high
transition), or a rising or falling edge of an input signal as the
assertion of that signal. See also level-triggered.

encryption array An array of key bytes used to encrypt user code as it is read fro
code memory; protects against unauthorized access to user’s c

endpoint A uniquely identifiable portion of a USB device that is the sourc
or sink of information in a commun-ication flow between the hos
and the device.

EPP Endpoint pair. See endpoint.

external address A 16-bit address presented on the device pins. The address dec
by an external device depends on how many of these address b
the external system uses. See also internal address.
Glossary-2

GLOSSARY
FCLK Microcontroller internal clock frequency distributed to the CPU
and on-chip peripherals.

FET Field-effect transistor.

FIFO First-in, first-out data buffer. Each USB endpoint pair has a
transmit FIFO and a receive FIFO.

FIU Function Interface Unit. Its function is to manage the data
transaction that goes between the 8x931 and the USB host based on
the transfer type and the FIFOs condition.

FOSC Frequency at pin XTAL1. The frequency of the on-chip oscillator
or external source.

frame The time from the start of one SOF token to the start of the
subsequent SOF token (1 msec); consists of a series of transactions.

function A USB device that provides a capability to the host. For example,
an ISDN connection, a digital microphone, or speakers.

handshake packet A packet that acknowledges or rejects a specific condition. For
examples, see ACK and NACK.

HIU Hub Interface Unit.

host The host computer system where the USB host controller is
installed. This includes the host hardware platform (CPU, bus, etc.)
and the operating system in use.

hub A Universal Serial bus device that provides additional connections
to the Universal Serial Bus.

idle mode The power conservation mode that freezes the core clocks but
leaves the peripheral clocks running.

input leakage Current leakage from an input pin to power or ground.

integer Any member of the set consisting of the positive and negative
whole numbers and zero.

internal address The 16-bit address that the device generates. See also external
address.

interrupt handler The module responsible for handling interrupts that are to be
serviced by user-written interrupt service routines.

interrupt latency The delay between an interrupt request and the time when the first
instruction in the interrupt service routine begins execution.

interrupt response time The time delay between an interrupt request and the resulting break
in the current instruction stream.
Glossary-3

8x931AA, 8x931HA USER’S MANUAL
interrupt service routine (ISR) The firmware routine that services an interrupt.

interrupt transfer One of four USB transfer types. Interrupt transfer characteristics
are small data, non periodic, low frequency, bounded latency,
device initiated communication typically used to notify the host of
device service needs.

ISO Isochronous

isochronous data A stream of data whose timing is implied by its delivery rate.

isochronous transfer One of four USB transfer types, isochronous transfers provide
periodic, continuous communication between host and device.

level-triggered The mode in which a device or component recognizes a high level
(logic one) or a low level (logic zero) of an input signal as the
assertion of that signal. See also edge-triggered.

low-clock mode The default mode upon reset, low-clock mode ensures that the ICC
drawn by the 8x931 is less than one unit load (FCLK = 3MHz).

machine cycle One machine cycle equals six state times.

maskable interrupt An interrupt that can be disabled (masked) by its individual mask
bit in an interrupt enable register.

MSB Most-significant bit of a byte or most-significant byte of a word.

multiplexed bus A bus on which the data is time-multiplexed with (some of) the
address bits.

n-channel FET A field-effect transistor with an n-type conducting path (channel).

n-type material Semiconductor material with introduced impurities (doping)
causing it to have an excess of negatively charged carriers.

nonmaskable interrupt An interrupt that cannot be disabled (masked).

npn transistor A transistor consisting of one part p-type material and two parts n-
type material.

NRZI Non Return to Zero Invert. A method of encoding serial data in
which ones and zeroes are represented by opposite and alternating
high and low voltages where there is no return to zero (reference)
voltage between encoded bits. Eliminates the need for clock pulses.

p-channel FET A field-effect transistor with a p-type conducting path.

p-type material Semiconductor material with introduced impurities (doping)
causing it to have an excess of positively charged carriers.

PC Program counter.
Glossary-4

GLOSSARY

med

col

OF
phase-locked loop A circuit that acts as a phase detector to keep an oscillator in phase
with an incoming frequency.

PID Packet ID. A field in a USB packet that identifies the type of packet
and hence its format.

PLL See phase-locked loop.

program memory A part of memory where instructions can be stored for fetching and
execution.

powerdown mode The power conservation mode that freezes both the core clocks and
the peripheral clocks.

rel A signed (two’s complement) 8-bit, relative destination address.
The destination is -128 to +127 bytes relative to the first byte of the
next instruction.

reserved bits Register bits that are not used in this device but may be used in
future implementations. Avoid any firmware dependence on these
bits. In the 8x931, the value read from a reserved bit is
indeterminate; do not write a “1” to a reserved bit.

resume Once a device is in the suspend state, its operation can be resu
by receiving non-idle signaling on the bus. See also suspend.

RT Real-time

root hub A USB hub directly attached to the host controller. This hub is
attached to the host; tier 0.

root port The upstream port on a hub.

SE0 Single-ended zero. This is a reference to the USB reset signal
which is defined as both DP0 and DM0 below their threshold
voltage.

SIE Serial Bus Interface Engine. Handles the communications proto
of the USB.

set The term set refers to the value of a bit or the act of giving it a
value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value.

SFR A special function register that resides in its associated on-chip
peripheral or in the 8x931 core.

sink current Current flowing into a device to ground. Always a positive value.

SOF Start of Frame. The SOF is the first transaction in each frame. S
allows endpoints to identify the start of frame and synchronize
internal endpoint clocks to the host.
Glossary-5

8x931AA, 8x931HA USER’S MANUAL

ed

source current Current flowing out of a device from VCC. Always a negative
value.

SP Stack pointer.

state time (or state) The basic time unit of the device; With XTAL1 = 12 MHz and two
TOSC periods per state, one state = 166.7 ns.

suspend A low current mode used when the USB bus is idle. The 8x931
enters suspend when there is a constant idle state on the bus lines
for more than 3.0 msec. When a device is in suspend state, it draws
less than 500 µA from the bus. See also resume.

token packet A type of packet that identifies what transaction is to be perform
on the bus.

USB Universal Serial Bus. An industry-standard extension to the PC
architecture with a focus on Computer Telephony Integration
(CTI), consumer, and productivity applications.
Glossary-6

Index

INDEX
A
A15:8, 9-1
A16, 9-1
AC flag, 4-2, C-39
ACALL instruction, A-8, A-9
ACC, C-3, C-6
AD7:0, 9-1
ADD instruction, A-4
ADDC instruction, A-4
addr11, A-2
addr16, A-2
Address spaces

See also Memory space, SFRs, Register file,
External file, Compatibility

AJMP instruction, A-8
ALE

caution, 13-7
idle mode, 14-6

ANL instruction
for bits, A-7

ANL/ instruction
for bits, A-7

Application notes, 1-6
Arithmetic instructions, 4-5

table of, A-4, A-5

B
B register, C-6

as SFR, C-3
Baud rate, See Serial I/O port, Timer 1, Timer 2
bit51, A-2
Boolean Instructions, 4-12
Broadcast address, See Serial I/O port
Bulletin board service (BBS), 1-7, 1-8
Bus cycles

See External bus cycles

C
Capacitors

bypass, 13-2
CEX3, 9-1
CJNE instruction, A-8
Clock

external, 13-3
idle and powerdown modes, 14-7
idle mode, 14-6
on-chip crystal, 2-7

PLLSEL, 2-9
PLLSEL2:0, 13-1
powerdown mode, 14-8
sources, 13-2
USB rates (table), 2-9

CLR instruction, A-5, A-7
Core, 2-6

SFRs, C-3
CPL instruction, A-5, A-7
CPU, 2-6
Crystal

on-chip oscillator, 13-2
CY flag, 4-2, C-39

D
DA instruction, A-5
Data Transfer, 4-8

instructions, table of, 4-8, A-7
Datasheets

on WWW, 1-7
DEC instruction, A-4
Descriptors

bDescLength, 7-8
bDescriptorType, 7-8
bHubContrCurrent, 7-8
bNbrPorts, 7-8
bPwrOn2PwrGood, 7-8
DeviceRemovable, 7-8
PortPwrCtrlMask, 7-8
wHubCharacteristics, 7-8

dir8, A-2
DIV instruction, A-5
DJNZ instruction, A-8
Documents

ordering, 1-7
related, 1-6

DPH, DPL, C-7
as SFRs, C-3

E
Encryption, 16-1
Encryption array, 16-1

key bytes, 16-5
EPCON, 6-7, C-8
EPINDEX, 6-6, C-10
External bus

inactive, 15-2
Index-1

8x931AA, 8x931HA USER’S MANUAL
pin status, 15-4
External bus cycles, 15-2–15-4

nonpage mode, 15-3
External code memory

idle mode, 14-6
powerdown mode, 14-8

External Interrupts, 5-6, See Interrupts
External interrupt 2 enable, 5-25, C-28
External memory

design examples, 15-6–15-8
External RAM, 4-10

example, 15-8
exiting idle mode, 14-7

F
F0 flag, 4-2, C-39
FADDR, 6-14, C-11
FaxBack service, 1-7
FIE, 5-4, 5-9, 6-3, C-3, C-12
FIFLG, 5-4, 5-11, 6-3, C-3, C-13, C-14
Frame timer, 5-11

G
Given address, See Serial I/O port
Global suspend interrupt, 5-17

H
HADDR, 7-7, 7-8, 8-2
Help desk, 1-7
HIE, 5-4, 5-15, C-3, C-15
HIFLG, 5-4, 5-16, C-3, C-16
HPCON, 7-15, C-17
HPINDEX, 7-24, C-18
HPPWR, 7-28, C-19
HPSC, 7-21, C-21
HPSTAT, 7-18, C-23
HSTAT, 7-9, C-25
Hub. See USB, hub

I
I/O ports, 9-1–9-8

external memory access, 9-7
latches, 9-2
loading, 9-7
pullups, 9-6
quasi-bidirectional, 9-6

See also Ports 0–3
Idle mode, 2-6, 14-1, 14-6–14-7

entering, 14-6
exiting, 13-5, 14-7
external bus, 15-2

IEN0, 5-4, 5-6, 5-24, 11-11, 14-9, C-3, C-27
IEN1, 5-4, 5-25, C-3, C-28
INC instruction, A-4
Instruction set

MCS 51 architecture, A-1–A-58
INT1#, 9-1
INT1:0#, 5-1, 9-1, 10-1, 10-2

pulse width measurements, 10-10
INT2# interrupt, 5-6
Intel Architecture Labs, 1-8
Interrupt request, 5-1

cleared by hardware, 5-6, 5-7
Interrupt service routine

exiting idle mode, 14-7
exiting powerdown mode, 14-8

Interrupts, 5-1–5-32
detection, 5-6
edge-triggered, 5-6
enable/disable, 5-24
exiting idle mode, 14-7
exiting powerdown mode, 14-8
external (INT1:0#), 5-1, 5-6, 14-9
global enable, 5-24
global resume, 5-17
global resume (GRSM), 14-5, 14-7, C-38
global suspend (GSUS), 14-5, 14-7, C-38
handler, 2-11
hub, 5-7
keyboard scan, 5-6, 5-7
level-triggered, 5-6
priority, 5-1, 5-4, 5-6, 5-7, 5-26–5-29, C-3
priority within level, 5-26
request, See Interrupt request
sampling, 5-6
service routine (ISR), 5-6, 5-7
sources, 5-2
timer/counters, 5-7
vectors, 5-6, 5-7

IPH0, 5-4, 5-27, C-3, C-29
bit definitions, 5-26

IPH1, 5-4, 5-29, C-3, C-31
bit definitions, 5-26

IPL0, 5-4, 5-28, C-3, C-30
Index-2

INDEX
bit definitions, 5-26
IPL1, 5-4, 5-30, C-3, C-32

bit definitions, 5-26
Isochronous RX dataflow

Dual-packet mode, D-18
Isochronous TX dataflow

Dual-packet mode, D-5
ISR, See Interrupts, service routine

J
JB instruction, A-8
JBC instruction, A-8
JC instruction, A-8
JMP instruction, A-8
JNB instruction, A-8
JNC instruction, A-8
JNZ instruction, A-8
JZ instruction, A-8

K
KBCON, 12-1
Key bytes, See Encryption array
Keyboard control signals, 12-2
Keyboard interrupt logic, 12-3
Keyboard scan, 12-2

interrupt, 5-6, 5-7
interrupt enable bit, 5-25, C-28
matrix, 12-2

L
LED drivers, 12-2, 12-4
LJMP instruction, A-8
Lock bits

protection types, 16-4
verifying, 16-1

Logical instructions, 4-7
table of, 4-6, A-5

Low clock mode, 14-1, 14-13
entering, 14-13
exiting, 14-13

M
MCS® 51, 1-1

 architecture features, 2-5–2-6
Microcontroller core, 2-6
Miller effect, 13-3

MOV instruction, A-6
for bits, A-7

MOVC instruction, A-6
Move instructions

table of, A-6
MOVX instruction, A-6

N
Noise reduction, 13-2, 13-3
Non-isochronous RX dataflow

dual-packet mode, D-11
single-packet mode, D-8

Non-isochronous TX dataflow, D-1
Nonvolatile memory

verifying, 16-1–16-6
NOP instruction, A-8

O
On-chip code memory

idle mode, 14-6
setup for verifying, 16-2–16-3
top eight bytes, 16-5

On-chip oscillator
hardware setup, 13-1

On-chip RAM
idle mode, 14-6
reset, 13-6

ONCE mode, 14-1
entering, 14-13
exiting, 14-13

Opcodes
map, A-3

ORL instruction
for bits, A-7

ORL/ instruction
for bits, A-7

Oscillator
at startup, 13-7
ceramic resonator, 13-3
during reset, 13-5
on-chip crystal, 2-7, 13-2
ONCE mode, 14-13
powerdown mode, 14-8
verifying nonvolatile memory, 16-2

OV bit, 4-2, C-39
Overflow See OV bit
OVRI # pin, 7-29
Index-3

8x931AA, 8x931HA USER’S MANUAL
P
P bit, 4-2, C-39
P0, 9-2, C-4, C-34
P1, 9-2, C-4, C-34
P2, 9-2, C-4, C-34
P3, 9-2, C-4, C-35
Page mode

bus cycles, See External bus cycles, page
mode

PCON, 11-7, 14-3, 14-4, 14-7, C-3, C-36, C-37
idle mode, 14-6
powerdown mode, 14-8, 14-9
reset, 13-5

PCON1, 5-4, 14-7, C-3
Phase 1 and phase 2, 2-8
Phone numbers, customer support, 1-7
Pin conditions, 14-6
Pins

unused inputs, 13-2
POP instruction, A-7
Port 0, 9-2

structure, 9-3
Port 1, 9-2

structure, 9-3
Port 2, 9-2

structure, 9-4
Port 3, 9-2

structure, 9-3
Ports

at power on, 13-7
exiting idle mode, 14-7
exiting powerdown mode, 14-8
verifying nonvolatile memory, 16-3

Power supply, 13-2
Powerdown mode, 2-6, 14-1, 14-8–14-9

accidental entry, 14-6
entering, 14-8
exiting, 13-5, 14-8
external bus, 15-2

PSEN#
caution, 13-7
idle mode, 14-6

PSW, 4-2, A-9, C-39
PSW, PSW1, C-3

effects of instructions on flags, 4-3
Pullups

ports 1, 2, 3, 9-6

Pulse width measurements, 10-10
PUSH instruction, A-7

R
RCAP2H, RCAP2L, 10-3, 11-12, C-40
RD#, 9-1
Read-modify-write instructions, 9-2, 9-5
Register banks

selection bits (RS1:0), 4-2, C-39
Register file

and reset, 13-6
rel, A-2
Reset, 13-5–13-7

cold start, 13-5
entering ONCE mode, 14-13
exiting idle mode, 14-7
exiting powerdown mode, 14-9
externally initiated, 13-5
need for, 13-7
operation, 13-6
power-on reset, 13-1, 13-7
timing sequence, 13-6, 13-7
USB-initiated, 13-5
warm start, 13-5

RET instruction, A-8
RETI instruction, 5-1, A-8
RL instruction, A-5
RLC instruction, A-5
RR instruction, A-5
RRC instruction, A-5
RST, 13-5, 13-6

ONCE mode, 14-13
RXCNTL, 6-26, C-40
RXD, 9-1, 11-1

mode 0, 11-2
modes 1, 2, 3, 11-7

RXDAT, 6-26, C-42
RXFLG, 6-31, C-43
RXSTAT, 6-11, C-45

S
SADDR, 11-2, 11-9, 11-10, C-4, C-48
SADEN, 11-2, 11-9, 11-10, C-4, C-48
SBUF, 11-2, 11-3, C-4, C-48
SCON, 11-2, 11-4, 11-7, C-4, C-49

bit definitions, 11-1
Security, 16-1
Index-4

INDEX
Serial I/O port, 11-1–11-13
asynchronous modes, 11-7
automatic address recognition, 11-8–11-10
baud rate generator, 10-7
baud rate, mode 0, 11-2, 11-10
baud rate, modes 1, 2, 3, 11-7, 11-11–11-13
broadcast address, 11-9
data frame, modes 1, 2, 3, 11-7
framing bit error detection, 11-7
full-duplex, 11-7
given address, 11-9
half-duplex, 11-2
interrupts, 11-1, 11-8
mode 0, 11-2–11-3
modes 1, 2, 3, 11-7
multiprocessor communication, 11-8
SFRs, 11-1, 11-2, C-4
synchronous mode, 11-2
timer 1 baud rate, 11-11, 11-12
timer 2 baud rate, 11-12–11-13
timing, mode 0, 11-6

SETB instruction, A-7
SetHubDescriptor, 8-20
SFR

memory map, C-1
SFRs

idle mode, 14-6
powerdown mode, 14-8
reset initialization, 13-6
unimplemented, 3-5, C-1

Signal descriptions
multi-function pins, B-1

Signature bytes
values, 16-4
verifying, 16-1, 16-4

SJMP instruction, A-8
SOF interrupt, 5-7
SOF# pin, 5-14
SOFH, 5-12, C-51
SOFL, 5-13, C-52
Solutions OEM, 1-8
SP, C-3, C-52
Special function registers See SFRs
State time, 2-8
SUBB instruction, A-4
SWAP instruction, A-5

T
T1, 9-1
T1:0, 9-1, 10-2
T2, 9-1, 10-2
T2CON, 10-1, 10-3, 10-10, 10-17, 11-12, C-53

baud rate generator, 11-12
T2EX, 9-1, 10-2, 10-11, 11-12
T2MOD, 10-1, 10-3, 10-10, 10-16, C-54
TCON, 10-1, 10-3, 10-4, 10-6, 10-8, C-5, C-55

interrupts, 5-1
Tech support, 1-7
TH2, TL2

baud rate generator, 11-12, 11-13
THx, TLx (x = 0, 1, 2), 10-3, C-5, C-57, C-58
Timer 0, 10-4–10-8

applications, 10-9
auto-reload, 10-5
interrupt, 10-4
mode 0, 10-4
mode 1, 10-4
mode 2, 10-5
mode 3, 10-5
pulse width measurements, 10-10

Timer 1
applications, 10-9
auto-reload, 10-9
baud rate generator, 10-6
interrupt, 10-6
mode 0, 10-6
mode 1, 10-9
mode 2, 10-9
mode 3, 10-9
pulse width measurements, 10-10

Timer 2, 10-10–10-17
auto-reload mode, 10-12
baud rate generator, 10-14
capture mode, 10-11
clock out mode, 10-14
interrupt, 10-11
mode select, 10-15

Timer/counters, 10-1–10-17
external input sampling, 10-2
internal clock, 10-1
interrupts, 10-1
overview, 10-1–10-2
registers, 10-3
SFRs, C-5
Index-5

8x931AA, 8x931HA USER’S MANUAL

-

-

signal descriptions, 10-2
TMOD, 10-1, 10-3, 10-4, 10-6, 10-7, 11-11, C-5,

C-56
TXCNTL, 6-16, C-58
TXCON, 6-19, C-59
TXD, 11-1

mode 0, 11-2
modes 1, 2, 3, 11-7

TXDAT, 6-16, 7-12, C-61
TXFLG, 6-21, C-62
TXSTAT, 6-9, C-64

U
UART, 11-1
UD flag, 4-2, C-39
UPWEN# pin, 7-29
USB

configuration descriptor, 8-3, E-2
device descriptor, 8-3
endpoint selection, 6-5
endpoint-indexed SFRs, 6-5
FIFO byte capacity, 2-12
function

bus unenumeration, 8-2
post-receive operations, 8-11
post-transmit operations, 8-8
pre-transmit operations, 8-7
receive done interrupt, 5-9
receive operations, 8-10
receive routine, 8-3
receive SOF routine, 8-16
resume interrupt, 5-17
setup routines, 8-14
suspend and resume, 14-1
transmit done interrupt, 5-10
transmit operations, 8-4
transmit routine, 8-3

function endpoint pairs, 6-1
function FIFOs, 6-1
function interface, 6-1
function routines

overview, 8-1
receive SOF, 8-1
setup, 8-1

global resume, 14-9
global suspend, 14-7
hub

bus enumeration, 7-7
CLEAR_FEATURE request, 8-17
ClearHubFeature request, 8-20
ClearPortFeature request, 8-22, 8-23
configuration, 7-9–7-10,C-6–C-26
descriptors, 7-7–7-8
device signals, 7-30
embedded function, 7-24

remote wake-up, 7-25
reset, 7-24

empedded function
suspend and resume, 7-26

endpoint 1, 7-11
endpoints, 7-10–7-13
examining port status, 7-17–7-19, C-6–

C-24
firmware examples, 8-24
firmware response tor USB requests, 8

17–8-23
firmware responses, 8-17–8-22
full-speed device attach, 7-6
ganged power enable, 7-29
GET_CONFIGURATION request, 8-18
GET_DESCRIPTOR request, 8-18
GET_INTERFACE request, 8-18
GET_STATUS request, 8-18
GetBusState request, 8-20
GetHubDescriptor request, 8-20
GetHubStatus request, 8-20
GetPortStatus request, 8-20, 8-23
GetPortStatus request firmware, 8-25–8

26
global suspend and resume, 7-25–7-27
interrupt, 5-7
low-speed device attach, 7-7
monitoring port status, 7-20–7-23
operation, 8-17–8-22, 8-23–8-28
overcurrent detection, 7-29
port control, 7-14–7-16
port control commands, 7-16
port indexing, 7-23
port power switching, 7-27–7-28
port states, 7-4–7-5
port status change communication, 8-

23–8-28
power distribution, 7-27
SET_ADDRESS request, 8-18
SET_CONFIGURATION request, 8-18
Index-6

INDEX
SET_DESCRIPTOR request, 8-18
SET_FEATURE request, 8-17
SET_INTERFACE request, 8-18
SetHubDescriptor request, 8-20
SetHubFeature request, 8-20
SetPortFeature (PORT_RESET)

firmware, 8-27
SetPortFeature (PORT_SUSPEND)

firmware, 8-26
SetPortFeature request, 8-21
signaling connectivity, 7-6–7-7
status, 7-9–7-10, C-23–C-26
status and configuration, 8-17
status change communication, 7-13
SYNCH_FRAME request, 8-18

idle state, 8-1, 8-3
interrupts

function, 5-7, 5-8–5-11
global suspend/resume, 5-7, 5-17
hub, 5-7, 5-15
start-of-frame, 5-11–5-14

module, 2-2, 2-11
block diagram, 2-7

power control, 14-7
powerdown, 14-8
programming models, 8-1
receive FIFOs, 6-24

write marker, 6-24, 8-10
write pointer, 6-24, 8-10

remote wake-up, 5-17, 14-10
requests

ClearPortFeature, 7-14
SetPortFeature, 7-14

reset separation, 5-17–5-23
transaction dataflow model, 6-1, D-1
transmit FIFOs

read marker, 6-15, 8-5
read pointer, 6-15, 8-5

unenumerated state, 8-1

V
Vcc, 13-2

during reset, 13-5
power-on reset, 13-7
powerdown mode, 14-8

Verifying nonvolatile memory, 16-1
Vss, 13-2

W
WAIT#, 9-1
World Wide Web, 1-7
WR#, 9-1

X
XCH instruction, A-7
XCHD instruction, A-7
XTAL1, XTAL2, 13-2

capacitance loading, 13-3
Index-7

	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 FaxBack Service
	1.4.3 Bulletin Board System (BBS)

	CHAPTER 2 Architectural Overview
	2.1 Product Overview
	2.1.1 8x931AA Features
	2.1.2 8x931HA Features
	2.1.3 Keyboard Control Interface
	2.1.4 MCS® 51 Architecture Features

	2.2 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.2.1 State Time and Machine Cycles
	2.2.2.2 USB Operating Rate
	2.2.2.3 Low-clock Mode
	2.2.2.4 Reset Unit

	2.2.3 Interrupt Handler

	2.3 8x931 Memory
	2.4 Universal Serial Bus Module
	2.4.1 USB Operation
	2.4.2 Hub Interface
	2.4.3 Hub Repeater
	2.4.4 Serial Bus Interface Engine (SIE)
	2.4.5 Hub Interface Unit (HIU)
	2.4.6 Hub FIFOs

	2.5 On-chip Peripherals
	2.5.1 Timer/Counters
	2.5.2 Serial I/O Port

	2.6 Operating Conditions

	CHAPTER 3 Address Spaces
	3.1 MEMORY ORGANIZATION IN 8x931 DEVICES
	3.1.1 Logical Separation of Program and Data Memor...
	3.1.2 Program Memory
	3.1.3 Data Memory

	3.2 Special Function Registers (SFRs)

	CHAPTER 4 Programming Considerations
	4.1 THE MCS® 51 INSTRUCTION SET
	4.1.1 Program Status Word
	4.1.2 Addressing Modes
	4.1.2.1 DIRECT ADDRESSING
	4.1.2.2 INDIRECT ADDRESSING
	4.1.2.3 REGISTER INSTRUCTIONS
	4.1.2.4 REGISTER-SPECIFIC INSTRUCTIONS
	4.1.2.5 IMMEDIATE CONSTANTS
	4.1.2.6 INDEXED ADDRESSING

	4.1.3 Arithmetic Instructions
	4.1.4 Logical Instructions
	4.1.5 Data Transfers
	4.1.5.1 Internal RAM
	4.1.5.2 External RAM
	4.1.5.3 Lookup Tables

	4.1.6 Boolean Instructions
	4.1.6.1 Relative Offset

	4.1.7 Jump Instructions

	CHAPTER 5 Interrupt System
	5.1 OVERVIEW
	5.2 Interrupt Sources
	5.2.1 External Interrupts
	5.2.2 Timer Interrupts
	5.2.3 Keyboard Scan Interrupt
	5.2.4 Serial Port Interrupt
	5.2.5 USB Function Interrupt
	5.2.6 USB Start-of-frame Interrupt
	5.2.7 USB Hub Interrupt
	5.2.8 USB Global Suspend/Resume Interrupt
	5.2.8.1 Global Suspend
	5.2.8.2 Global Resume
	5.2.8.3 USB Remote Wake-up

	5.2.9 USB Reset Separation
	5.2.9.1 Initialization Required for USB Reset
	5.2.9.2 USB Reset Hardware Operations
	5.2.9.3 USB Reset ISR
	5.2.9.4 Main Routine Considerations

	5.3 Interrupt Enable
	5.4 Interrupt Priorities
	5.5 Interrupt Handling
	5.6 Response Time

	CHAPTER 6 USB Function
	6.1 Function Interface
	6.1.1 Function Endpoint Pairs
	6.1.2 Function FIFOs
	6.1.3 Endpoint-indexed SFRs
	6.1.4 Endpoint Selection

	6.2 USB Function SFRs
	6.3 Transmit FIFOs
	6.3.1 Transmit FIFO Registers
	6.3.2 Transmit FIFO Data Register (TXDAT)
	6.3.3 Transmit FIFO Byte Count Register (TXCNTL)
	6.3.4 Transmit Data Set Management

	6.4 Receive FIFOs
	6.4.1 Receive FIFO Registers
	6.4.1.1 Receive FIFO Data Register (RXDAT)
	6.4.1.2 Receive FIFO Byte Count Registers (RXCNTL)...

	6.4.2 Receive FIFO Data Set Management

	6.5 SIE Details
	6.6 SETUP Token Receive FIFO Handling
	6.7 ISO Data Management
	6.7.1 Transmit FIFO ISO Data Management
	6.7.2 Receive FIFO ISO Data Management

	CHAPTER 7 USB Hub
	7.1 Hub Functional Overview
	7.1.1 Port Connectivity States
	7.1.2 Per-packet Signaling Connectivity
	7.1.2.1 Connectivity to Downstream Ports Attached ...
	7.1.2.2 Connectivity to Downstream Ports attached ...

	7.2 Bus Enumeration
	7.2.1 Hub Descriptors
	7.2.2 The Hub Address Register (HADDR)

	7.3 Hub Status
	7.4 USB Hub Endpoints
	7.4.1 Hub Endpoint Indexing Using EPINDEX
	7.4.2 Hub Endpoint Control
	7.4.3 Hub Endpoint Transmit and Receive Operations...

	7.5 USB Hub Ports
	7.5.1 Controlling a Port Using HPCON
	7.5.2 Examining a Port’s Status Using HPSTAT
	7.5.3 Monitoring Port Status Change Using HPSC
	7.5.4 Hub Port Indexing Using HPINDEX
	7.5.5 Embedded Function
	7.5.5.1 Embedded Function Reset
	7.5.5.2 Embedded Function Remote Wake-up

	7.6 Suspend and Resume
	7.6.1 Hub Global Suspend and Resume
	7.6.2 Remote Connectivity
	7.6.2.1 Resume Connectivity
	7.6.2.2 Connectivity Due to Physical Connect/Disco...
	7.6.2.3 Embedded Function Suspend and Resume

	7.7 Hub Power Distribution
	7.7.1 Port Power Switching
	7.7.2 Overcurrent Detection
	7.7.3 Ganged Power Enable

	7.8 Hub Device Signals

	CHAPTER 8 USB Programming Models
	8.1 Overview of Programming Models
	8.1.1 Enumeration
	8.1.2 Idle State
	8.1.3 Transmit and Receive Routines
	8.1.4 USB Interrupts

	8.2 Transmit Operations
	8.2.1 Overview
	8.2.2 Pre-transmit Operations
	8.2.3 Post-transmit Operations

	8.3 Receive Operations
	8.3.1 Overview
	8.3.2 Post-receive Operations

	8.4 SETUP Token
	8.5 Start-of-frame (SOF) Token
	8.6 Hub Operation
	8.6.1 Hub Status and Configuration
	8.6.2 Port Status Change Communication
	8.6.3 Hub Firmware Examples
	8.6.3.1 GetPortStatus Request Firmware
	8.6.3.2 SetPortFeature (PORT_SUSPEND) Firmware
	8.6.3.3 SetPortFeature (PORT_RESET) Firmware

	CHAPTER 9 Input/Output Ports
	9.1 Input/Output port overview
	9.2 I/O Configurations
	9.3 Port 1 and Port 3
	9.4 Port 0 and Port 2
	9.5 Read-Modify-Write Instructions
	9.6 Quasi-bidirectional Port Operation
	9.7 Port Loading
	9.8 External Memory Access

	CHAPTER 10 Timer/Counters
	10.1 Timer/Counter Overview
	10.2 Timer/Counter Operation
	10.3 Timer 0
	10.3.1 Mode 0 (13-bit Timer)
	10.3.2 Mode 1 (16-bit Timer)
	10.3.3 Mode 2 (8-bit Timer With Auto-reload)
	10.3.4 Mode 3 (Two 8-bit Timers)

	10.4 Timer 1
	10.4.1 Mode 0 (13-bit Timer)
	10.4.2 Mode 1 (16-bit Timer)
	10.4.3 Mode 2 (8-bit Timer with Auto-reload)
	10.4.4 Mode 3 (Halt)

	10.5 Timer 0/1 Applications
	10.5.1 Auto-reload Setup Example
	10.5.2 Pulse Width Measurements

	10.6 Timer 2
	10.6.1 Capture Mode
	10.6.2 Auto-reload Mode
	10.6.2.1 Up Counter Operation

	10.6.3 Up/Down Counter Operation
	10.6.4 Baud Rate Generator Mode
	10.6.5 Clock-out Mode

	CHAPTER 11 Serial I/O Port
	11.1 Overview
	11.2 Modes of Operation
	11.2.1 Synchronous Mode (Mode 0)
	11.2.1.1 Transmission (Mode 0)
	11.2.1.2 Reception (Mode 0)

	11.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	11.2.2.1 Transmission (Modes 1, 2, 3)
	11.2.2.2 Reception (Modes 1, 2, 3)

	11.3 Framing Bit Error Detection (Modes 1, 2, and ...
	11.4 Multiprocessor Communication (Modes 2 and 3)
	11.5 Automatic Address Recognition
	11.5.1 Given Address
	11.5.2 Broadcast Address
	11.5.3 Reset Addresses

	11.6 Baud Rates
	11.6.1 Baud Rate for Mode 0
	11.6.2 Baud Rates for Mode 2
	11.6.3 Baud Rates for Modes 1 and 3
	11.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	11.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	11.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...
	11.6.3.4 Selecting Timer 2 as the Baud Rate Genera...

	CHAPTER 12 Keyboard Control
	12.1 Overview
	12.2 Keyboard Scan Implementation
	12.2.1 Keyboard Interrupt Logic

	12.3 LED Drivers

	CHAPTER 13 Minimum Hardware Setup
	13.1 Minimum Hardware Setup
	13.2 Electrical Environment
	13.2.1 Power and Ground Pins
	13.2.2 Unused Pins
	13.2.3 Noise Considerations

	13.3 Clock Sources
	13.3.1 On-chip Oscillator (Crystal)
	13.3.2 On-chip Oscillator (Ceramic Resonator)
	13.3.3 External Clock

	13.4 Reset
	13.4.1 Externally-initiated Resets
	13.4.2 USB-initiated Resets
	13.4.2.1 USB Reset Separation

	13.4.3 Reset Operation
	13.4.4 Power-on Reset

	CHAPTER 14 Special Operating Modes
	14.1 Overview
	14.2 Power Control Registers
	14.2.1 Power Off Flag

	14.3 Idle Mode �
	14.3.1 Entering Idle Mode
	14.3.2 Exiting Idle Mode

	14.4 USB Power Control
	14.4.1 Global Suspend Mode
	14.4.1.1 Powerdown (Suspend) Mode
	14.4.1.2 Entering Powerdown (Suspend) Mode
	14.4.1.3 Exiting Powerdown (Suspend) Mode

	14.4.2 Global Resume Mode
	14.4.3 USB Remote Wake-up

	14.5 Low-Clock Mode
	14.5.1 Entering Low-clock Mode
	14.5.2 Exiting Low-clock Mode

	14.6 ON-Circuit emulation (Once) Mode
	14.6.1 Entering ONCE Mode
	14.6.2 Exiting ONCE Mode

	CHAPTER 15 External Memory Interface
	15.1 Overview
	15.2 External Bus Cycles
	15.2.1 Bus Cycle Definitions

	15.3 Port 0 and Port 2 Status
	15.3.1 Port 0 and Port 2 Pin Status

	15.4 External Memory Design Examples
	15.4.1 Example 1: 11-bit Bus, External RAM
	15.4.2 Example 2: 16-bit Bus, External ROM
	15.4.3 Example 3: 16-bit Bus, External EPROM and R...

	CHAPTER 16 Verifying Nonvolatile Memory
	16.1 83931 Memory
	16.2 Nonvolatile Memory
	16.3 Verifying On-chip Nonvolatile memory
	16.3.1 Verify Modes
	16.3.2 General Setup
	16.3.3 Verify Algorithm
	16.3.4 Verifying On-chip Program Memory
	16.3.5 Verifying the Lock Bits
	16.3.6 Verifying the Signature Bytes

	16.4 Encryption Array
	16.5 Considerations for On-chip Program Code Memor...

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map
	A.3 Instruction Set Summary
	A.3.1 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Pin Descriptions
	APPENDIX C Registers
	C.1 �SFRs By Functional Category� � �
	C.2 SFR Descriptions

	APPENDIX D Data Flow Model
	APPENDIX E 8x931AA Design Considerations
	E.1 Differences Between the 8x931AA and the 8x931H...
	E.2 8x931AA Enumeration Process
	E.3 8x931AA Pin Descriptions
	E.4 8x931AA Signal Descriptions
	E.5 Operating Frequencies
	E.6 8x931AA SFR Map

	Glossary
	Index

