8x930Ax, 8x930Hx
Universal Serial Bus
Microcontroller User’s Manual

intel.

U.S. and CANADA LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: ()
ORDER NO. TITLE QTY. PRICE TOTAL
X =
X =
X =
X =
X =
X =
X =
X =
Subtotal
Include Postage: Must Add Your
Must add 15% of Local Sales Tax
Subtotal to cover U.S.
and Canada postage » Postage
(20% all other)
Total

Pay by check, money order, or include company purchase order with this form ($200 minimum).
We also accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales.
Allow 2—-3 weeks for delivery.

D VISA D MasterCard D American Express Expiration Date
Account No. Signature
Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 7641 should use the International order form on the next page or
Mt. Prospect, IL 60056-7641 contact their local Sales Office or Distributor

FOR PHONE ORDERS IN THE U.S. AND CANADA
CALL TOLL FREE: (800) 548-4725
CG/LOF1-W/103092

intel.

INTERNATIONAL LITERATURE ORDER FORM

NAME:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: ()
ORDER NO. TITLE QTY. PRICE TOTAL
x =
x =
x =
x =
x =
x =
x =
x =
x =
x =
Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordina-
tor at your local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and
returned to your local Intel Sales Office.

CG/LOF2W/092792
CG-041493

intel.

8X930A X, 8X930H X
Universal Serial Bus
M icrocontroller
User’'s Manual

September 1996

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

© INTEL CORPORATION, 1996

Intel® CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL
1.1 MANUAL CONTENTS ..ottt ettt ettt e ettt e e bt sae et st ee e st saeenne e 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY
1.3 RELATED DOCUMENTS ..ottt ettt et st et st sttt sae st st n e et nae e e 1-6
131 DAta SNEEL ... e et et ee e e eeeen 1-6
1.3.2 APPICALION NOLES ..ottt ettt ettt ee e ettt e e et st eeee e et st eeee e et e e e eeasneeeeean 1-6
1.4 APPLICATION SUPPORT SERVICES.......coiiiiiiiiii ettt e e 1-7
141 WOrA W WED ..ot ettt e ettt et et e s eee e een s 1-8
1.4.2 FAXBACK SEIVICE ...eeiiiiitiiiie ettt ettt ettt ettt e et ee e e et e e e eeieae e s 1-8
143 Bulletin Board System (BBS)oooiiiiiiiioiii et 1-9

CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 PRODUCT OVERVIEW. ...ttt et et et e e
211 BXOB0AX FEALUIES ...ttt ettt ettt ettt e ee e e e e ae e e e eansn e e nnne e
212 BXOB0HX FRAIUIES ...ttt et e e ettt et ettt e e eeeaeae e e e eensnsnn e nnne e
2.13 MCS® 251 ArChItECUrE FEALUIESveeeeeeeeeeee e eee e eeeee oo eee e e ee s
2.2 MICROCONTROLLER CORE
221 CPU e
222 Clock and Reset Unitcccccoeoiiieiiiineen.
2.2.2.1 State Time and Peripheral Cycles
2.2.2.2 LOW-CIOCK MOOE ..ottt et e e e e
P T (=== A6 L | PP
223 [La1 =T g U] o] F= TgTo | =T S PUPR
2.3 ON-CHIP MEMORY ..ottt ettt ettt et en e en s
2.4 UNIVERSAL SERIAL BUS MODULE
241 The 8x930AX USB MOdUIEc.ceveriiiiiiiinieee e
2.4.1.1 Serial Bus Interface Engine (SIE)
2.4.1.2 Function Interface Unit (FIU) ...t
2.4.1.3 FUNCLON FIFOS ..ottt ettt ettt e ettt eee e et e e e e e
2.4.2 The 8X930HX USB MOUUIEoooiiiiiiiiieiecr et e
2421 Hub Repeater
2.4.2.2 Serial Bus Interface Engine (SIE)
2.4.2.3 Hub Interface Unit (HIU) ..o
2424 HUD FIFOS ..ottt et et rn e et e e nn e e s
2425 8BXIB0HX CPU ..ooiiiiiiiiitee e ettt rn e e e e e
25 ON-CHIP PERIPHERALS. ... oottt ettt et sn e s
251 Timer/Counters and Watchdog TIMer ..o 2-16
252 Programmable Counter Array (PCA) ...t 2-16
253 ST=T T U 1L @ TN o o S TSP RTPRTRN 2-16
2.6 OPERATING CONDITIONS

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CHAPTER 3
ADDRESS SPACES
3.1 MCS® 251 ARCHITECTURE ADDRESS SPACES
3.1.1 Compatibility with the MCS® 51 Architectureccccieeiiiiiiiniiiee e
3.2 8X930 MEMORY SPACE ...ttt ettt ettt ettt et en e sr e e
3.21 On-chip General-purpose Data RAM

3.2.2 On-chip Code MeMOIYcuieiieiiiieee e
3.2.2.1 Accessing On-chip Code Memory in Region 00:ccooiiieriiiiiiien e 3-9

3.2.3 EXTEINAl MEIMOTY ...ttt e e ettt ettt ettt e e e et e e e e e emn e e e e emnaeaeeenan
3.3 8X930 REGISTER FILEooiiiiiieie ettt ettt ettt b et b e e
3.4 BYTE, WORD, AND DWORD REGISTERS

34.1 Dedicated REGISLEISiieiieiteie ettt et e e et e ee e e e e e e sanae e ean
3.4.1.1 Accumulator and B Register
3.4.1.2 Extended Data Pointer, DPX
3.4.1.3 Extended Stack Pointer, SPX

3.5 SPECIAL FUNCTION REGISTERS (SFRS)

CHAPTER 4
DEVICE CONFIGURATION
4.1 CONFIGURATION OVERVIEW
4.2 DEVICE CONFIGURATION ...ttt ettt e e e e e e e
4.3 THE CONFIGURATION BITS....ci ettt ittt
4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE........cccccci i
441 Page Mode and Nonpage Mode (PAGEH) ...t
442 Configuration BitS RD1:0coeveiiiiieiieiiiieee e
44.2.1 RD1:0=00 (18 External Address BitS)cccccceeenne
4422 RD1:0=01 (17 External Address BitS)cccooceeiiiiiiiiiireniiieiee e e
4.4.2.3 RD1:0 =10 (16 External Address BitS)cccccoceeiiiiiiiiiriniiiiie e e
4424 RD1:0 =11 (Compatible with MCS 51 Microcontrollers)
4.4.3 Wait State Configuration Bits
4.43.1 Configuration Bits WSA1:0#, WSB1: O#
4.4.3.2 Configuration Bit XALEHoooiiiiiioie et
4.5 OPCODE CONFIGURATIONS (SRC)...cciiiiitieiiiiriie e e s
45.1 Selecting Binary Mode or Source Mode
4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

4.7 INTERRUPT MODE (INTR) oottt ittt e e e e

CHAPTER 5
PROGRAMMING CONSIDERATIONS
5.1 SOURCE MODE OR BINARY MODE OPCODES.ccccooiiiiiiien e e 5-1
5.2 PROGRAMMING FEATURES OF THE 8X930 ARCHITECTUREccccccoiiireiiecnnee. 5-1
5.2.1 (D 1= B Y o[OO PP UPPRPPPPPPPUPN 5-1
5.2.1.1 Order of Byte Storage for Words and Double Wordsccccceiiiiiiie e, 5-2
5.2.2 [RT=To TS (=T gl o] = LT] o SRR ST 5-2

Intel® CONTENTS

5.2.3 AdAress NOTALIONoooiiiiiiieii ittt e e et st ee e e st ee e ee et e e e e e eneneaeeean
5.2.4 AdAresSiNg MOUEScooo ittt ettt e et ae e st e ee e e e et e aeeee e et eae e s
5.3 DATA INSTRUCTIONS ...ttt ettt ettt se e e et sae et st n e st sae e eae

53.1 Data Addressing Modes
5.3.1.1 Register Addressing
5.3.1.2 IMMEAIALE ..oeeiieieiicee ettt et e

53.1.3
53.14
5.3.1.5 Displacement ..
5.3.2 Arithmetic Instructions
5.3.3 Logical Instructions
5.34 Data Transfer INSTIUCHIONScooiviiii i e e 5-9
5.4 BIT INSTRUCTIONS ...ttt et et ettt en e e et et b nn e e nae e s 5-10
541 Bit AQArESSING ...ttt ettt ettt et e et ee et et ee e e e e s 5-10
55 CONTROL INSTRUCTIONS ..ottt ettt ettt ettt e st n e et e eee 5-11
5.5.1 Addressing Modes for Control INSLIUCHIONSc.uvuiiiiiiiiie e 5-12
5.5.2 CoNItIONAl JUMPS ... ettt et ettt e e et e e e et be e e e
5.5.3 UNCoNditioNal JUMPSoeiie it e ettt e e e e sae e ean
5.5.4 Calls @Nd REIUIMSoiiiiiiiiiii et e e e s

5.6 PROGRAM STATUS WORDS

CHAPTER 6
INTERRUPT SYSTEM
6.1 OVERVIEW .ottt e e e e e e e 6-1
6.2 8X930 INTERRUPT SOURCES ..ottt ittt e e 6-3
6.2.1 EXTErNal INTEITUPLS ..ottt ettt et e et ee e et ee e e et e e e e eenae e s 6-5
6.2.2 TIMET INTEITUPLS . .oeeiiieiit ittt ettt ettt ee ettt e e e et e e e ea et e ee e et e e e e s anneeeeenan 6-6
6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPTooviiiiver e 6-7
6.4 SERIAL PORT INTERRUPT ..ottt e e e
6.5 USB INTERRUPTS. ...ttt et ettt e et e nn e e e an e e ne e enees
6.5.1 USB Function Interrupt
6.5.2 USB Start-of-frame Interrupt
6.5.3 USB HUD INEEITUPDL .ottt ettt ettt e ettt e e et e e e e ean
6.5.4 USB Global Suspend/Resume Interruptccccoeevneee.
6.5.4.1 Global SUSPeNdccocuiiiiiiiiieeee e
6.5.4.2 Global RESUMEcoovviiiiiieieieeeeeeeeeec e
6.5.4.3 USB ReMOLE WAKE-UP ...ouiiiiiiiit ettt ettt ettt e e
6.5.5 8X930AX USB ReSEt SEPAratiONcueiiiiiiiiieiie ettt ee ettt e et eeee e e e
6.5.5.1 Initialization Required for USB Reset
6.5.5.2 USB Reset Hardware Operations
6.5.5.3 USB RESELISRooiiiiiiiiici e
6.5.5.4 Main Routing CONSIAEratioNSooveeeiiiir it e e
6.6 INTERRUPT ENABLE ...ttt et e nn e e e nn e e e
6.7 INTERRUPT PRIORITIES ...coiiitiii ittt ettt e e e e

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

6.8 INTERRUPT PROCESSINGoottiiiiiiiir ittt st e sttt 6-32
6.8.1 Minimum Fixed INterrupt TIMEoooiuiiiii et 6-33
6.8.2 Variable Interrupt Parameters e e 6-33

6.8.2.1 Response Time Variablesooo e e e 6-33
6.8.2.2 Computation of Worst-case Latency With Variablescoccooiiiiiiiiiinnnne 6-35

6.8.2.3 Latency Calculations

6.8.2.4 Blocking Conditions

6.8.2.5 INterrupt VECIOr CYCIEooiiieie et e e 6-37
6.8.3 ISRS IN PIOCESS ..ottt ettt et e e ar e e e nr e e e e e 6-37

CHAPTER 7
USB FUNCTION
7.1 FUNCTION INTERFACEcoi ettt et e e e e e
7.11 Function ENAPOINE PAITSoouuiiiii ettt s
7.1.2 FUNCHON FIFOS ...t ettt ettt e et ee e e et et e e eee e e s
7.13 Special Function RegISLErs (SFRS) ...ccoiiiuiuiiiiii et et
7.1.3.1 Endpoint-indeXed SFRS ...t e
7.1.3.2 ENdPOint SEIECLIONeiiiiiiiiiee ettt et e et et e e e s
7.2 TRANSMIT FIFOS ... oottt ettt e s en e s
7.2.1 TransMit FIFO OVEIVIEWcooiiiiiiiiiie ettt et e et sttt ee et et e e e steaee e e e e
7.2.2 Transmit FIFO REQISIEIS ...ceiiiiiiiiiie et ettt e e e e
7.2.3 Transmit Data RegiSter (TXDAT) ..ieiiiiiiieie ettt e
7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH) ...coooiiiiiiiiiiiiiiie e
7.2.5 Transmit Data Set Managementvuiviiirieiie e es e e ee e e e e e e e
7.3 RECEIVE FIFOS ...ttt e et e e e
7.3.1 RECEIVE FIFO OVEIVIEW ..ottt ettt ettt ettt ettt n e e e
7.3.2 Receive FIFO Registers
7.3.2.1 Receive Data Register (RXDAT)
7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)

7.3.3 Receive FIFO Data Set Managementcccceieoiiieereenniiee et
7.4 SIE DETAILS ..ottt bttt e e et e e e ettt e s e et e e e
7.5 SETUP TOKEN RECEIVE FIFO HANDLINGcoiitit ittt et
7.6 ISO DATA MANAGEMENT ..ottt ettt e et e
7.6.1 Transmit FIFO ISO Data Managementccueieiiiiir e i s serieieee e e eneaeae s e e e s
7.6.2 Receive FIFO ISO Data Managementcccuuueiiiieieioienenees e einiinininineeee e aesanaaaan
CHAPTER 8
USB HUB
8.1 HUB FUNCTIONAL OVERVIEWooiiiiiiit ettt ettt i 8-1
8.1.1 POrt CONNECLIVILY STALES .ivviviiieiiieiei e e e eeee e e ea e s 8-3
8.1.2 Per-packet Signaling CONNECLIVILYcociiiiiiiiii e e e e e s 8-5
8.1.2.1 Connectivity to Downstream Ports Attached With Full-speed Devices 8-5
8.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices 8-6
8.2 BUS ENUMERATION ...ttt ettt ekt ettt e ettt e ees 8-6

Vi

Intel® CONTENTS

8.2.1 HUD DESCIIPLOIS ..ttt ettt e ettt ettt e e ettt e e ettt e e e e et e eeae e emsin e e e aeneaeeenan 8-6
8.2.2 The Hub Address Register (HADDR)ueuiiiiiiiiee ettt e e 8-8
8.3 HUB ST ATUS oo ettt et ettt e ettt e e e e ettt ee e e san e e e e sabeeeeen sabeaeeeean 8-8
8.4 USB HUB ENDPOINTSttt ettt sttt et ee e et eeaes sebe e e e stnaee e e e e e 8-10
8.4.1 Hub Endpoint Indexing Using EPINDEXuoiiiiiiiiiia e e e 8-11
8.4.2 Hub ENdpoint CONTIOlcooiiiiiie ettt 8-11
8.4.3 Hub Endpoint Transmit and Receive Operationsccccceeiriiiieee e eniieiee e 8-11
8.5 USB HUB PORTS..... ettt ettt ettt ettt ee e et e ee s ea e e e e en stbe e e e etn e e e eesneneee 8-14
8.5.1 Controlling a Port USing HPCONcooiiiiiiiiiia it 8-14
8.5.2 Examining a Port’s Status Using HPSTAT ..o e 8-17
8.5.3 Monitoring Port Status Change Using HPSC ... 8-20
8.5.4 Hub Port Indexing Using HPINDEXcooiiiiiiii e 8-23
8.5.5 Embedded FUNCLIONueiie et et 8-24
8.5.5.1 Embedded FUNCLON RESELuuiiiiiiieiie ettt e 8-24
8.5.5.2 Embedded Function Remote Wake-Upccceeriiiiiiiiieiiie e 8-24
8.6 SUSPEND AND RESUME.... ..ottt ittt it ettt ettt e st eenaaeee 8-24
8.6.1 Hub Global Suspend and RESUMEcooiiiiiiiiiiie et 8-24
8.6.2 REMOLE CONNECHIVILY ..uveieiiiieiie e e et ee e e e e e e e e e e e e eeeeaeeeeeeean 8-25
8.6.2.1 RESUME CONNECHIVILYuvuiiiiieiiiieiieieies s s ei e et re e e e ee e e s e e e e e e et e san e ae e e as 8-25
8.6.2.2 Connectivity Due to Physical Connect/DISCONNECLccueveeiiiniieiieineiieiie e 8-26
8.6.3 Embedded Function Suspend and RESUMEeviiiiiieiiraiiiieiee e 8-26
8.7 HUB POWER DISTRIBUTIONciiiiiiiiitiiiie ittt 8-27
8.7.1 POrt POWEr SWILCNINGuviiiiie e e s e e e e et ae e s 8-27
8.7.2 OVErCUITeNt DEIECHIONciitiie ettt ettt e e e seaeeee e en 8-28
8.7.3 Ganged POWETN ENADIEueuiiiiieiie et e e et 8-29
8.8 HUB DEVICE SIGNALSottt ettt bt n e e e 8-30
CHAPTER 9
USB PROGRAMMING MODELS
9.1 OVERVIEW OF PROGRAMMING MODELScooiiiiiiii et 9-2
9.11 UNENUMETALEA STALEeeiiiiieitiiiie ettt ettt e et e enee e ee s
9.1.2 [AIE SEALEeeeeie et et et e ettt n e s
9.1.3 Transmit and Receive Routines
9.1.4 USB INEEITUPLS ..ottt ettt st e ettt st s e e e e ees e e bbe e b e e e e e aeaee e
9.2 TRANSMIT OPERATIONS ...ttt ettt et e e e
9.21 OVEIVIEW ...ttt et e ettt ekttt et e ekttt e she et e s e san e et e sa b e e sa s e e
9.2.2 Pre-transmit OPEIatiONSiuieiiieior ittt e e e e e et e bee e eeeaaeeeen s
9.2.3 POSt-transmit OPEratioNScooviiiiiiii it et ee e e e aeaesaseneanas
9.3 RECEIVE OPERATIONS. ...ttt ettt e it e
9.31 OVEIVIEW ...ttt et et ettt et ekttt ettt e e he et e s e san et en sa b e een san e e
9.3.2 POSt-reCeiVe OPEIAtIONS ...iuiviiiiiiiei it e e e bbb eeeaeeeeas

9.4 SETUP TOKEN
9.5 START-OF-FRAME (SOF) TOKEN

Vii

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

9.6 HUB OPERATION ...ttt ettt ettt et et n et e nn e e e nn e e e 9-16
9.6.1 BUS ENUMETALION ..ottt st et e nn e n e 9-16
9.6.2 Hub Status and Configurationcueeei oo e e 9-17
9.6.3 Port Status Change COMMUNICAIONooiiiiiiiiaiieie e 9-22
9.6.4 Hub Firmware EXamPIes ... et 9-23

9.6.4.1 GetPortStatus Request FIMMWAreccccioiiiiiiiiie et e 9-24

CHAPTER 10

INPUT/OUTPUT PORTS
10.1 INPUT/OUTPUT PORT OVERVIEWoiiiiiiiiiieee it e e 10-1

10.2 1/O CONFIGURATIONS
10.3 PORT 1 AND PORT 3
10.4 PORT 0 AND PORT 2
10.5 READ-MODIFY-WRITE INSTRUCTIONS ... 10-5
10.6 QUASI-BIDIRECTIONAL PORT OPERATION......coiiiiiiiiiii e 10-5
10.7 PORT LOADINGo ettt e 10-6
10.8 EXTERNAL MEMORY ACCESS ... 10-7

CHAPTER 11
TIMER/COUNTERS AND WATCHDOG TIMER
11.1 TIMER/COUNTER OVERVIEW...... .ottt ettt et et e e e enne
11.2 TIMER/COUNTER OPERATIONottt ie ettt se e e e snee e nee e e
I R N 11V TP
11.3.1 Mode 0 (L3-DIit TIMEI) eiriiieieiei et e e ee e e e e e et s et ae e are e aeeaeaesenenean
11.3.2 Mode 1 (16-DIit TIMEI) eieiiieiiiei it ee e ee e e e e e e et st et ae e aae e aaeaeaeseeenean
11.3.3 Mode 2 (8-bit Timer With Auto-reload)
11.3.4 Mode 3 (TWO 8-Dit TIMEIS) ..ciciiieiei ittt et e e e e e e re e aeeaeaenen e
I 0 11V e TSR
11.4.1 Mode 0 (L3-DIt TIMEI) eieiiieieiei e e e e et es e e et s st ae e e are e aaeaeaeseaeaean
11.4.2 Mode 1 (16-DIt TIMEI) eieiiieieiei it ee e et e e et st e e e aae e aaeaeaesenenean
11.4.3 Mode 2 (8-bit Timer with Auto-reload)
I V[To [TC I (o = 11 I PP UPPRPPPPRSR
11.5 TIMER O/1 APPLICATIONS. ettt ettt et ettt et e et sn e e e e
11.5.1 Auto-reload Setup EXAMPIE ...ocooiiiiiiii et e
11.5.2 Pulse Width MEASUIEMENTScoiiiiiiiieiiitieiie ettt e
116 TIMER 2.ttt ettt et et ettt e eb et es ettt sa e s b e et b ene s
11.6.1 Capture Mode
11.6.2 Auto-reload Mode
11.6.2.1 Up Counter OPEratiONccoieii i iiiieieitiie e iee e tesesaas e s s ssesre e e ree e eeeaeaenenens
11.6.3 Up/Down Counter OPErationooeeiiiiiineieiirieiee e eeeaeeeaeseses s ssssresesneseseeeeees
11.6.4 Baud Rate Generator MOdecccoocvvveieiiiiiieieniieeenn
11.6.5 CIOCK-OUE MOAEooiiiiiiiiie ettt ettt ettt e e
11.7 WATCHDOG TIMER ...ttt ettt ettt e st sn e e e st nbe e e es

viii

Intel® CONTENTS

3O 0 R B =2y o) o o PO O P TRURRRI 11-16
11.7.2 USING the WDT .ottt ettt ettt et e e et et e e e et e e e en sae e e annre e eas 11-18
11.7.3 WDT DUrNG 1dI€ MOUEeeiiiieie ittt ettt et e eeae e 11-18
11.7.4 WDT DUriNg POWEIDOWN ...ttt ettt e e e et ee e eene e 11-18
CHAPTER 12
PROGRAMMABLE COUNTER ARRAY
12,1 PCA DESCRIPTION ..ttt ettt e et e ettt et e e st e eeee e ettt e e e e emnbe e e e ennaeeeen 12-1
12,11 ARErNAte PO USAOE .. ceieiiiii et ettt et et et ettt e e e ean e e e e e ean 12-2
12.2 PCATIMER/COUNTER................. 12-2
12.3 PCA COMPARE/CAPTURE MODULES ..ottt e 12-5
12.3.1 16-Dit CAPIUre MOOEeoeiiiiiiiie ettt ettt et e e ee e sae e ee s 12-5
12.3.2 COMPAIrE MOUES ..cooiiiiiiiie ettt ettt ettt ee e e ettt e e e et e ae e e e sbebe e s e saeneeeean 12-7
12.3.3 16-bit Software TIMer MOUEcooi it e 12-7
12.3.4 High-speed OUIPUL MOGEooiiiiiiiie ettt et ee e 12-8
12.3.5 PCA Watchdog TiMer MOGEccoiiiiiiiiiiiiie et 12-9
12.3.6 Pulse Width Modulation MOOEcouiiiiiiiiiiii e e e 12-10
CHAPTER 13
SERIAL 1/0 PORT
131 OVERVIEW ..ttt ettt e ettt e ettt e e ettt e e e e sae e ae e e s e s 13-1
13.2 MODES OF OPERATION. .. .ottt ittt ettt ettt sttt e e e et e e e e e e e 13-2
13.2.1 Synchronous Mode (MOOE 0)c.oieiieireiraiiieee ettt 13-2
13.2.1.1 TransmiSSIioN (MOGAE 0) ...cc.uvuiiiieriiieiie ettt ettt ee e e e 13-2
13.2.1.2 ReCeption (MOUE 0)oooiiiiiiiiiii ettt et sttt ettt ettt e s e sbe e ee e sie e eeaan 13-3
13.2.2 Asynchronous Modes (Modes 1, 2, and 3)c.ceeveiiiiiiioren i ie e e e e a e 13-7
13.2.2.1 Transmission (Modes 1, 2, 3) ..cccccvrvreiieiiieeieiei e .13-7
13.2.2.2 Reception (MOUES 1, 2, 3) .oiciiiiiieiie et ee e ees s e e ettt re e eeaeaeae s e s e e e enneees 13-7
13.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)...cccoiiiiiiiinineiieiie e 13-7
13.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)...ccccoiiiiiiniiiiie e 13-8
13.5 AUTOMATIC ADDRESS RECOGNITION ...ccciiitiitieriiieie et e
13.5. 1 GIVEN AGAIESS ...ttt et et e ettt e e et e e san e ean
13.5.2 BroadCast AQUIESScueiiiiiiiiiie ettt ekttt e be e e e ae e e
13.5.3 RESEE AUUIESSES ..ottt ettt ettt et e et

13.6 BAUD RATES
13.6.1 Baud Rate for Mode 0
13.6.2 Baud Rates for Mode 2
13.6.3 Baud Ratesfor Modes1and 3ccccccveiviieeernnnn

13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)ccccccvrvrieiiieienieienen e,
13.6.3.2 Selecting Timer 1 as the Baud Rate Generatorcccoevvivieiiieineieeieieienenen
13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)cccccvvririiirieienieienen e
13.6.3.4 Selecting Timer 2 as the Baud Rate Generatorccoovvvmieiiieiinineeeieienenn

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CHAPTER 14
MINIMUM HARDWARE SETUP
14.1 MINIMUM HARDWARE SETUPottt sn e
14.2 ELECTRICAL ENVIRONMENT
14.2.1 Power and Ground Pins
14.2.2 Unused PiNScccccceiveniieennns e
14.2.3 NOISE CONSIAEIALIONSeeiieieitie e ettt ettt e ekt ee e e ettt e e e ee e e e e e sbeeeees e saeaeeeaan
14.3 CLOCK SOURGCES.......ouiiitiis ittt en et an e an e e n e nr e e are e
14.3.1 On-chip OSCIllator (CryStal)c.eeoi it
14.3.2 On-chip Oscillator (Ceramic RESONALOr)ceoeiiiiiiiiiiriiie e
14.3.3 EXIEINAL CIOCKeviiiiaiiiiiie ettt ettt ekttt et e e sbe e ee e saeaeeeean
LT4.4 RESET .ottt ettt ettt et e et e et e e en e et en e en e en e e e
14.4.1 Externally-Initiated RESEIScoiiiiiiiiiiii ittt e
14.4.2 WDT-INIGAIEA RESELSoeiiiiiiiie ettt ettt et a e be e ee e aeae e ean
14.4.3 USB-INItIated RESEISeuiiiiiiiiie ettt ettt ettt ee e sae e e ean
14.4.3.1 8x930AX USB ReSet SEPArationcocccieiieiiiieria et e e eeae e
14.4.4 RESEE OPEIAtION ...coiiiiiiiiiie ettt e e ettt ee et et e e e ettt ae e e ae e e e e e sbeeeeas e saeaeeeean
1445 POWEI-0N RESEL ...ooiiiiiiiiiiieie ettt e et et st e et bee e raeaeaesen e ean

CHAPTER 15
SPECIAL OPERATING MODES
151 GENERAL ..ottt ettt et e n e e e e e 15-1
152 POWER CONTROL REGISTERS......ccoiiiiiiiiiir et e e 15-1
15.2.1 Serial I/O Control Bits
15.2.2 Power Off Flagccccceeevneneee.
15.2.3 8x930Ax USB Reset Separation
15.3 IDLE MODE ... oottt ittt et et an et an e e e e e
15.3.1 ENtering 1dle MOGEot e ettt et ee e ae s
15.3.2 EXItiNg 1dI& MOAE ...ttt et e et e e e ean
15.4 USB POWER CONTROLootiiiiiiitiie ettt e e e nn e e e e nre e
15.4.1 Global SUSPENT MOUEoiiiiiiiiii et ettt et e ee e sae e e ean
15.4.1.1 Powerdown (SUsSpend) MOc..ooiiaiiiii e
15.4.1.2 Entering Powerdown (Suspend) Mode
15.4.1.3 Exiting Powerdown (Suspend) Modecccceee..
15.4.2 Global Resume MOdeccooveviiviiiniiieiiee e
15.4.3 USB REMOE WaKE-UP ...eueeiiiitieiiiis ettt iee ettt ettt ee e st ee et ee e ebae e e e s enaeas
155 LOW-CLOCK MODEooiiiiiiieiitie ettt rn e et e e e nn e e s
15.5.1 Entering LOW-CIOCK MOOEvuiiiiiiiiiiie et ettt e
15.5.2 EXiting LOW-CIOCK MOccoiitiiiiii ittt ettt e e
15,6 ON-CIRCUIT EMULATION (ONCE) MODE ..ottt
15.6.1 ENtering ONCE MOOEooiiiiiiiiiii ettt et ettt ee e et e e eaaea
15.6.2 EXitiNg ONCE MOGEouviiiiiiitiie ittt ettt ettt ee et e enaea

Intel® CONTENTS

CHAPTER 16
EXTERNAL MEMORY INTERFACE
16.1 OVERVIEW ...ttt ettt et e ettt ee e ettt e e e et e e e e e e san e ee e e sanae e s
16.2 EXTERNAL BUS CYCLES...........
16.2.1 Bus Cycle Definitions
16.2.2 Nonpage Mode Bus Cycles
16.2.3 Page MoOde BUS CYCIEScooiiiiiiiie ettt ettt ettt ee e
16.3 WAL ST ATES i e e et et ee e ettt ee e e ettt eee e ettt eee e emnbeaee e emnaeeeen
16.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES........ccccccv i 16-8
16.4.1 Extending RD#H/WRH/PSENHoooi ittt ettt 16-8
16.4.2 EXIENAING ALE ..ot e et 16-10
16.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES.....cccoociiiiiiee e 16-11
16.5.1 Real-time WAIT# Enable (RTWE)cccooieiiiiiie e
16.5.2 Real-time WAIT CLOCK Enable (RTWCE)cccceev...
16.5.3 Real-time Wait State Bus Cycle Diagramsc......
16.6 CONFIGURATION BYTE BUS CYCLES......coi it
16.7 PORT O AND PORT 2 STATUS ...ttt ettt ettt ettt e
16.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode
16.7.2 Port 0 and Port 2 Pin Status in Page MOUEccccccoviiiiiiee i
16.8 EXTERNAL MEMORY DESIGN EXAMPLES.........ccoooiiiiieiiie e
16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM
16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM
16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAMcccooeiiiiiiiiiiiiiireie e
16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAMcccooeiiiiiiiiiiviiieeie e
16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM
16.8.5.1 An Application Requiring Fast Access to the Stack .
16.8.5.2 An Application Requiring Fast Access to Data .
16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flashccoooviiiniviiiniee e

CHAPTER 17
VERIFYING NONVOLATILE MEMORY

171 GENERAL ..ottt ettt ettt ettt ettt et e ekt ea ettt ettt e bt e et eh e e b ean 17-1

17.1.1 Considerations for On-chip Program Code MEemMOIYcccccceeeviiiiiiiiiniennienieineae e 17-1
17.2 VERIFY MODES..... ottt ettt ettt e sttt et e sn e enee e sbe e enn 17-3
17.3 GENERAL SETUP .. .ottt ettt ettt ettt ettt ea e e sbe e enn 17-3
17.4 VERIFY ALGORITHM. . ..ttt ettt et eis e sn e s e st snee e b e e 17-5
17.5 LOCK BIT SYSTEM...itttiiiiis ettt ettt et e ee st as e e e s ean e snee e sbe e enn 17-5

17.5.1 ENCIYPUON AITAY tevitiiiiiiitiieieies et s es s sttt et e vestetesae e e e e et st sre e te e e bee e aananaesenenens 17-5
17.6 SIGNATURE BYTESooiiiitiiiiie sttt ettt ettt e sttt e st nn e ea e e sbe e enn 17-6

Xi

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

APPENDIX A
INSTRUCTION SET REFERENCE

Al NOTATION FOR INSTRUCTION OPERANDS
A2 OPCODE MAP AND SUPPORTING TABLES

A3 INSTRUCTION SET SUMMARY ..ottt sttt ettt et siie s e e nne e e
A3.1 Execution Times for Instructions Accessing the Port SFRScccccoooiiiiiiiiieenn. A-11
A.3.2 INSEIUCHION SUMMATIESoeiiiiiie ettt e A-13

A4 INSTRUCTION DESCRIPTIONS ...ttt ettt et sn e e A-25

APPENDIX B

SIGNAL DESCRIPTIONS

APPENDIX C

REGISTERS
Ci1 SFRS BY FUNCTIONAL CATEGORY ..ot C-4
Cc.2 SFR DESCRIPTIONS ... et e C-8
C3 CONFIGURATION BYTES ... e C-78
APPENDIX D

DATA FLOW MODEL

GLOSSARY

INDEX

Xii

Int9I® CONTENTS

FIGURES
Figure
2-1 8x930Ax and 8x930Hx in a USB System
2-2 Functional Block Diagram of the 8x930.........
2-3 8Xx930AX USB Module BIOCK DIagram...........ueueeiiiieieiee et ees e e s eeee s ee e ee e
2-4 8x930HXx USB Module BIOCK DIagram...........ueuieaiiiiiiiee e e e st ee e e ee e e
2-5 The CPU ...t
2-6 (0o Tod 1 @1 o1 ¥ | APPSR
2-7 Clocking Definitions (LOW SPEEA).......cuiiiiiiiiiiiiei ettt ee ettt e e
2-8 Clocking Definitions (FUll SPeed)coii it
3-1 MCS® 251Architecture Address Spaces
3-2 Address Spaces for the MCS® 51 ArchiteCturecoooiuiiiieiiiiiies e 3-3
3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture............. 3-4
3-4 BXO30 AAUrESS SPACE -...eeeeiiu ittt ettt et e ettt e et e e en et e eeseneereee e e seeeeeeeeen
3-5 Hardware Implementation of the 8x930 Address Space....
3-6 The Register Fileccccc......
3-7 Register File Locations 0—7
3-8 Dedicated Registers in the Register File and their Corresponding SFRs................... 3-13
4-1 Configuration Array (ON-ChiP)..... oo ettt e ee e e e 4-2
4-2 Configuration Array (External).............cc........ 4-3

4-3 User Configuration Byte 0 (UCONFIGO)
4-4 User Configuration Byte 1 (UCONFIG1)
4-5 Internal/External Address Mapping (RD1:0 = 00 and 01)
4-6 Internal/External Address Mapping (RD1:0 = 10 and 11)
4-7 Binary Mode Opcode Map

4-8 Source Mode OPCOAE IMAPcoouvuiiieiieeiie e ettt et ee e et ee e e sae e e e e saeeeeas
5-1 Word and Double-word Storage in Big Endien FOrmMcccccoiviiiiieniiiiiiieen e
5-2 Program Status Word REGISIET........coi ittt
5-3 Program Status Word 1 REQISTEN.......ciueuiiii et ettt
6-1 Interrupt Control System
6-2 USB/Hub Interrupt Control SYSTEM.cco ittt et et
6-3 FIE: USB Function Interrupt Enable REQISIEr.........couviiiiiiiiiie e
6-4 FIE1: USB Function Interrupt Enable Register..................

6-5 FIFLG: USB Function Interrupt Flag Register

6-6 FIFLG1: USB Function Interrupt Flag Registercccccveiiieieieniinnen

6-7 SOFH: Start of Frame High RegISIEr......ccceuiiiiiie et
6-8 SOFL: Start of Frame LOW ReQISTENuuiiiiiiiiiie et
6-9 HIE: Hub Interrupt Enable Register...........cccccoevivieirininene.

6-10 HIFLG: Hub Interrupt Status Registerccccveeveveeerene

6-11 USB Reset Separation Operating Model..............ccccceeene

6-12 IENO: Interrupt Enable ReGISTEr Occuuiiiiiiiieit et
6-13 IEN1: USB Interrupt Enable REGISLENc.oiiiiiiiiiiiiie et
6-14 IPHO: Interrupt Priority High Register O.........
6-15 IPLO: Interrupt Priority LOW ReQISIEr O.....ccciviiiieeie ettt e
6-16 IPHL: Interrupt Priority High RegISter L.......ccovviiiiiiiii i e e e
6-17 IPLL: Interrupt Priority LOW REQISLEN L.....cuuiiiiiiieieiei e e

xii

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Figure
6-18
6-19
6-20
7-1
7-2
7-3
7-4
7-5

7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
8-1
8-2
8-3
8-4
8-5
8-6
8-7

8-9
8-10
8-11
8-12
8-13
9-1
9-2
9-3
9-4

9-6
9-7
9-8
9-9
9-10
9-11
9-12

Xiv

FIGURES

The INErTUPL PrOCESSt ittt ettt e e e e et e e e e ne e eas
Response Time Example #1
Response Time Example #2

EPCONFIG: Endpoint Configuration REQISTEr.........c.ocuiuiiaiiiieie e 7-5
EPINDEX: Endpoint Index Register

EPCON: Endpoint CoNtrol REQISTEN.........cuiiii ettt
TXSTAT: Transmit FIFO Status ReQISIEroeiiiiiiieii e 7-9
RXSTAT: Receive FIFO Status REQISter........occuuiuiiii e 7-11
FADDR: Function AddreSs ReQISTEruiiiiiiiiiiiie et

Transmit FIFO Outline..........ccccovvveieneninienne
TXDAT: Transmit FIFO Data Register
TXCNTH/TXCNTL Transmit FIFO Byte Count RegISters.........cccoovueieririineieeen e
TXCON: Transmit FIFO Control RegiSter.........ccceeviiiiiiieniinie e

TXFLG: Transmit FIFO Flag Register
Receive FIFO ..o
RXDAT: Receive FIFO Data REJISIENociiiiiiiiieie et
RXCNTH/RXCNTL: Receive FIFO Byte Count RegiSters.........cccevevuueieeeneeieiecen e
RXCON: Receive FIFO Control RegISterc.ooivieieeriiiiiiee e

RXFLG: Receive FIFO Flag Register.........cccceviveeirininnne.

8X930Hx Hub Functional Diagram
HUD STAE FIOW ...t et an e e e ane s
Packet Signaling CONNECLIVILYcooi it e et ettt e e e e e eee e e
HADDR: Hub Address Register
HSTAT: Hub Status and Configuration RegISterceiiiiiiiiiii e e
TXDAT: Hub Transmit Data Buffer (EnNdpoint 1)ccooiuiiiiiiiiiiiee e
Status Change Communication TO HOSEooouiiiiiiiiiiie e
HPCON: Hub Port Control REGISIETeiiiiiiiiiiie et
HPSTAT: Hub Port Status Register
HPSC: Hub Port Status Change RegiSter
HPINDEX: Hub Port INdeX ReQISTENuuiiiiieiiie e
Resume Connectivity
HPPWR: Hub Port Power Controlcccccovvviveenniennnne
Program Flow
High-level View of Transmit OPerationsc.ueeirerieieein i et
Pre-transmit ISR (NON-ISOCAIONOUS)cuiiiiiiiiiies et e e
Post-transmit ISR (Non-isochronous)............

Post-transmit ISR (Isochronous)

High-level View of Receive Operations
Post-receive ISR (NON-ISOCHIONOUS)c.coiiiiiiiiii e
Receive SOF ISR (Isochronous)
Post-receive ISR (Control).........cccccoeevevinenenn.
Hardware Operations for SOF TOKEN.........ccooiiiiiiiiiiiiie et e
Hub-to-host Port Status COMMUNICALIONooveiiriiir e e
GetPOrtStatUS REOQUESTooi ettt e e e e e

Int9I® CONTENTS

FIGURES
Figure
9-13 Firmware Response t0 GetPOrSIAtUS.ccoii i e
9-14 SetPortFeature (PORT_SUSPEND) Routine....................
9-15 SetPortFeature (PORT_RESET) ROULINGooiiiiieie e e et
10-1 POrt 1 and POrt 3 STIUCTUIE.......coiiiiir ettt e e e e e

10-2 Port O Structureccceeeeeenn.
10-3 Port 2 Structure
10-4 Internal Pullup ConfiQUIatioNsScooieiiion it
11-1 Basic Logic of the TIMEIr/COUNLEISueiiiaie ettt e
11-2 Timer 0/1 in Mode 0 and Mode 1
11-3 Timer 0/1 in Mode 2, Auto-reload
11-4 Timer 0 in Mode 3, Two 8-bit Timers

11-5 TMOD: Timer/Counter Mode Control REGISIENc.oveiiiiiiiiiiii e 11-7
11-6 TCON: Timer/Counter Control Registerc.cccoocveeerene

11-7 Timer 2: Capture Modeccccceeeiiiiiieeenennns

11-8 Timer 2: Auto-reload Mode (DCEN = 0).......ccceeeeerinnnnn.

11-9 Timer 2: Auto-reload Mode (DCEN = 1) ..ot e
11-10 Timer 2: ClOCK OUL MOTE.......coiiiiiiiii ettt ettt ettt rb e e e eenae e
11-11 T2MOD: Timer 2 Mode Control Register............cccceceeue.

11-12 T2CON: Timer 2 Control Register

12-1 Programmable Counter Array..........c.c.cccuvuee..

12-2 PCA 16-bit Capture Mode .. .

12-3 PCA Software Timer and ngh speed Output Modes ...
12-4 PCA Watchdog Timer Mode

12-5 PCA 8-DIt PWIM MOE ...ttt ettt e e e
12-6 PWM Variable DULY CYCIEuuiiiiiiieie e ie ettt e ee e e e e e e e re e eeee e
12-7 CMOD: PCA Timer/Counter Mode ReQISIEr.........cccieiiviiiiiiieiie e es e
12-8 CCON: PCA Timer/Counter Control ReQISIEN........ccceevi i iiiiiieiiiic v
12-9 CCAPMXx: PCA Compare/Capture Module Mode Registers.................

13-1 Serial Port BIOCK DIGgramuueuriieiiiirieiee e e ies et s s r s e e e aeaeaeses e e s aeeees
13-2 SCON: Serial Port Control REQISENuiuiiieieieiee et e e ee e s e
13-3 Mode O TiMiNG.....cccociviiririr e

13-4 Data Frame (Modes 1, 2, and 3)cccvvee

13-5 Timer 2 in Baud Rate Generator Mode

14-1 [T a1 g0 IST= (8] o PP
14-2 CHMOS ON-Chip OSCIlIALOL.ttt e e e e e e e e s e s e e e e ees
14-3 External Clock Connection for the 8x930

14-4 External Clock Drive Waveforms...................

14-5 Reset Timing Sequence...........cccccceeeeenne

15-1 PCON: Power Control REQISTENcoa ittt e
15-2 PCONL1: USB Power Control REQISIEN.......coaiiieeiie e ie ettt e
15-3 Suspend/Resume Program with/without Remote Wake-up

16-1 Bus Structure in Nonpage Mode and Page Mode............coooeiiiiiiieiicniiic e
16-2 External Code Fetch (NONpage MOde)cooueeiieiiiieie e
16-3 External Data Read (NONPage MOUE)ooeiiiiiiiiii ettt e

XV

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

FIGURES
Figure
16-4 External Data Write (Nonpage Mode)
16-5 External Code Fetch (Page Mode)................
16-6 External Data Read (Page MOAE)uieiiaiiie ettt e
16-7 External Data Write (Page MOUE)......c.ccuueuieaiieit ettt e
16-8 External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)ccuc..... 16-9
16-9 External Data Write (Nonpage Mode, One WR# Wait State)cccceeeveviienicicneeenn. 16-9
16-10 External Code Fetch (Nonpage Mode, One ALE Wait State)...........cccoeeevvieeieennenes 16-10
16-11 WCON: Real-time Wait State Control REQISIErccuviiiiiii e 16-11
16-12 External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)................16-13
16-13 External Data Write (Nonpage Mode, Real-time Wait State)cccccoevvveeerennenes 16-13

16-14 External Data Read (Page Mode, Real-time Wait State)
16-15 External Data Write (Page Mode, Real-time Wait State)

16-16 Configuration Byte Bus CyCleS..........covoeuiieiiiiiiieieiiieee

16-17 Bus Diagram for Example 1: 80930AD in Page Mode

16-18 Address Space for Example 1..

16-19 Bus Diagram for Example 2: 80930AD in Page Mode ...
16-20 Address Space for EXample 2. ...t
16-21 Bus Diagram for Example 3: 83930AE in Nonpage Mode

16-22 Memory Space for EXample 3.........oooiiiiiiiee e

16-23 Bus Diagram for Example 4: 83930AE in Nonpage Mode

16-24 Address Space for EXample 4. ...
16-25 Bus Diagram for Example 5: 80930AD in Nonpage Modecccceeereiiieeeieniiiieenen.
16-26 Address Space for Examples 5 and 6

16-27 Bus Diagram for Example 6: 80930AD in Page Modecccceveimiieeineiniiiien e
16-28 Bus Diagram for Example 7: 80930AD in Page Modeccoeviiiiiieiniiiiiiee e
17-1 Setup for Verifying Nonvolatile MemOry ..o e
17-2 VENTY BUS CYCIES ..ttt et ettt e e et e e e e st st sttt te e tee e aaeaeaeneneaeas

B-1 8x930Ax 68-pin PLCC Package
B-2 8x930Hx 68-pin PLCC Package

Xvi

Intel® CONTENTS

Table

1-1
2-1
2-2
2-3
2-4
2-5
2-6

3-2
3-3
3-4
3-5

3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
4-1
4-2
4-3
4-4

5-2
5-3
5-4
5-5

5-7
5-8
5-9
5-10
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

TABLES

Intel AppliCation SUPPOIt SEIVICES ... uiui it e ettt ettt e e ee e e eeee e een s 1-7
BX930 MEMOTY OPLIONSeitiiiie ittt ettt ee et ee e et re e e e e e bee e e e sasaeeee e eneae
8X930 USB FEatUres SUMIMAIYcutuiiiiiieieie e e et sie e e et e e eesasasaes e eensnsnnnnaneee
MCS® 251 Architecture Features
8X930 OpErating FrEQUENCYcciiaitieiie ittt ettt e e e ee e e eeeee e ee snaeeee e ens
Endpoint Pairs for 8X930Hx and 8X930AX (4EPP Option)...........coeiiiuieriaiiieeeeceee 2-13
Endpoint Pairs for 8X930AX (BEPP OPtioN).........cuii it e e

P Yo (o [f SIS Y F= o o 11 o < TSP RUPRPRUN
Minimum Times to Fetch Two Bytes of Code
Register Bank SEIECHONc.oiiiiiii e et
Dedicated Registers in the Register File and their Corresponding SFRs................... 3-14
BXIB0AX SFR IMAP ... vttt e e e
8X930Hx SFR Map ...
Core SFRS.....cccooiiiiieee e
Interrupt System SFRs
/O POt SFRS ...ttt et e et n et e er e e e e en e e
Serial I/O SFRs
USB Function SFRs
USB HUD SFRS ...
Timer/Counter and Watchdog Timer SFRs
Programmable Counter Array (PCA) SFRs
External Addresses for Configuration Array
Memory Signal Selections (RDZ1:0)ouiiiiaiiit e e ettt e e 4-7
RD#, WR#, PSEN# External Walit StateS........oooeiviiiiii ettt 4-11
Examples of Opcodes in Binary and Source MOdesccccveeiieriieer e e 4-14
D 1 B Y o[PR PR PPPPPUPPRP 5-2
Notation for Byte Registers, Word Registers, and Dword Registersc.ccccceveeeneee. 5-3
Addressing Modes for Data Instructions in the MCS® 51 Architecture...........c.ccceeeu. 5-5
Addressing Modes for Data Instructions in the MCS® 251 Architecture 5-7
Bit-addressable LOCAtIONScooviiiiie et
Addressing Two Sample Bits
Addressing Modes for Bit INStructions............ccccceveeieeennn.
Addressing Modes for Control Instructions
Compare-conditional JUMP INSIFUCLIONSoeiiiiiiiiiie e et
The Effects of Instructions on the PSW and PSW1 Flags....................
Interrupt System INput SigNaIScoooiiiiiiiiiii e
Interrupt System Special Function Registers
INtErruPt CONEIOI IMALFIX ... ettt ettt et e e aeeen s
USB/Hub Interrupt Control Matrix
Level of Priority.......cccceevieiieiieiicee e .
Interrupt Priority WIthin LeVelcoo e e e e
Interrupt Latency Variablesoo o
Actual vs. Predicted Latency CalCulations............oooieeriiiiiiie e e
Non-hub USB Signal DeSCHPLONS.ccuueieeir ettt sttt eae e s

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TABLES
Table Page
7-2 USB FUNCLION SFERS ... et et n e s e an e e enee s 7-4
7-3 Writing to the Byte CoUNt REQISTENcuiiiii e e 7-17
7-4 Truth Table for Transmit FIFO Management............c.oooiiiiiiieen e e e 7-18
7-5 Status of the Receive FIFO Data Setscccccovveveneeennn PR £57]
7-6 Truth Table for Receive FIFO Management..........c..oooeoiiiieiiien e eee e 7-27
8-1 USB HUD SRS ...ttt ettt e bt sttt en e nn e e nn e
8-2 BXOBOHX DESCIIPIOIS ... e ettt ettt ettt e e et e e ste e e e e et te e e e ea e eeeeaannaeeeeaeaneae
8-3 [[U] o D= T=Tod g) (o] = PRSPPI
8-4 Hub Endpoint Configuration
8-5 USB Requests Ignored by Hardware (by Port State)cccceeiiiiiiiienei e 8-14
8-6 Encoded Hub Port Control Commands
8-7 UPWIN# Pin State Truth Table.....................
8-8 Signal Descriptions
9-1 Firmware Actions for USB Requests Sent to Hub
9-2 Firmware Action for Hub Class-Specific ReqUEeSstS..........cocoiiieiieiiiie e,
10-1 Input/Output Port Pin DESCIIPLIONSveiiieiiiie ettt
10-2 Read-Modify-Write Instructions......................
10-3 Instructions for External Data Moves.............
11-1 External Signalscccccoiiiiiiniee e
11-2 Timer/Counter and Watchdog Timer SFRSc.co it
11-3 Timer 2 Modes Of OPEIatiON.........ciiiuiuiiii ettt e se e e
12-1 PCA Special Function Registers (SFRS).......
12-2 EXTEINAl SIGNAUS ...t e ettt e ettt e e et ee e aan
12-3 PCA MOAUIE MOUES ...ttt e et e et e e
13-1 Serial POIt SIGNAIScuiii it et e e ee e s
13-2 Serial Port Special FUNCION REJISIEISuiiiiiii ittt

13-3 Summary of Baud Rates
13-4 Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3.........cc.ccoeeeineiinieennn.
13-5 Selecting the Baud Rate Generator(s)

13-6 Timer 2 Generated Baud Ratesccccoevieviiinenieieienee

15-1 Pin Conditions in Various Modes...................

16-1 External Memory Interface Signals................

16-2 Bus Cycle Definitions (No Wait States)

16-3 Port 0 and Port 2 Pin Status In Normal Operating Mode.............cccoevieveeiniiieieeenennes
17-1 Signal Descriptions

17-2 Verify Modes

17-3 Lock Bit FUNCLIONcooiiiiiiiiiiiiiee e
17-4 Contents of the SIgNAture BYLeS..........uuiiiiii e e
17-5 TiMING DefiNItIONS ..evei e e e e e e e e e e e e es e s s e e
A-1 Notation for Register Operands.. .
A-2 Notation for DIreCt AQArESSES.ucuiiii ittt ettt et e e sae e
A-3 Notation for Immediate AdAreSSINGcoeeeii i vt e aeeaeaeaeas
A-4 Notation fOr Bit AAAreSSINGcuuiuiiiiieieiei i e ee e e e e e e e e et rn e aee e aeeeas
A-5 Notation for Destinations in Control INSIrUCLIONSueviriiiiiie e e

Xviii

Intel® CONTENTS

Table

A-7

A-8

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
B-1

B-2

B-3

C-2
C-3
C-4
C-5

C-7
C-8
C-9
C-10

D-2
D-3
D-4
D-5

TABLES

Page
Instructions for MCS® 51 MiCroCONIIOlEIS.........covevvieiiie e e e A-4
Instructions for the 8x930 Architecture.......... ...A-5
Data INSIFUCTIONS .. .coeeieeiie e e e e et e e e ee et et e e e e e e e e aee e et e eeeeeeeeeeeesesennen A-6
High Nibble, Byte 0 of Data INStrUCLIONS.cceuiii et A-6
Bit Instructions
Byte 1 (High Nibble) for Bit INSETUCHIONS.........cooiiiiirie e e e A-7
PUSH/POP INSLIUCLIONSot ettt e e e e e e e e ettt et e e e eeeeeeeearenn e eans
(OF0]4) 1 7o) I g 1Sy (U Tex 1 o] F-

Displacement/Extended MOVs
INC/DEC.......cccoiriiiiieeees e
ENcoding fOr INC/DECot ettt e et e e ee
SIES ottt e e e

State Times to Access the Port SFRs...........

Summary of Add and Subtract Instructions.......................

Summary of Compare INStrucCtions...........cccocceveeineiiieeennne

Summary of Increment and Decrement Instructions

Summary of Multiply, Divide, and Decimal-adjust INStructions............ccccccceevieeenenne A-15
Summary of Logical INSIIUCHIONScuiiiiiiiiii ettt A-16
Summary Of MOVE INSITUCHIONSeuiiii ittt et e e A-18
Summary of Exchange, Push, and Pop Instructions e A-21
Summary Of Bit INSIIUCHIONS.coo ettt e A-22
Summary of Control INSEFUCLIONSc.ii i A-23
Flag Symbols

68-pin PLCC Signal Assignments Arranged by Functional Category............c.cccceu.... B-3
SIGNAI DESCHPLIONS ... ettt ettt ettt ettt e et e e e e sa e e e e sae e eens B-4
Memory Signal Selections (RDZ1:0)oceuiiiiiiiii et B-7

8x930Ax SFR Map
8X930Hx SFR Map
COr8 SFRS.... e e e e e e e
Interrupt System SFRs
/O Port SFRSccoovveiiiniee
Serial /0 SFRs
USB Function SFRs
USB HUD SFRS ...ttt ettt et et e an e nn e e e an e e nne e enees
Timer/Counter and Watchdog Timer SFRSco oot
Programmable Counter Array (PCA) SFRS.........cccceeeenne
Non-isochronous Transmit Data FIOWc.cceeevevennee.
Isochronous Transmit Data Flow in Dual-packet Mode
Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)D-8
Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................D-11
Isochronous Receive Data Flow in Dual-packet Mode (RXSPM =0)cccceevevnne D-18

Xix

intel.

1

Guide to this Manual

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes thegB0Ax and &930Hx" microcontrollers; the initial members of a new
family of products for universal serial bus (USB) applications. This manual is intended for use by
both firmware and hardware designers familiar with the principles of microcontroller architec-
ture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It also explains the terminology and notational conventions used throtlghonual,
provides references to related documentation, and tells how to contact Intel for addifamal in
mation.

Chapter 2 — “Architectural Overview” — provides an overview of device hardware. It covers
core functions (pipelined CPU, clock and reset unit, andriés, I/O ports, on-chip memory,
and on-chip peripherals (USB, timer/counters,clidbg timer, programmable counter array, and
serial 1/0 port).

Chapter 3 — “Address Spaces” —describes the three address spaces of X8808 memory

address space, special function register (SFR) space, and the register file. It also provides a map
of the SFR space showing the location of the SFRs and their reset values and explains the map-
ping of the address spaces relative to the f1I85and MCS 251 architectures into the address
spaces of thex®30.

Chapter 4 — “Device Configuration” — describes microcontroller features that are configured

at device reset, including the external memory interface (the number of external address bits, the
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#), bina-
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. ltdescribes the configuration bytes and how to program them for the desired configura-
tion. It also describes how internal memory maps into external memory.

Chapter 5 — “Programming Considerations” — provides an overview of the instruction set.

It describes each instruction type (control, arithmetic, logical, etc.) and lists the instructions in
tabular form. This chapter also discusses the addressing modes, bit instructions, and the program
status words. Appendix A, “Instruction Set Reference” provides a detailed description of each in-
struction.

Chapter 6 — “Interrupt System”— describes thex®30 interrupt circuitry which prodes a

TRAP instruction interrupt and ten maskable interrupts: two external interrupts, three timer inter-
rupts, a PCA interrupt, a serial port interrupt, and three USB interfilgsschapter also discuss-

es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt response
time.

T In this manual, theX®30Ax and &930Hx are referred to collectively as thr930.

1-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Chapter 7— “USB Function"— describes the FIFOs and special function registers (SFRs) as-
sociated with the USB function interface. This chapter describes the operation of function inter-
face on the 830 USB microcontrollers.

Chapter 8 —“USB Hub"— describes the operation of the Intel Universal Serial Bus (USB) on-
chip hub. This chapteriroduces on-chip hub operatiand includes information on bus enumer-

ation, hub endpoint status and configuration, hub port control, hub suspend and resume, and hub
power control.

Chapter 9 —“USB Programming Models"— describes the programming models of th@3®

USB function interface. This chapter provides flow charts of suggested firmware routines for us-
ing the transmit and receive FIFOs to perform data transfers between the host PC and the embed-
ded function and describes how the firmware interacts with the td&Bile hardware.

Chapter 10 —“Input/Output Ports"— describes théur 8-bit I/O ports (ports 0-3) and dis-
cusses their configuration for genepalrpose I/0. Tis chapter also discusses externaimogy
accesses (ports 0, 2) and alternative special functions.

Chapter 11 —“Timer/Counters and Watchdog Timer"— describes the three on-chip
timer/counters and discusses their application. This chaptepisimesinstructions for using
the hardware watchdog timer (WDT) and describes the operattba /D Tduring the idle and
powerdown modes.

Chapter 12 —“Programmable Counter Array"— describes the PCA on-chip peripheral and
explains how to configure it for general-purpose applications (timers and counters) and special
applications (programmable WDT and pulse-width modulator).

Chapter 13 —“Serial I/0 Port"— describes the full-duplex serial 1/0 port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 14 — “Minimum Hardware Setup”— describes the basic requirements for operating
the 8930 in a system. It also discusses on-chip and external clock sources and describes device
resets, including power-on reset.

Chapter 15 —“Special Operating Modes"— provides an overview of the idle, powerdown,

and on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This
chapter also describes the power control (PCON) special function register and lists the status of
the device pins during the special modes and reset.

Chapter 16 —"External Memory Interface”— describes the external memory signals and bus
cycles angrovides exmples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 17 —"Verifying Nonvolatile Memory”— provides instructions for verifying on-chip
program memory, configuration bytes, signature bytes, and lock bits.

Appendix A — “Instruction Set Reference”— provides reference information for the instruc-
tion set. It describes each instruction; defines the bits in the program status word registers (PSW,

1-2

Int9|® GUIDE TO THIS MANUAL

PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op-
codes, instruction lengths, and execution times.

Appendix B — “Signal Descriptions"— describes the function(s) of each device pin. Descrip-
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C — “Registers"— accumulates, for convenient reference, copies of the register def-
inition figures that appear thughout the manual.

Appendix D — “Data Flow Model”— describes the data flow model for th&®80 USB trans-
actions.

Glossary— a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used with an instruction mnemonic, the
symbol prefixes an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdrepresents the
second variable. For example, in registecyPx represents the
variable[1-4] that dentifies the specific port, andrepresents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or ifi@nt
signals.

XXXX, XXXX Uppercase X (no italics) and lowercase x (no italics) represent
unknown values or a “don’t care” states or conditions. The value may
be either binary or hexadecimal, depending on the context. For
example, 2xAFH (hex) indicates that bits 11:8 are unknd@mx in
binary context indicates that the two LSBs an&known.

1-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Assert and Deassert

Instructions

Logic 0 (Low)

Logic 1 (High)

Numbers

Register Access

Register Bits

Register Names

Reserved Bits

1-4

The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated bymoundsymbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

An input voltage level equal to or less than the maximum valug of V
or an output voltage level equal to or less than the maximum value of
Vo, - See data sheet for values.

An input voltage level equal to or greater than the minimum value of
V,, or an output voltage level equal to or greater than the minimum
value of \{,,,. See data sheet for values.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111111 is a baary number. In some cases, the leBer

is added for clarity.

All register bits support read/write access unless noted otherwise in
the bit description. Other types of access include read-only, write-
only, read/conditional-write, etc.

Bit locations are indexed by 7:0 for byte registers, 15:0wford
registers, and 31:0 fatouble-word (dword)egisters, where bit 0 is

the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the power
control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase

character, it represents more than one register. For example,

CCAPMx represents the five registers: CCAPMO through CCAPMA4.

Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate.

intel.

Set and Clear

Signal Names

Units of Measure

GUIDE TO THIS MANUAL

The termssetandclear refer to the value of a bit or the act of giving
it a value. If a bit iset its value is “1";settinga bit gives it a “1”
value. If a bit isclear, its value is “0”;clearing a bit gives it a “0”

value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin numberg(e.P0.0, P0.1). A qund
symbol (#) appended to a signal name identifies an active-low signal.

The following abbreviations are used to represent units of measure:

A
DCV
Kbyte
KQ
mA
Mbyte
MHz
ms
mwW

ns

amps, amperes

direct current volts
kilobytes

kilo-ohms

milliamps, milliamperes
megabytes

megahertz
milliseconds

milliwatts

nanoseconds
picofarads

watts

volts

microamps, microamperes
microfarads
microseconds

microwatts

1-5

8x930AXx, 8x930HXx USER’'S MANUAL

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that

intel.

incorporate the ¥30. To order documents, please call Intel Literature Fulfillment (158@0-

4725 in the U.S. and Canada; +44(987431155 in Europe).
Embedded Microcontrollers

Embedded Processors

Embedded Applications

Packaging

Universal Serial Bus Specification

1.3.1 Data Sheet

Order Number 270646

Order Number 272396

Order Number 270648

Order Number 240800

Order Number 272904

The data sheet is includedEmbedded Microcontrollerand is also available individually.

8x930Ax Universal Serial Bus Microcontroller

8x930Hx Universal Serial Bus Microcontroller

1.3.2 Application Notes

The following MCS 251 application notes apply to tk@3.

AP-125, Designing Microcontroller Systems
for Electrically Noisy Envisnments

AP-155, Oscillators for Microcontrollers

AP-708, Introducing the M(85251 Microcontroller
—the8XC251SB

AP-709,Maximizing Performance Using ME@251 Microcontroller
—Programming the 8XC251SB

AP-710, Migrating from the MC851 Microcontroller to the
MCS 251Microcontroller (8XC251SB)—Firmware and Hardware
Considerations

Order Number 272917

Order Number 272928

Order Number 210313

Order NumbeR30659

Order Number 272670

Order Number 272671

Order Number 272672

The following MCS 51 microcontroller application notes also apply to xXd8@®

AP70, Using the Intel M(551 Boolean Processing Capabilities

1-6

Order Number 203830

Int9|® GUIDE TO THIS MANUAL

AP-223, 8051 Based CRT Terminal Controller Order Number 270032
AP-252 Designing With the 80C51BH Order Number 270068
AP-425, Small DC Motor Control Order Number 270622
AP-410,Enhanced Serial Port on the 83C51FA Order Number 270490
AP-415,83C51FA/FB PCA Cookbook Order Number 270609
AP-476, How to ImplememQ Serial Communication Order Number 272319

Using Intel MC® 51 Microcontrollers

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technicaférmafton from a variety of electronic supp@ystems: the

World Wide Web, the FaxBack* service, and Intel’s Brand Products and Applic&igusort

bulletin board service (BBS). These systems are available 24 hours a day, 7 days a week, provid-
ing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con-
tact your local distributor. You can order product literature from Intel literaturersesuhd sales

offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide Web | URL:http://www.intel.com/ | URL:http://www.intel.com/ | URL:http://www.intel.com/
World Wide Web | URL:http://www.intel.com/ | URL:http://www.intel.com/ | URL:http://www.intel.com/
design/usb/ design/usb/ design/usb/
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155
+81(0)120 47 88 32 England
+44(0)1793-421777
France
+44(0)1793-421333
Germany

1-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

1.4.1 World Wide Web

We offer a variety of technical and productdarmaton through the World Wide Web (URL: ht-
tp:/lwww.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, news and
USB information at: www.intel.com/design/usb/.

1.4.2 FaxBack Service

The FaxBack service is am-demand pubshing system that sends documentgdor fax ma-

chine. You can get product announcements, change notifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can accegsuwith
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, dudeleted

ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:
1. Solutions OEMsubscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® firmware catalog and BBS file listings

Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© ©® N o 0 s~ DN

iIAL (Intel Architecture Labs) technology catalog

1-8

Int9|® GUIDE TO THIS MANUAL

1.4.3 Bulletin Board System (BBS)

Intel’s Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the lategpBUILDER firmware, hypertext manuals and
datasheets, firmware drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config-
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respond to the
system prompts. Duringpurfirst session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

1-9

intel.

Architectural
Overview

intel.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8930Ax and &930Hx are PC peripheral microcontrollers for Universal Serial Bus (USB)
applications. These microcontrollers provide the means for connecting PC peripherals such as
monitors, keyboards, joysticks, telephones, and modems to USB-equipped personatisomput
The USB material in this document relies heavily orithi&versal Serial Bus Specificatiavhich
provides a detailed description of the USB system.

In the language of the USB specification, thk@3Ax and &930Hx areUSB devicesA USB
device can serve adanctionby providing an interface for a PC peripheral, and it can serve as a
hub by providing USB ports for additional PC peripherals.

The &930Ax described in this manual serves as a USB function. X&@08 serves as both a
USB function and as a hub; it supports one embedded function and provides three @éatennal
stream ports. Figure 2-1 depicts th®80Ax and &930Hx in an example USB system.

Host pC

| 8x930Hx I

USB Hub | 8x930Ax I

Monitor Printer

! I | I Ll_l USB Function

| 8x930Ax I | 8x930AXx I | 8x930Ax I

Digital Camera Joystick Speakers
USB Function USB Function USB Function

A4395-02

Figure 2-1. 8 x930Ax and 8 x930Hx in a USB System

2-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

I/O Ports and
System Bus and 1/O Ports Peripheral Signals

P0.7:0 P2.7:0 P1.7:0 P3.7:0
g ¢ . g ¢
Port 0 Port 2 <— RAM Port 1 Port 3
Drivers Drivers ROM Drivers Drivers
Memory Data (16) | -]- -I -
! [<y J1 | |] :
| Memory Address (16) <:> Watchdog
Timer
AV4
<_> Peripheral 1 !
Bus Interface Interface <:>
< <:> Timer/
Code Bus (16) l l i iCode Address (24) Counters
. N] Interrupt !
Instruction Sequencer < Handler <:> . 1
?
U S =K
[src1 (g) sl |3
VANV AN e S @
HNE A !
A4)) a !
[src2 (8) =l |8 @
<:> Serial /0
Clock
, ¢
Register Data <:> Reset ! I
ALU lgile Memory !
Interface >
! | ﬂ I/\l <:> uss’
[bsT 6) | Lo o]
Microcontroller Core
USB Ports
k T For details, see the USB module block diagram. /
A4340-01

Figure 2-2. Functional Block Diagram of the 8 x930

2-2

Int9|® ARCHITECTURAL OVERVIEW

2.1 PRODUCT OVERVIEW

The &930 can be briefly described as an MCZ51 microcontroller with an on-chip USB mod-

ule, and additional pinouts for USB signals. As shown in the functional block diagram (Figure
2-2), the &930 consists of a microcontroller core, on-chip ROM (optional) and RAM, I/O ports,
the on-chip USB module, and on-chip peripherals. The USB module operates in conjunction with
the CPU to provide the capabilities of a USB device.

Table 2-1 lists the on-chip memory optiofitie on-chip peripheralgrovide hardware tiers,
counters, and a serial /0 port. Th@80 uses the standard instruction set of the MCS 251 archi-
tecture.

2.1.1 8x930Ax Features

The &930Ax USB microcontroller contains all the features of the 51 architecture, plus

it provides a USB interface for a PC peripheral. TX838Ax supports all four types of USB data
transfers: control, isochronous, interrupt, and bulk. The user can select the number of function
endpoint pairs (4 or 6) and whether USB reset is separate fromeskeipp Each endpoint pair has

a transmit FIFO and a receive FIFO data buffer. Table 2-2 on page 2-4 provides a summary of
USB features including FIFO sizes and operating rates. Table 2-3 on page 2-5 provides a summa-
ry of MCS® 251 architecture features. The block diagram in Figure 2-3 shows the main compo-
nents of the 830Ax USB moduleand how they interface with the CPU.

2.1.2 8x930Hx Features

The 8930Hx USB microcontroller is similar to thex830Ax in that it contains all the features of

the MCS® 251 architecture and provides a USB interface for a PC peripheralx38@eH also
provides a USB hub capability, permitting the connection of additional PC peripherals or hubs.
It provides three external downstream ports and one internal downstream por930keb&sup-

ports two hub endpoint pra andfour function endpoint pairs. Each endpoint pair éptchub
endpoint 1) has a transmit FIFO and a receive FIFO. Table 2-2 on page 2-4 provides a summary
of USB features including FIFO sizes and operating rates. Table 2-3 on page 2d8peosum-

mary of MCS 251 architecture features. The block diagram in Figure 2-4 shows the main com-
ponents of theX@30Hx USB module and how they interface with the CPU. (TX#38Hx does

not provide the separate USB reset or the six-endpoint pair options.)

Table 2-1. 8 X930 Memory Options

8x930AX 8x930Hx On-chip Memory
(Hubless) (Hub)
ROM RAM
(Kbytes) (Bytes)
80930AD 80930HD 0 1024
83930AD 83930HD 8 1024
83930AE 83930HE 16 1024

2-3

8x930AXx, 8x930HXx USER’'S MANUAL

Table 2-2. 8 x930 USB Features Summary

Endpoint 4 (8x930Ax only) (2)
Endpoint 5 (8x930Ax only) (2)
Endpoint 1 (4)

16 or 32 bytes
16 bytes
0-1024 bytes

8x930Ax 8x930Hx
General USB Features
Complete Universal Serial Bus Specification Yes Yes
rev. 1.0 compatibility
On-chip USB transceivers Yes Yes
Automatic transmit/receive FIFO management Yes Yes
Timebase (crystal/PLL) 6 or 12 MHz 12 MHz
USB rate (full speed) 12 Mbps 12 Mbps (1)
USB rate (low speed) 1.5 Mbps —
Low-clock mode Yes Yes
USB interrupt vectors 3 3
Suspend/resume Yes Yes
Separate USB and chip resets (2) Yes No
USB Function Features
Function endpoint pairs 40r6 (3) 4
Transmit/receive FIFO/ sizes:
Endpoint 0 16 bytes 16 bytes
Endpoints 2, 3 16 or 32 bytes 16 bytes

0-1024 bytes

USB Hub Features

External downstream ports

Internal downstream ports

Hub Endpoint 0: Transmit and receive FIFOs
Hub Endpoint 1: One transmit data buffer register

3
1
16 bytes
1 byte

NOTES:

1. The 8x930Hx operates at full speed only. Root port (Dpq, Do) data transfers are
always full speed. Data transfer rates on the external downstream ports are matched to
the type of USB device attached (full speed or low speed).

2. Early sample devices did not have this feature.

3. The 8x930Ax can be programmed to have either four or six function endpoint pairs.
Endpoint 2, 3, and 4 FIFOs sizes are 16 bytes for the four endpoint pair (4EPP) option
and 32 bytes for the 6EPP option. Early sample devices did not have this feature.

4. Programmable size.The 4EPP option provides transmit/receive FIFO size options of
256/256, 512/512, 1024/0, or 0/1024 bytes for function endpoint 1. The 6EPP option
supports only 256/256-byte FIFOs for function endpoint 1.

2.1.3 MCS® 251 Architecture Features

The 8930 retain all the features of the MCS 251 architecture including the configurable external
memory bus, four 8-bit I/O ports, on-chip peripherals, and code-compatibility with th& MCS
251 microcontroller. The features of the MCS 251 architecture are discussed in the following

paragraphs and summarized in Table 2-2.

The &930 stores code and data in a single, linear 16-Mbyte memory space. The usabtg me

space of thex®30 consists of four 64-Kbyte regions (256 Kbytes). The externgirowiles up

to 256 Kbytes of external meory addressability. Thepecial function registers (SFRs) and the

2-4

Int9|® ARCHITECTURAL OVERVIEW

register file have separate address spaces. Refer to Chapter 3, “Address Spaces” for a description
of the address modes.

Certain instructions in the MCS 251 instruction set operate on 8-bit, 16-bit, or 32-bit operands,
providing easier and more efficient programming in high-level languages such as C. Additional
features include the TRAP instruction, a displacement addressing mode, and several conditional
jump instructions. Chapter 5, “Programming Considerations,” describes the instruction set and
compares it with the instruction set for MCS 51 microcontrollers.

You can configure thex®30 for thebinary modeor source mod@pcode arrangement. Both
modes execute all of the MCS 51 architecture instructions and all of the MCS 251 architecture
instructions. However, source mode is more efficient for MCS 251 architecture instructions, and
binary mode is more efficient for MCS 51 architecture instructions. In binary mode, object code
for an MCS 51 microcontroller runs on thed80 without recompiling. For details see “Opcode
Configurations (SRC)” on page 4-12.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal or as
a special-function signal that supports the external bus or one of the on-chip peripherals. Ports PO
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with 8 data
bits. (You can also configure th&SB0 to have 47-bit or an 18-bit exdrnal address bus. Refer

to “Configuring the External Memory Interface” on page 4-7. Ports P1 and P3 carry bus-control
and peripheral signals.

The 8930 has two power-saving modes. In idle mode, the CPU clock is stopped, while clocks to
the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscillator is
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can bring the
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 15, “Special
Operating Modes,” for details on the power-saving modes.

Table 2-3. MCS® 251 Architecture Features

Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits
On-chip ROM 0, 8 or 16 Kbytes
On-chip RAM 1024 bytes
Register file 40 bytes
Eight interrupt vectors
I/O ports Four 8-bit I/O ports

On-chip Peripherals:
Serial 1/0O port (industry-standard Mcs® 51 UART)
Programmable counter array with 5 compare/capture modules
Three general-purpose timer/counters
Hardware watchdog timer
User-selectable configurations: external address range, wait states, page mode
Real-time wait states
Powerdown and idle gower-saving modes
Register-based MCS™ 251 architecture
Code-compatible with MCS 51 and MCS 251 microcontrollers

2-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

A A
usB
Upstream g g
Port o
Y Y
Transceiver
A
Y
Serial Bus
Interface Engine
(SIE)
A
Y
r- Control - __
> Function
— Interface Unit <:>
— (FIU)

Control

CTPOU { —

Data Bus

Transmit/Receive Bus

FIFOs —

Y

L Control

A4231-03

Figure 2-3. 8 xX930Ax USB Module Block Diagram

2-6

ARCHITECTURAL OVERVIEW

To
CPU

4

Transceiver

Y

USB Upstream Port

- . —>» D,;; USB
< Transceiver [> Dy, Downstream
- b Ports
Repeater i > Dy
p < Transceiver > Dy,
. —> D3
| Transceiver > D,
A A
Y
Serial Bus Interface Engine
(SIE)
A
Y
> Hub Function
Interface Interface
Unit Unit
(" Control —> (HIL) (FIV)

i

J

| Transmit/Receive Bus |

<

Data Bus

[

_ Control —)|

FIFOs

A5102-01

Figure 2-4. 8 xX930Hx USB Module Block Diagram

2-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Code Bus (16) I I i iCode Address (24)

Instruction Sequencer <:> Interrupt Handler
| srcig)

VANEIDAN

| src2 (8)

LI

. Data <:> Data Bus (8)
ALU Re'gi'lzter Memory
Interface — > Data Address (24)

I i:t(le) it ﬁ_l

A4272-01

Figure 2-5. The CPU

2.2 MICROCONTROLLER CORE

The microcontroller core contains the CPU, the clock and reset unit, the interrupt handler, the bus
interface, and the peripheral interface. The CPU contains the instruction sequencer, ALU, register
file, and data memory interface.

22.1 CPU

Figure 2-5 is a functional block diagram of the CPU (central processor unit) X986 &tches
instructions from on-chip code memory two bytes at a time, or from external memory in single
bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can configure
the &930 to operate ipage moddor accelerated instruction fetches from external memory. In
page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetch, the fetch
requires one state time rather than two state times. See “State Time and Peripheral Cycles” on
page 2-9.

The &930 register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MC&51 architecture, registe@s-7 consist of four banks oight registers each,

where the active bank is selected by the program status word (BS¥&$t context switches.

Refer to Chapter 3, “8x930 Register File” or see Figure 5-2 on page 5-17.

The 8930 is a single-pipeline machine. When the pipeline is full and code is executing from on-
chip code memory, an instruction is completed every state time. When the pipeline is full and

2-8

Int9|® ARCHITECTURAL OVERVIEW

code is executing from external memory (with no wait states and no extension of the ALE signal),
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit

Figure 2-6 on page 2-9 shows the internal clock circuitry of ®88@& The timing waveform at
XTAL1 can be provided by:

* an on-chip oscillator employing an external crystal/resonator connected across XTAL1 and
XTAL2

¢ an external frequency source connected to XTAL1

“Clock Sources” on page 14-2 discusses the requirements for external-clock signals and on-chip
oscillators. Power management options — idle, poaend and low-clock mode — are discussed
in Chapter 15, “Special Operating Modes.”

Device pins PLLSEL2:0 determine the USB operating rate (full speed or low speed) and the in-
ternal frequency (f) distributed to the CPU and on-chip peripherals. See Table 2-4. Because
of its hub capability, the 8x930Hkncluding the embedded function) always operates as a full-
speed USB device. Root port data transfers are always full speed. Data transfer rates on the ex-
ternal downstream ports are matched to the type of USB device attached (i.e., full speed or low
speed). For full speed operation, the PLL provides the 4X USB sampling rate.

2221 State Time and Peripheral Cycles

The basic unit of time for>@®30 microcontrollers is thstate time(or statg. States are divided

into two phases identified ghase landphase 2See Figures 2-7 and 2-8. Thed80 on-chip
peripherals operate onperipheral cyclewhich is six state times. A specific time within a pe-
ripheral cycle is denoted by its state and phase. For example, the PCA timer is incremented once
each peripheral cycle in phase 2 of state 5 (denot&&RR).

F
(6 or]?ZSE/IHz) Internal Clock
xTALL [¢ Clock Fowk .
Generator On-chip
3 s Peripherals
XTAL2 I ’—
CPU
[Po]
PCON.1 PCON.5 PCON.O
(Powerdown) (Low-clock Mode) (Idle Mode)
2 10
PLLSEL
A5135-01

Figure 2-6. Clock Circuit

2-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

As shown in Table 2-4 and Figure 2-7, when PLLSEL2:0 = 001 or 100 (low speed), there are two
Tosc periods per state. As shown in Table 2-4 and Figure 2-8, when PLLSEL2:0 = 110 (full
speed), there is ong . period per state. See “Low-clock Mode” below.

As shown in Table 2-the internal clock frequency {F) distributed to the CPU and peripherals
(3, 6, or 12 MHz) is a function of PLLSEL2:0 angsE Note that in Figure 2-6, for PLLSEL2:0
= 110 (full speed), the two-to-one divider stage is bypassed qpa-F .= 12 MHz.

22.2.2 Low-clock Mode

A special power-reduction mode (low-clock mode) overrides the timing definitions given in
“State Time and Peripheral Cycles” above and Figures 2-7 and Figures 2-8. Following device re-
set, the CPU and on-chip peripherals operate in low-clock mege ¥R MHz) until the LC bit

in PCON is cleared. Durinigw-clock mode, there are fougJ. periods per state for PLLSEL2:0
=001 or 100. Low-clock mode does not affect the USB rate. Also see Chapter 15, “Special Op-
erating Modes.”

2223 Reset Unit

The reset unit resets thgdB0 to a known state. A chip reset is initiated by asserting the RST pin,

by a USB-initiated reset, or by allowing the aladog timer to time out. Thex830Ax can be pro-
grammed so a USB-initiated reset does not cause a chip reset. For information on resets refer to
Chapter 14, “Minimum Hardware Setup”.

Table 2-4. 8 x930 Operating Frequency

XTAL1
PLLSEL2:0 Fr;(Tfe"nlc USB Rate Fr'gtirgﬁé Clocks per
Device (Pins 43, 42, 44) (?:)y 2) (?:) y State Comments
(@) osc (%L)K (Tosc/state)
®)
8x930Ax 001 6 Mhz 1.5 Mbps 3 Mhz 2 (4) PLL Off
(Low Speed)
8x930Ax 100 12 Mhz 1.5 Mbps 6 Mhz (4) 2 (4) PLL Off
(Low Speed)
8x930Ax 110 12 Mhz 12 Mbps 12 Mhz (4) 1 PLL On
8x930Hx (Full Speed)
NOTES:

1. Other PLLSELZ2:0 combinations are not valid.

2. The sampling rate is 4X the USB rate.

3. Theinternal frequency, F¢ « = 1/T¢k, is the clock signal distributed to the CPU and the on-chip
peripherals,

4. Following device reset, the CPU and on-chip peripherals operate in low-clock mode (F¢ «x = 3 Mhz)
until the LC bitin the PCON register is cleared. In low clock mode, there are four Tog periods per state
for PLLSEL2:0 = 100 or 110. Low-clock mode does not affect the USB rate.

5. The number of XTALL clock periods per state (Tygc/state) depends on PLLSEL2:0 and the LC bit.

2-10

ARCHITECTURAL OVERVIEW

Phase 1 Phase 2
P1 P2
XTAL1 |
Tosc
2 Tpsc = State Time
State 1 ‘ State 2 ‘ State 3 ‘ State 4 State 5 State 6 ‘
P1 | P2 P1 | P2 P1 | P2 P1 | P2 P1 | P2 P1 | P2

Peripheral Cycle I

A2604-02

Figure 2-7. Clocking Definitions (Low Speed)

|P1|P2|

XTAL1 |
Tosc
1 Tpsc = State Time
State 1 2 3 4 5 6

|P1P2|P1 P2|P1 P2|P1 P2|P1 P2|P1 P2

e

Peripheral Cycle
(6 States)

A5086-01

Figure 2-8. Clocking Definitions (Full Speed)

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven maskatdes and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontimees the

mal flow of instructions and branches to a routine that services the source that requested the in-
terrupt. You can enable or disable theerntipts individually (except for TRAP) and you can
assign one of four priority levels to each interrupt. Refer to Chapter 6, “Interrupt System,” for a
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, thex830 provides on-chip program memory beginning at location FF:0000H.
See Table 2-1 for memory options. Following chip reset, the first instruction is fetched from lo-
cation FF:0000H. (For devices without ROMstruction fetches are always from external mem-

ory. Following chip reset, the first instruction is fetched from the external memory location that
corresponds to internal address FF:0000H. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9
show how addresses in region FF: map into external memory for various memory configura-
tions.)

The &930 provides on-chip data RAM beginning at location 00:002@idt@bove théour banks

of registers RO—R7 which occufiye first 32 bytes of the memory space). See Table 2-1 for mem-
ory options. Data RAM locations can be accessed with direct, indirect, and displacement address-
ing. Ninety-six of these locations (20H-7Fé&fe bit addressable.

2.4 UNIVERSAL SERIAL BUS MODULE

The USB module operates in conjunction with the CPU to provide the capabilities of a USB de-
vice. The &30Ax USB module provides a function interface for one USB function. The
8x930Hx USB module supports one USB function andddition provides a USB hub capability.

The 8930 USB module communicates with the host PC by means of upstream data port 0 (pins
Do, Dyg)- In addition to the upstream port, thé80Hx has three external downstream ports for
bus expansion (pinsdp, Dy,1, Dp2, Dy2, Dp3, Dy3) @nd an internal downstream port for commu-
nicating with the embedded function. The®d80 provides on-chip transceivers for each external
USB port.

Operation of the USB module is controlled through the use of special fundgiisters (SFRs).

SFRs associated with the function interface are described in Chapter 7, “USB Function.” SFRs
associated with USB hub operations are described in Chapter 8, “USB Hubripot8FRs are
described in Chapter 6, “Interrupt System.” Register definition tables in these chapters describe
register usage and define the register bits. The register definition tables also appear in Appendix
C in alphabetical order. Memory maps of tk@B0Ax and &930Hx SFRs are presented in Chap-

ter 3, “Address Spaces” and Appendix C.

Data transfers with the host are made to/from endpoint pairs (EPPs) on the USB module. The
8x930Hx provides four fundobn endpoint pairs and two hub endpoint pairs. TRB38Ax can be
programmed to support either four or six function endpoint pairs. Table 2-5 lists the hub and func-
tion endpoint pairs available on thed30Hx along with the associated transmit and receive FIFO
data buffers. Except for higmdpoints 0 and 1, Table 2-Bato applies to thex830Ax when the

4EPP option is selected. Table 2-6 lists the endpoint pairs available oxO8@A8 when the

2-12

Int9|® ARCHITECTURAL OVERVIEW

6EPP option is selected. The value in the EPINDEX register determines the endpoint pair in-
volved in any given data transfer operation (Tables 2-5 and Table 2-6).

A complete description of the USB can be foundlliriversal Serial Bus SpecificatioRor a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics” sec-
tions of the “Electrical” chapter of th&niversal Serial Bus Specificatior-or electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and “Tim-
ing Diagram” sections of the same chapter.

Table 2-5. Endpoint Pairs for 8 x930Hx and 8 x930Ax (4EPP Option)

EPINDEX Endpoint Pair Transmit Receive FIFO Size
FIFOs FIFOs Select (1)
0000 0000 | Function Endpoint O (Control) 16 bytes 16 bytes XX
0000 0001 | Function Endpoint 1 256 bytes 256 bytes 00
512 bytes 512 bytes 01
1024 bytes 0 bytes 10
0 bytes 1024 bytes 11
0000 0010 | Function Endpoint 2 16 bytes 16 bytes XX
0000 0011 | Function Endpoint 3 16 bytes 16 bytes XX
1000 0000 | Hub Endpoint 0 (Control) (2) 16 bytes 16 bytes XX
1000 0001 | Hub Endpoint 1 (2), (3) N/A N/A XX
NOTE:
1. Sri:zpFoli:r?tle.zo (TXCON.6:5) specify the size of the transmit and receive FIFOs for function

2. Hub endpoints are not applicable to the 8X930Ax.
3. Hub endpoint 1 assembles status-change information in a buffer register (TXDAT) and
transmits it to the host PC. Hub endpoint 1 does not require FIFOs.

Table 2-6. Endpoint Pairs for 8 x930Ax (6EPP Option)

EPINDEX Endpoint Pair Transmit Receive FIFO Size
FIFOs FIFOs Select (1)

0000 0000 | Function Endpoint O (Control) 16 bytes 16 bytes XX
0000 0001 | Function Endpoint 1 256 bytes 256 bytes 00
0000 0010 | Function Endpoint 2 32 hytes 32 bytes XX
0000 0011 | Function Endpoint 3 32 hytes 32 bytes XX
0000 0100 | Function Endpoint 4 (2) 32 hytes 32 bytes XX
0000 0101 | Function Endpoint 5 (2) 16 bytes 16 bytes XX
NOTE:
1. Bits FFSZ1:0 (TXCON.6:5) specify the size of the transmit and receive FIFOs for function

endpoint 1. For the 6EPP option, use FFSZ1:0 = 00.

2. Onthe 8x930Ax, setting the SIXEPPEN bit in the EPCONFIG register selects the six-
endpoint option (6EPP). Function endpoints 4 and 5 are available only when the 6EPP option
is selected. Early sample devices did not have this feature.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

2.4.1 The 8x930Ax USB Module

Figure 2-3 on page 2-6 shows the main functional blocliseo8930Ax USB module and how

they interface with the CPU. The USB function interface manages communications between the

host PC and the USB function. This interface consists of the serial bus interface engine (SIE), the
function interface unit (FIU), and the transmit and receive FIFOs. The SIE handles the commu-

nication protocol of the universal serial bus, and the FIU handles data transfers and provides the
interface between the SIE and th®@80Ax CPU.

The &930Ax function interface, which can be programmed to have eitharor six endpoint
pairs, supports all four types of USB data transfer: control, isochronous, interrupt, and bulk.
Function endpoint 1 handles only control data transfers, whereas fuentpoints 1 through 5
handle all four data transfer types.

2411 Serial Bus Interface Engine (SIE)

The SIE is the USB protocol interpreter for communications betweernk®@39i8x and the host

PC over the USB lines. It provides serial-to-parallel conversion for data transfers from the host
and parallel-to-serial conversion for data transfers to the host. For addititaradaion on the

SIE, see “SIE Details” on page 7-33.

24.1.2 Function Interface Unit (FIU)

The FIU manages data movement within the USB module. It controls the operation of the FIFOs,
monitors the status of the data transactions, and aptivepriate moment transfers event control

to the CPU through an interrupt request. Eiact nature of a data transaction depends on the
type of data transfer and the initial conditions of the transmit and receive FIFOs.

2.4.1.3 Function FIFOs

Each endpoint pair contains a transmit FIFO and a receive FIFO. See Table 2-5 for FIFO config-
urations. Transmit FIFOs are written by the CPU, then read by the FIU for transmission. Receive
FIFOs are written by the FIU following reception, then read by the CPU. All transmit FIFOs have
the same architecture, and all receive FIFOs have the same architecture.

2.4.2 The 8x930Hx USB Module

Figure 2-4 on page 2-7 shows the main functional blocliseo8930Hx USB module and how

they interface with CPU. As on the 8X930Ax USB module described above, The SIE, FIU, and
function FIFOs comprise the function interface. TR@3Hx function interface is similar to that

of the 8930Ax. See “The 8x930Ax USB Module” on page 2-14. There are three mégnedhc-

es: the 8930Hx function interface is accessed via the internal downstream port, and it does not
have the six-endpoint pair option nor the separate USB reset feature.

The 8930Hx function interface has four endpoint pairs. It supports all four types of USB data
transfer: control, isochronous, interrupt, and bulk. Function endpoint 0 handles only control data
transfers, whereas function endpoints 1, 2, and 3 handle all four data transfer types.

The repeater, the SIE, the hub interface unit (HIU), and the hub FIFOs provide the hub capability.
The hub interface has two endpoinirpaHub endpoint Gupports only conol data transfers.
Hub endpoint 1 is used to transmit hub status charfgenhaion to the host PC.

2-14

Int9|® ARCHITECTURAL OVERVIEW

8x930Hx USB hub operations are divided into two categories: hub repeater operations and hub
controller operations. The hub controller is split among four modules: the serial bus interface en-
gine, the hub interface unit, the hub endpoint 0 transmit and receive FIFOs, ax838e)8

CPU. (See Chapter 8.) The following subsections discuss the role of each module.

2421 Hub Repeater

The repeater is the connectivity manafgerthe 8X930HXx. It detects the connection or discon-
nection of devices on the external downstream ports and manages the upstream/dowoatream
nectivity for data packets. It keeps track of hub port status, manages connectivity, and performs
power management for external down stream ports. The repsegiports both full-speed (12
Mbps) and low-speed (1.5 Mbps) data traffic. The repeater also controls bus fault detection and
recovery. Downstream port control is managed primarily by the HIU.

2422 Serial Bus Interface Engine (SIE)

The SIE is the USB communication protocol interpreter. It places data on and accepts data from
the bus. On theX®30Hx, the hub interface and the function interface share the SIE. This is pos-
sible because the host communicates with only a single device during any one transaction.The
SIE is permanently attached to the internal downstream port. The@litlgs serial-to-parallel
conversion for data transfers from the host and parallel-to-serial conversion for data transfers to
the host. For additional information on the SIE, see “SIE Details” on page 7-33. For complete
functional, signal, and timing information, refer to th8B Function SIE Interface Specification

2423 Hub Interface Unit (HIU)

The HIU uses special function registers (SFRs) to control the operation of the hub and to maintain
the status of the hub and its downstream ports. Control SFRs are set by firmware in response to
USB requests. Status SFRs are set by the repeater hardware. Refer to Chaptet-8)by&Bd

Chapter 9, “USB Programming Models,” for a discussion on the use of the HIU SFRs.

2424 Hub FIFOs

Hub FIFOs operate in the same manner as the function interface FIFOs. See Chapter 7, “USB
Function.” Hub endpoint O handles only control data trassfé is implemented with 16-byte
transmit and receive FIFO data buffers. The maximum packet size for hub control data transfers
is eight bytes. Data received from the USB for endpoint 0 is stored in the receive FIFO for reading
by firmware. Data to be sent to the host from kaldpoint O is loaded into the transmit FIFO.

Hub endpoint 1 transmits single-byiteerrupt tokens to the host and does not have FIFO data
buffers.

2425 8x930Hx CPU

The CPU runs the firmware associated with the operation of the hub and the function interface.
The CPU reads the receive FIFOs, loads the transmit FIFOs, and decodes and executes USB re-
quests for the hub. Control transaction stages are also tracked by firmware. Hub operation is im-
plemented by reading and writing SFRs in the HIU. Operation of the function interface is
implemented by reading and writing SFRs in the FIU.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals reside outside the microcontroller core. They perform specialized func-
tions in hardware. Firmware controls the peripherals via their special function registers (SFRs).
The &930 has four peripherals: the watchdog timer, the timer/counter unit, the programmable
counter array (PCA), and the serial 1/O port.

2.5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the ogédfatorer
operation) or by an external inp{ior counter operation). You can set up an 8-tbit, or 16-
bit timer/counter. You can program them for special applications, such as capturing the time of
an event on an external pin, outputting a programmable clock signal on an external pin, or gen-
erating a baud rate for the serial I/O port. Timer/counter events can generate interrupt requests.

The watchdog timer is a circuit that automatically resets X8B8@®in the event that a hardware

or firmware operation fails to complete. When enabled by firmware, the watchdog timer begins
running, and unless firmware intervenes, the timer overflows and initiates a chip reset. In normal
operation, firmware periodically clears the timer register to prevent the reset. If a malfunction oc-
curs and firmware fails to clear the timer, the resulting chip reset disables the timemang ret

the system to a known state. The watchdog timer and the timer/counters are described in Chapter
11, “Timer/Counters and Wettdog Timer.”

2.5.2 Programmable Counter Array (PCA)

Theprogrammableounter array (PCA) has its own timer and five capture/comparkiles that
perform several functions: capturing (storing) the timer valuesipamse to a transition on an in-

put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod-
ulator) signal on an output pin; and serving as a firmwaretdag timer. Chapter 12, “Program-
mable Counter Array,” describes this peripheral in detail.

2.5.3 Serial I/O Port

The serial 1/O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duptag: serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stoplaitidrhe

rate is generated by the overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11

bits: a start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be
used for parity checking or to specify that the frame contains an address and data. In mode 2, you
can use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the over-
flow from timer 1 or timer 2 to determine the baud rate.

2-16

Int9|® ARCHITECTURAL OVERVIEW

In its asynchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to anothe
slave.

2.6 OPERATING CONDITIONS

The 8930 is designed for a commercial operating environment and to accommodate the operat-
ing rates of the USB interface. For detailed specifications, refer to the cux@3tt Bniversal

Serial Bus Microcontroller datasheet. For USB module operating rates, see “Clock and Reset
Unit” on page 2-9.

intel.

Address Spaces

intel.

CHAPTER 3
ADDRESS SPACES

The 8030 has three address spaces: a memory space, a special function register (SFR) space, anc
a register file. This chapter describes these address spaces as they apply380thk &lso dis-

cusses the compatibility of the M@251 architecture and the M@S1 architecture in terms of

their address spaces.

3.1 MCS®251 ARCHITECTURE ADDRESS SPACES

Figure 3-1 shows the memory space, the SFR space, and the register file for MCS 251 architec-
ture. (The address spaces are depicted as being eight bytes wide with addresses increasing from
left to right and from bottom to top.)

Memory Address Space
16 Mbytes
FF:FFFFH
SFR Space
512 Bytes
S:1FFH
S:000H S:007H
Register File
64 Bytes
63
00:0000H 00:0007H 0 7
A4100-01

Figure 3-1. MCS® 251Architecture Address Spaces

3-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Itis convenient to view the unsegmented, 16-Mbyte mempage as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE
The menory space in the 30 is unsegmented. The 64-Kbyte “regions” 00:,
01, ..., FF: are introduced only as a convenience for discusfiddessing in

the 8930 is linear; there amo segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at loéat@¥00H. The
first 32 bytes (00:0000H—00:001FH) provide storage for a paheofegister file. The on-chip,
general-purpose data RAM residgast above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning at lo-
cation FF:0000H. Following device reset, execution begins at this address. The top eight bytes of
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from 0 to 63. Locations 0—7 represent one of four switchable register banks,
each having eight registers. The 32 bytes required for these banks occupy locatiodeHo:0
00:001FH in the memory space. Register file locations 8—63 do not appear in the memory space.
See “8x930 Register File” on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 eight-bit special function registers with addresses
S:000H-S:1FFH. SFRs implemented in tx®@30 are shown in Table 3-6 on page 3-10. In the
MCS 251 architecture, use the prefix “S:” with SFR addresses to distinguish them from the mem-
ory space addresses 00:0000H—-00:01FFH. See “Special Function Registers (SFRs)3elbpage

for details on the SFR space.

3.1.1 Compatibility with the MCS ® 51 Architecture

The address spaces in the MCS 51 architetane mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrolleus ttn MCS

251 microcontrollers. (Chapter 5, “Programming Considerations” discusses the compatibility of
the two instruction sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory locations
00H-7FH can be addressed directly and indirectly. Internal data locations 80H-FFH can only be
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code
memory has a separate memory space. Data in the code memory can be accessed only with the
MOVC instruction. Similarly, th&4-Kbyteexternal data memory can be accessed only with the
MOVX instruction.

The register file (registers RO—R7) comprises four switchable register banks, each having eight
registers. The 32 bytes required for the four banks occupy loc@¢hslFH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address space:
in the MCS 251 architecture; details are listed in Table 3-1.

T MCS®P51 Microcontroller Family User's ManugOrder Number: 272383)

3-2

Int9|® ADDRESS SPACES

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of thenmne

space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps thalnpt vectors taegion FF:. This mapping is trans-
parent to the user; code executes just as before, without modification.

FFFFH
Code
(MOVC)
0000H
FFFFH RO Register File R7
External Data
(MOVX)
0000H
FFH FFH
Internal Data SFRs
(indirect) (direct)
80H 80H
7FH
Internal Data
(direct, indirect)
JOOH
A4139-01

Figure 3-2. Address Spaces for the MCS ® 51 Architecture

3-3

8x930AXx, 8x930HXx USER’'S MANUAL

Memory Address Space

16 Mbytes
FFFFH
McsU 51 Architecture
Code Memory
FF:0000H] 0000H
X <% S:100H
02:0000H S:000H
FFFFH
MCS 51 Architecture
External Data Memory
01:0000H | 0000H
MCS 51 Architecture FFH
00-0000H | ooH Internal Data Memory

SFR Space
512 Bytes
S:1FFH
FFH
MCS 51 Architecture
80H SFRs
S:07FH
Register File
64 Bytes
63

0 MCS51 Architecture R.F. 7

A4133-01

Figure 3-3. Address Space Mappings MCS ® 51 Architecture to MCS ® 251 Architecture

Table 3-1. Address Mappings

MCS® 51 Architecture MCS ® 251 Architecture
Memory Type
Size Location Data_ Location
Addressing
Indirect using . .
Code 64 Kbytes 0000H-FFFFH MOVG instr. FF:0000H-FF:FFFFH
Indirect using . .
External Data 64 Kbytes 0000H-FFFFH MOVX instr. 01:0000H-01:FFFFH
128 bytes 00H-7FH Direct, Indirect | 00:0000H-00:007FH
Internal Data
128 bytes 80H-FFH Indirect 00:0080H-00:00FFH
SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:0FFH
Register File 8 bytes RO-R7 Register RO-R7

34

Int9|® ADDRESS SPACES

The64-Kbyte external data memory for MCS 51 microcongrsllis mapped into the memory re-

gion specified by bits 16—23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-12). The re-
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi-
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (OOH-FFH) are mapped to
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51 archi-
tecture, the lower 128 byt@30H-7FH) are directly and indirectly addressable; however the upper
128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all locations in
region 00: are accessible by direct, indirect, and displacement addressit®x@38:Memory
Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 echitecture starting at address S:080H, as shown in Figure 3-3rbhides com-

plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad-
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8x930 MEMORY SPACE

Figure 3-4 shows the logical memory space for t@38 microcontroller. The usable mery

space of the @30 consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Codexesute

from all four regons; code execution begins at FF:0000H. Regions 02:-FD are reservdihdRea

a location in the reserved area returns an unspecified value. Firmware can execute a write to the
reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum number of
external address lines is 18, which limits external memory to a maximdoumofegions (256
Kbytes). See “Configuring the External kery Interface” on page 4-7, and “[Exbal Menory

Design Examples” on pades-17.

Locations FF:FFF8H-FF:FFFFH are reserved for the configuration array (see Chapter 4, “Device
Configuration”). The two configuration bytes for the980 are accessed at locations FFEBH

and FF:FFF9H; locations FF:FFFAH-FF:FFFFH are reserved for configuration bytes in future

products. Do not attempt to execute code from locations FF:FFF8H-FF:FFFFH. Also, see the
caution on page 4-3 regarding execution of code from locations immediately below the configu-
ration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas of mem
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose RAM
(00:0020H-00:007FH) are bit addrabte. Chapter 5,Programming Considerationsiiscusses
addressing modes.

3-5

8x930AXx, 8x930HXx USER’'S MANUAL

Register Addressing
(32 Bytes)

Memory Address Space

£ ¢

16 Mbytes
FF:FFFFH
FF:0000H
FE:FFFFH
FE:0000H
Regions 02-FD
R are Reserved J
01:FFFFH
01:0000H
00:FFFFH
00-:0080H _ _ _ _ __ _______
00:007FH
00:0020H _ _ _ _ __ ______._
00:0000H 00:001FH

Indirect and
Displacement
Addressing
(16 Mbytes)

Direct Addressing
(64 Kbytes)

Bit Addressing
(96 Bytes)

A4385-01

3-6

Figure 3-4. 8 X930 Address Space

Int9|® ADDRESS SPACES

FF:FFF7H

External Memory

On-chip ROM
8 or 16 Kbytes
FF:0000H

FE:FFFFH

External Memory

FE:0000H

J Regions 02-FD L
are Reserved

0L:FFFFH

External Memory

01:0000H

00:FFFFH
External Memory

On-chip RAM
1024 Bytes

+1] 00:0000H Registers RO-R7

t Eight-byte configuration array (FF:FFF8H - FF:FFFFH)
1T Four banks of registers RO-R7 (32 bytes, 00:0000H - 00:001FH)

A5209-01

Figure 3-5. Hardware Implementation of the 8 x930 Address Space

3-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Figure 3-5 shows how areastb&é memory space are implemented by on-chip RAM and external
memory. The first 32 bytes of on-chip RAdbre banks 0-3 of thegister file (se¢8x930 Reg-
ister File” on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM provides general data storage (Figure 3-5). Instructions cannot execute from on-
chip data RAM. The data is accessible by direct, indirect, and displacement addressing. Locations
00:0020H—00:007FH are also bit addressable.

3.2.2 On-chip Code Memory

The 80930 is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region FF:.
(Figure 3-5). Table 2-1 on page 2-3 lists the amount of on-chip code memory for each device. On-
chip ROM is intended primarilfor code storage, although its contents can also be read as data
with the indirect and displacement addressing modes. Following a chip reset, program execution
begins at FF:0000H. Chapter 17, “Verifying Nonvolatile MemorySatibes the procedure for
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM only if
EA# = 1. For EA# =0, a code fetch in this address range accesses extenuayriée value of

EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chip code
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of code
from on-chip memory and external memory.

NOTE
If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:1FF8H—FF:1FFFH for 8 Kbytes, FF:3FF8H-FF:3FFFH for 16
Kbytes). Because of its pipeline capability, th®30 may attempt to prefetch
code from external memory (at an address above FF:1FFFH/ FF:3FFFH) and
thereby disrupt I/O ports 0 and 2. Fetching code constants from these eight
bytes does not affect ports 0 and 2.

If your programexecutes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. Asx®@&08fetches
bytes above the top address in the on-chip ROM, code fetches automatically
become external bus cycles. In other words, the rollover from on-chip ROM to
external code memory is transparent to the user.

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times
On-chip Code Memory 1
External Memory (page mode) 2
External Memory (nonpage mode) 4

3-8

Int9|® ADDRESS SPACES

3.221 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half of the
on-chip code memory can also be read as data at locations at the top of region 00: fpéeg‘Ma
On-chip Code Memory to Data Memory (EMAP#)” on pdgé4). That is, locations FF:2000H—
FF:3FFFH can also be accessed at locations@@@H-00:FFFFH. This is useful for accessing
code constants stored in ROM. Note, however, that all of the following three conditions must hold
for this mapping to be effective:

* The device is configured with EMAP# = 0 in the UCONFIG1 register (See Figure 4-3 on
page 4-5).

e EA#=1.
* The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are referred
to external mmory.

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5). For discussions of externatong see “Configuring the Egtnal
Memory Interface” on page 4-7, and Chapter 16, “External Memory Interface.”

3.3 8x930 REGISTER FILE

The &930 register file consists of 40 locations: 0-31 and 56-63, as shown in Figure 3-6. These
locations are accessible as bytes, words, and dwords, as described in “Byte, Ward/oashd
Registers” on pag8-12.” Several locations adedicated to special registers (see “Dedicated
Registers” on page 3-12); the remainder are general-purpgisters.

Register file locations 0—7 actually consist of four switchable banks of eight registers each, as il-
lustrated in Figure 3-7 on page 3-11. Toer banks are implemented as thstfi32 bytes of on-

chip RAM and are always accessible as locations 00:0000H—00:001FH in the memory address
spacet Only one of the four banks is accessible via the register file at a given time. The accessi-
ble, or “active,” bank is selected by bits RS1 and RSO0 in the PSW register, as shown in Table 3-3.
(The PSW is described in “Program Status Words” on pafyg”) This bank selection can be

used for fast context switches.

Register file locations 8—-31 and 56—63 are always aitiles These locations are implemented
as registers in the CPU. Register file locations 32-55 are reserved and cannot be accessed.

T Because these locations are dedicated to thsteedile, they are not osidered a part of the general-purpose,
1-Kbyte, a-chip RAM (locations 00:0@H—-00:041FH).

3-9

8x930Ax, 8x930HXx USER’'S MANUAL

Register File

Byte Registers

Note: R10 =B
R11 =ACC

R8 | R9

R10|R11

R12|R13|R14|R15

RO | R1

R2 | R3

R4 | R5|R6 | R7

56 [57 |58 | 59| 60| 61]62]63

Word Registers

Locations 32-55 are Reserved

2412512627128 [29)30|31

16 | 171181920 21|22 23
819 |10]|11|12]13|14]15

Banks 0-3

WR24 WR26 WR28 WR30

WR16 WR18 WR20 WR22

WRS8 WR10 WR12 WR14

WRO WR2 WR4 WR6

Dword Registers

DR56 = DPX DR60 = SPX
DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4

A4099-01

Figure 3-6. The Register File

ADDRESS SPACES

PSW bits RS1:0
select one bank

to be accessed via
the register file.

Register File Memory Address Space
63 FF:FFFFH
8
o[1]2]3]4]5]6]7 ~ &
7 \ 00:0020H
0]1]2]3]4]5]6]7 %‘ﬂm i
10H 17H
Banks 0-3 \ 08H OFH
00H 07H

Banks 0-3
accessible
in memory
address space

A4215-01

Figure 3-7. Register File Locations 0—7

Table 3-3. Register Bank Selection

PSW Selection Bits

Bank Address Range

RS1 RSO
Bank 0 00H-07H 0 0
Bank 1 08H-0FH 0 1
Bank 2 10H-17H 1 0
Bank 3 18H-1FH 1 1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbered byte
location. For example:

R4 is the byte register consisting of location 4.

WRA4 is the word register consisting of registers 4 and 5.

DR4 is the dword register consisting of registers 4—7.

Locations RO-R15 are addressable as bytes, words, or dwords. Locations 16—31 are addressable
only as words or dwords. LocatioB$—63 areaddressable only as dwords. Registers are ad-
dressed only by the names shown in Figure 3-6 — except for the 32 registers that comprise the
four banks of registers RO—R7, which can also be accessed as 1068ti@@30H—-00:001FH in

the memory space.

3.4.1 Dedicated Registers

The register file has four dedicated registers:
¢ R10 is the B-register
¢ R11 is the accumulator (ACC)
* DR56 is the extended data pointer, DPX
* DR60 is the extended stack pointer, SPX

These registers are located in the register liteyever, R10; R11; the DPXL, DPH, and DPL

bytes in DR56; and the SPH and SP bytes in DR60 are also accessible as SFRs. The bytes of DPX
and SPX can be accessed in the register file only by addressing the dwords.eigteledicated
registers in the register file and their cepending SFRs are illustrated in Figure 3-8 and listed

in Table 3-4.

3411 Accumulator and B Register

The 8-bitaccumulator(ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:EOH (Figure 3-8). TH®ister used in multiplies and divides, is register R10, which

is also accessible in the SFR space as B at S:FOH. Accessing ACC or B as a register is one state
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However,the MCS251 achitecture, any of registers R1-R15 can
serve for these tasksAs a result, the accumulator does not play the central role that it has in MCS
51 microcontrollers.

T Bitsin the PSW and PSW1 registers reflect the status atthenulatorThere are no equivalent status indicators for
the other registers.

3-12

ADDRESS SPACES

Register File

Stack Pointer, High

SFRs

Stack Pointer

:H SPH |S:BEH

]
[spr | sp |
60 61 62 63
DR60 = Extended Stack Pointer, SPX

Data Pointer Extended, Low

:I SP |S:81H

Data Pointer, High

> DPXL | S:85H

Data Pointer, Low

>| DPH | S:83H

| [opxe | opH | op |
56 57 58 59

DR56 = Extended Data Pointer, DPX

> DPL | S:82H

:I B |S:FOH

IBIACCI

R10, B Register R11, Accumulator, ACC

J

:I ACC |S:EOH

J

A4152-02

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is thextended data pointeDPX (Figure 3-8). The lower three bytes of
DPX (DPL, DPH, DPXL) are a@ssible as SFRs. DPL and DPH comprise the 1@abé pointer

DPTR. While instructions in the MCS 51 architecture always use DPTR as the data pointer, in-
structions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:—FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. Invetihds, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external mem-
ory. The reset value of DPXL is 01H.

3.4.1.3 Extended Stack Pointer, SPX

Dword reggister DR60 is thatack pointerSPX (Figure 3-8). The byte at location 63 is the 8-bit
stack pointer, SP, in the MCS 51 architecture. The byte at location 62stathkepointer high

SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack p@uotenoutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpagistes.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic |Reg. |Location Mnemonic Address
— — 60 — —
Stack — — 61 — —
Pointer - - DR60
(SPX) | Stack Pointer, High SPH 62 SPH S:BEH
Stack Pointer, Low SP 63 SP S:81H
— — 56 — —
Data Data Pointer Extended, Low DPXL 57 DPXL S:85H
ponter Data Poi High DPH DRSO 58 DPH S:83H
ata Pointer, Hi :
(BPX) DPTR - 9
Data Pointer, Low DPL 59 DPL S:82H
Accumulator (A Register) A R11 1 ACC S:EOH
B Register B R10 10 B S:FOH

3-14

Int9|® ADDRESS SPACES

3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in the microcontroller core, the USB module, and the
on-chip peripherals. Memory maps showing the location of all xB8®Ax and &930Hx SFRs

are presented in Tables 3-5 and Tables 3-6. The contents of each register following device reset
is given. An “x” indicates the bit value following reset is indeterminate.

Blank locations in Tables 3-5 and 3-6 and locations below S:80H and above S:FFH are unimple-
mented, i.e., no register exists. If an instruction attempts to write to an unimplemented SFR loca-
tion, the instruction executes, but nothing is actually written. If an unimplemented SFR location
is read, it returns an unspecified value.

Endpont-indexed SFRs are implemented as banks of registers similar to register file locations
RO-R7. There is a set or bank of registers for each endpoinEpdpont-indexed SFRs are ac-
cessed by means of the SFR address and an index value. The EPINDEX register specifies
hub/function and the endpoint number (which serves as the index value). See “Endpoint-indexed
SFRs” on page 7-3 and “Hub Endpoint Indexing Using EPINDEX” on page 8-11.

Port-indexed SFRs (HPCON, HPSC, and HPSTST) are implemented in a similar manner. There
is a set or bank of these registers for each USB downstream port. Port-indexed SFRs are accessec
by means of the SFR address and an index value. The HPINDEX register contains the port num-
ber which serves as the index value. See “Hub Port Indexing Using HPINDEX” on page 8-23.

SFR addresses are preceded by “S:” to differentiate them from addresses in the memory space.
Tables describing the SFRs are presented in alphabetical order in Appendix C.
Table 3-7 through Table 3-14 list the SFRs by functional category.

Table 3-7 — Core SFRs

Table 3-8 — Interrupt System SFRs

Table 3-9 — I/O Port SFRs

Table 3-10 — Serial /0 SFRs

Table 3-11 — USB Function SFRs

Table 3-12 — USB Hub SFRs

Table 3-13 — Timer/Counter and Watchdog Timer SFRs

Table 3-14 — Programmable Counter Array (PCA) SFRs

NOTE

SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 3-5. 8x930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E s
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

FO | B EPINDEX TXSTAT TXDAT TXCON TXFLG TXCNTL TXCNTH F7
00000000 1xxxx000 00000000 XXXXXXXX 000x0100t || 00xx1000 00000000t || xxxxxx00

E8 CL CCAPOL CCAP1L CCAP2L CCAP3L CCAPA4L EF

00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00000000 00x10000t || 00000000 XXXXXXXX 0x000100 00xx1000 00000000t || xxxxxx00

D8 | CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 PCON1 DF
00x00000 00xxx000 x0000000 x0000000 x0000000 x0000000 x0000000 xxx00000

DO | PSW PSW1 SOFL SOFH D7
00000000 00000000 00000000 00000000

C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF
00000000 XXXXxX00 00000000 00000000 00000000 00000000

CO | FIFLG FIFLG1 EPCONFIG C7
00000000 00000000 XXXXXXXO0

B8 | IPLO SADEN SPH BF
x0000000 00000000 0000000

BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 Xxxx0000 x0000000 x0000000 x0000000

A8 | IENO SADDR AF
00000000 00000000

A0 | P2 FIE FIE1 WDTRST WCON A7
11111111 00000000 00000000 XXXXXXXX XXXXxx00

98 | SCON SBUF 9F
00000000 XXXXXXXX

90 | P1 97
11111111

88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000

80 | PO SP DPL DPH DPXL PCON 87
11111111 00000111 00000000 00000000 00000001 00XX0000

0/8 1/9 2/A 3/B 4/C 5/D 6/E s

I:l MCS 251 microcontroller SFRs @ Endpoint-indexed SFRs

T For EPCON, TXCON, TXCNTL, and RXCNTL, the reset value depends on the endpoint pair selected.
Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

3-16

Int9|® ADDRESS SPACES

Table 3-6. 8X930H x SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

FO | B EPINDEX TXSTAT TXDATtt TXCON TXFLG TXCNTL TXCNTH F7
00000000 1xxxxx00 00000000 XXXXXxxt 000x01001 || 00xx1000 00000000t || xxxxxx00

E8 | HIFLG CL CCAPOL CCAP1L CCAP2L CCAP3L CCAPA4L EF
0xxxxx00 00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00000000 00x10000t || 00000000 XXXXXXXX 0x000100 00xx1000 00000000t || xxxxxx00

D8 | CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 PCON1 DF
00x00000 00xxx000 x0000000 x0000000 x0000000 x0000000 x0000000 xxx00000

DO | PSW PSW1 SOFL SOFH HPINDEX HPSC HPSTAT D7
00000000 00000000 00000000 00000000 XXxxx000 xxx00000 0x000100

C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 HPCON CF
00000000 XXXXxX00 00000000 00000000 00000000 00000000 Xxxxx000

CO | FIFLG C7
00000000

B8 | IPLO SADEN SPH BF
x0000000 00000000 0000000

BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 XXxxx000 x0000000 x0000000 x0000000

A8 | IENO SADDR HSTAT AF
00000000 00000000 x0000000

A0 | P2 HIE FIE WDTRST WCON A7
11111111 Oxxxxx00 00000000 XXXXXXXX XXXXXX00

98 | SCON SBUF HPPWR 9F
00000000 XXXXXXXX XXx1000x

90 | P1 HADDR 97
11111111 00000000

88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000

80 | PO SP DPL DPH DPXL PCON 87
11111111 00000111 00000000 00000000 00000001 00XX0000

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

MCS 251 microcontroller SFRs : Port-indexed SFRs

Endpoint-indexed SFRs

T For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

1 For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate
TXDAT register definition table is provided for this endpoint (see Chapter 8, “USB Hub.”)

8x930AXx, 8x930HXx USER’'S MANUAL

Table 3-7. Core SFRs

Mnemonic Name Address
ACCT Accumulator S:EOH
Bt B Register S:FOH
PSW Program Status Word S:DOH
PSwW1 Program Status Word 1 S:D1H
SPt Stack Pointer — LSB of SPX S:81H
SPH? Stack Pointer High — MSB of SPX S:BEH
DPTR? Data Pointer (2 bytes) —
DPL* Low Byte of DPTR S:82H
DPH? High Byte of DPTR S:83H
DPXL* Data Pointer Extended, Low S:85H
PCON Power Control S:87H
PCON1 USB Power Control. S:DFH
WCON Wait State Control Register S:A7H

t These SFRs can also be egsed by their correspondirggisters in the register

file (see Table 3-4).

Table 3-8. Interrupt System SFRs

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. S:A2H
FIEL1 USB Function Interrupt Enable Register. S:A3H
FIFLG USB Function Interrupt Flag Register. S:COH
FIFLG1 USB Function Interrupt Flag Register. S:C1H
HIE Hub Interrupt Enable Register. S:AlH
HIFLG Hub Interrupt Flag Register. S:E8H
IENO Interrupt Enable Register 0. S:A8H
IEN1 Interrupt Enable Registerl. S:B1H
IPLO Interrupt Priority Low Register 0. S:B8H
IPHO Interrupt Priority High Register 0. S:B7H
IPL1 Interrupt Priority Low Register 1. S:B2H
IPH1 Interrupt Priority High Register 1. S:B3H
SOFH Start of Frame High Register. S:D3H
SOFL Start of Frame Low Register. S:D2H

Table 3-9. I/O Port SFRs

Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 Port 3 S:BOH

Table 3-10. Serial /O SFRs

ADDRESS SPACES

Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table 3-11. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H
EPCONFIG Endpoint Configuration Register S:C7H
EPINDEX Endpoint Index Register. S:F1H
FADDR Function Address Register. S:8FH
RXCNTH Receive FIFO Byte-Count High Register. S:E7H
RXCNTL Receive FIFO Byte-Count Low Register. S:E6H
RXCON Receive FIFO Control Register. S:E4H
RXDAT Receive FIFO Data Register. S:E3H
RXFLG Receive FIFO Flag Register. S:E5H
RXSTAT Endpoint Receive Status Register. S:E2H
TXCNTH Transmit Count High Register. S:F7H
TXCNTL Transmit Count Low Register. S:F6H
TXCON Transmit FIFO Control Register. S:F4H
TXDAT Transmit FIFO Data Register. S:F3H
TXFLG Transmit Flag Register. S:F5H
TXSTAT Endpoint Transmit Status Register. S:FAH

8x930AXx, 8x930HXx USER’'S MANUAL

Table 3-12. USB Hub SFRs

Mnemonic Name Address
HADDR Hub Address Register. S:97H
HPCON Hub Port Control. S:CFH
HPINDEX Hub Port Index Register. S:D4H
HPPWR Hub Port Power Control. S:9AH
HPSC Hub Port Status Change. S:D5H
HPSTAT Hub Port Status. S:D7H
HSTAT Hub Status and Configuration. S:AEH
Table 3-13. Timer/Counter and Watchdog Timer SFRs
Mnemonic Name Address
TLO Timer/Counter O Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

3-20

N

tel.

ADDRESS SPACES

Table 3-14. Programmable Counter Array (PCA) SFRs
Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:F9H
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

3-21

intel.

A

Device Configuration

intel.

CHAPTER 4
DEVICE CONFIGURATION

The 8930 provides design flexibility by configuring certain operating features during device re-
set. These features fall into the following categories:

¢ external memory interface (page mode, address bits, wait states, range for RD#, WR#, and
PSEN#)

¢ source mode/binary mode opcodes
¢ selection of bytes stored on the stack by an interrupt
* mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresse2afisKbyte extrnal address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of device configuration. It describes the configuration
bytes and provides information to aid you in selectisgitable configuration foyour applica-

tion. It discusses the choices involved in configuring the external memory interfasb@msl

how the internal memory space maps into external memory. See “Configuring the External Mem-
ory Interface” on page 4-7. “Opcode Configurations (SRC)” on gat2 dizusses the choice

of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of thex®30 is established by the reset routine based on information stored in
configuration bytes. Thex830 stores configuration information in two user configuration bytes
(UCONFIGO and UCONFIG1) located in code memory. Devices with no on-chip code memory
fetch configuration data from external memory. Factory programmed ROM devices use customer-
provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8930 reserves the top eight bytes of the memory address space (RF-HFBFFFH) for

an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration array
are assigned to the two configuration bytes QNFIGO (FF:FFF8H) and UCONFIG1
(FF:FFF9H). Bit definitions of UCONFIGO0 and UCONFIG1 are provided in Figures 4-3 and 4-4.
The upper six bytes of the configuration array are reserved for future use.

When EA# = 1, the @30 obtains configuration information at reset from on-ctdpvolatile
memory at addresses FF:FFF8H and FF:FFF9H. For ROM devices, configuration information is
entered at these addresses during fabrication. The user can verify configuration information
stored on-chip using the procedures presented in Chapter 17, “Vel\fgimgplatile Memory.”

4-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

For devices without on-chip program memory, configuration information is accessed from exter-
nal memory using these same addresses. The designer must store configuration information in an
eight-byte configuration array located at the highest addresses implemented in external code
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontrollerobbafiguration
information at reset from external memory using internal addresses FF:FFF8H and FF:FFF9H.

8-Kbyte 16-Kbyte
Devices i Devices i
e | f o |1 \
FF:FFFFH
FF:0000H FF:0000H

FF:FFFEH

FF:FFFDH

Reserved
FF:FFFCH

FF:FFFBH

FF:FFFAH

FF:FFF9H | UCONFIG1
FF:FFF8H | UCONFIGO

For EA# = 1, configuration information is obtained from the
on-chip configuration array located in non-volatile memory
at addresses FF:FFF8H - FF:FFFFH.

Detail. On-chip configuration array.

A4393-01

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array

Size of External Address of Address of
Address Bus Configuration Array on Configuration Bytes
(Bits) External Bus (2) on External Bus (1)
16 FFF8H-FFFFH UCONFIG1: FFF9H
UCONFIGO: FFF8H
17 1FFF8H-1FFFFH UCONFIG1: 1FFF9H
UCONFIGO: 1FFF8H
18 3FFF8H-3FFFFH UCONFIG1: 3FFF9H
UCONFIGO: 3FFF8H

NOTES:

1. When EA# = 0, the reset routine retrieves UCONFIGO and UCONFIG1 from
external memory using the internal addresses FF:FFF8H and FF:FFFOH

which appear on the external address bus (A17, A16, A15:0) as shown in this
table. See Figure 4-2.

2. The upper six bytes of the configuration array are reserved for future use.

4-2

Int9|® DEVICE CONFIGURATION

8 Kbytes 16 Kbytes 32 Kbytes I 64 Kbytes ¥
FFF8H T
P 7FF9H R
3FF9H 7FF8H
1FFOH R _ 3FF8H 3 1
1FF8H —‘
128 Kbytes 256 Kbytes
1:FFFOH €S ¥ | 3rrrom y R xFEEH
1:FFF8H —f 3:FFF8H 3

X:XFFEH

X:XFFDH

X:XFFCH

X:XFFBH

X:XFFAH

XXFFOH | UCONFIG1
xxFFE8H | UCONFIGO

Detail.
Configuration array in external memory.

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIGO in external memory for
several memory implementations. For EA# = 0, configuration information is obtained from configuration bytes
in external memory using internal addresses FF:FFF8H and FF:FFF9H. In external memory, the eight-byte
configuration array is located at the highest addresses implemented.

A4394-01

Figure 4-2. Configuration Array (External)

CAUTION
The eight highest addresses in the memory address spacERBR+
FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external mery, so the same restiimbs apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below the
configuration array, to continue execution in other areas of memory.

4-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration bytes
UCONFIGO and UCONFIG1 (Figures 4-3 and 4-4):

* SRC. Selects source mode or binary mode opcode configuration.

* INTR. Selects the bytes pushed onto the stack by interrupts.

* EMAP#. Maps on-chip code memory (16 Kbgevices only) to memory region 00:.
The following bits configure the external memory interface:

* PAGE#. Selects page/nonpage mode and specifies the data port.

* RD1:0. Selects the number of external address bus pins and the address range for RD#, WR,
and PSEN#.

¢ XALE#. Extends the ALE pulse.
* WSAL:0#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01:.
* WSB1:0#. Selects 0, 1, 2, or 3 wait states for memory region 01:.

* EMAP#. Affects the external memory interface in that, when asserted, addresses in the
range 00:EO000H—-00:FFFFH access on-chip memory.

4-4

intel.

DEVICE CONFIGURATION

UCONFIGO
ONC)

7

Address: FF:FFF8H (2)

WSAL#

WSAO# | XALE# H RD1 RDO PAGE# SRC

Bit
Number

Bit
Mnemonic

Function

7

Reserved:

Reserved for internal or future use. Set this bit when programming
UCONFIGO.

6:5

WSAL:0#

Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSALl# WSAO#

0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

XALE#

Extend ALE:

Set this bit for ALE = Tggc.
Clear this bit for ALE = 3Ty4 (adds one external wait state).

3:2

RD1:0

Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

PAGE#

Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on PO.

SRC

Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51
microcontrollers).

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930
fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size

and decode arrangement of the external memory (Table 4-1 and Figure 4-2).
Instructions for verifying on-chip configuration bytes are given in Chapter 17.

Figure 4-3. User Configuration Byte 0 (UCONFIGO)

4-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

UCONFIG1 Address: FF:FFF9H (2)

1,3

7 0

— — — INTR || — WSB1# | WSBO# | EMAP#
Bit Bit Function
Number | Mnemonic

75 — Reserved:
Reserved for internal or future use. Set these bits when programming
UCONFIGL1.

4 INTR Interrupt Mode:
If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

— Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0# External Wait State B (Region 01:):
WSB1# WSBO#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:
For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H-FF:3FFFH to 00:E000H-00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H-00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)" on page 14.

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIGL1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the
8x930 fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a

configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory depends

on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

Instructions for verifying on-chip configuration bytes are given in Chapter 17.

4-6

Figure 4-4. User Configuration Byte 1 (UCONFIG1)

DEVICE CONFIGURATION

Table 4-2. Memory Signal Selections (RD1:0)

. A17/P1.7/
RD1:0 CEX4MWCLK A16/P3.7/RD# PSEN# P3.6/WR# Features
0 0 |Al7 Al6 Asserted for | Asserted for writes to | 256 Kbyte external
all addresses | all memory locations | memory
0 1 |PL1.7/CEX4/ Al6 Asserted for | Asserted for writes to | 128 Kbyte external
WCLK all addresses | all memory locations | memory
1 0 |P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64 Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
1 1 |P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for Compatible with MCS
WCLK for addresses | =80:0000H writes to MCS® 51 51 microcontrollers.
< 7F:FFFFH microcontroller data Separate 64-Kbyte
memory locations. external program
and data memories.

NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3).

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. The

configuration bits described here determine the following interface features:

¢ page mode or nonpage mode (PAGE#)
¢ the number of external address pins — 16, 17, or 18 (RD1:0)

¢ the memory regions assigned to the read signals RD# and PSEN# (RD1:0)
¢ the external wait states (WSA1:0#, WSB1:0#, XALE#)

* mapping a portion of on-chip code memory to data memory (EMAP#)

44.1

Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIGO0.1) selects page-mode or nonpage-mode code fetches and deter-
mines whether data is transmitted on P2 or P0O. See Figure 16-1 on page 16-agmitide
Bus Cycles” on page 16-6 for a description of the bus structure and page mode operation.

* Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 architecture
with data D7:0 multiplexed with A7:0 on PO. External code fetches require two state times

(4TO S() .

¢ Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, external
code fetches require only one state time, (2T

4-7

8x930AXx, 8x930HXx USER’'S MANUAL

4.4.2

The RD1:0 configuration bits (UCOMNGO0.3:2) determine the number of external address lines
and the address ranges for asserting the read signals PSEN#/RD# and the write signal WR#.

Configuration Bits RD1:0

intel.

Theseselectiongffer different ways of addressing external memory. Figures 4-5 arghévé

how internal memory space maps into external memory space for the four values of RD1:0. Chap-
ter 16, “External Memory Interface,” provides examples of externahang designs for each

choice of RD1:0.

RD1:0 = 00

18 external address bits:

PO, P2, A16, A17

Notes:

1. Maximum external
memory

2. Single read signal

RD1:0=01

17 external address bits:

PO, P2, A16

Note:
Single read signal

Internal Memory with
Read/Write Signals

PSEN#, WR#

PSEN#, WR#

Internal Memory with
Read/Write Signals

PSEN#, WR#

PSEN#, WR#

FF:

FE:

01:

00:

FF:

FE:

01:

00:

External
Memory
256 Kbytes
Al7:16
11 FF:
10 FE:
01 01
00 00
External
Memory
128 Kbytes
Al6
1 01:, FF:
0 00:, FE:

A4218-02

4-8

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

intel.

DEVICE CONFIGURATION

RD1:0 = 10
16 external address bits: Internal Memory with
PO, P2 Read/Write Signals
Notes: i
1. Single read signal PSEN#. WR# FF:
2. P3.7/RD#/A16 functions ' FE:
only as P3.7
01:
PSEN#, WR#
00:
RD1:0=11
16 external address bits: Internal Memory with
PO, P2 Read/Write Signals
Note:
i i ® FF:
1. Cc_)mpatlble with MCS® 51 PSEN#
microcontrollers EE:
2. Cannot write to regions FC:—FF: .
01:
RD#, WR#
00:

External
Memory

64 Kbytes

|:| 00:, 01, FE:, FF:

External
Memory

128 Kbytes

FE:, FF:
00:, 01:

A4217-02

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)

4-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

A key to the memory interface is the relationship between internal memory addresses and external
memory addresses. While thed80 has 24 internal address bits, the number of external address
lines is less than 24 (i.e., 16, 17, or 18, depending on the values of RD1:0). This means that
reads/writes to different internal memory addresses can access the same location in external
memory.

For example, if thex®30 is configured for 18 external address lines, a write to location 01:6000H
and a write to location FFO®0H acesses the same 18-bit external address QDi8pbecause

Al16 =1 and A17 = 1 for both internal addresses. In other words, regions 00: and FE: map into
the same 64 Kbyte region in external memory.

In some situations, however, a multiple mapping from internal memory to external memory does
not preclude using more than one region. For example, for a device with on-chip ROM configured
for 17 address bits and with EA# = 1, an access to FF:0000H-FF:3FFFH (16 Kbytes) accesses
the on-chip ROM, while an access to 01:0000H—-01:3FFFH is to extermabmypen this case,

you could execute code from these locations in region FF: and store data in the corresponding lo-
cations in region 01: without conflict. See Figure 4-5 and “Example 1: RD1:0 = 00, 18-bit Bus,
External Flash and RAM” on page 16-17."

4421 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports PO and P2), A16 (from
P3.7/RD#/A16), and Al{from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four 64
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is the
largest possible external memory space. See “Example 1: RD1:0 = 00, 18-bit Bus, External Flash
and RAM” on page 16-17.

4422 RD1:0 = 01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports PO and P2) and A16
(from P3.7/RD#/A16). Bit A16 can select two 64 Kbyte regions of external memory for a total of
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map into the
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: and FF:.

This selection provides a 128 Kbyte external address space. Theaggvahthis selection, in
comparison with the 256 Kbyte external memory space with RD1:0 = 00, is the availability of pin
P1.7/CEX4/A17/WCLK for general I/0, PCA 1/O or real-time wait clock output. I/O P3.7 is un-
available. All four 64 Kbyteegions are stored by PSEN# and WR#. Chapter 16, “External Mem-
ory Interface,” shows examples of memory designs with this option.

4423 RD1:0 = 10 (16 External Address Bits)

For RD1:0 = 10, the 16 external address bits (A15:0 on ports PO and P2) provide a single 64 Kbyte
region in external memory (top of Figure 4-6). This selegiimvides the smallest external mem-

ory space; however, pin P3.7/RD#/A16 is available for general /0 and pin P1.7/CEX4/A17 is
available for general I/O or PCA 1/O. This selection is useful when the availability of these pins
is required and/or a small amount of external memory is sufficient.

4-10

Int9|® DEVICE CONFIGURATION

4424 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports PO and P2).
However, PSEN# is the read signal for regions FE:—FF:, while RD# is the read signal for regions
00:—01: (bottom of Figure 4-6). The two read signals effectively expand the extemmalryne
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:-01:. This selection
provides compatibility with MCS 51 microcontrollers, which have separate extermabmye
spaces for code and data.

4.4.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD#WR#/PSEN#dldse a
extending the ALE pulse. Each additional wait state extends the pulsgfy 2Beparate wait

state specification for external accesses via region 01: permits a slow external device to be ad-
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summarizes
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait states, see
“External Bus Cycles With Configurable Wait States” on page 16-8.

4431 Configuration Bits WSA1:0 #, WSB1:0#

The WSAZL:0# wait state bits (UCONFIGO0.6:5) permit RD#, WR#, and PSEN# to be extended by
1, 2, or 3 wait states for accesses to external memory via all regions except region 01:. The
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended by 1,
2, or 3 wait states for accesses to external memory via region 01:.

4.43.2 Configuration Bit XALE#

Clearing XALE# (UCONFIGO0.4) extends the time ALE is asserted frgga 0 3T,5 This ac-
commodates an address latch that is too slow for the normal ALE signal. Figure 16-10 on page
16-10 shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8x930

Regions WSAL1# WSAO#

00: FE: FF: 0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

Region 01: WSB1# WSBO#
0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

45 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIGO0.0) selects the source mode or binary mode opcode ar-
rangement. Opcodes for thed80 architecture are listed in Talles on page A-4 and Table A-7

on page A-5. Note that in Table A-6 every opcod#HOFFH), is used for an instruction except
A5H (ESC), which provides an alternative set of opcodes for columns 6H through FH. The SRC
bit selects which set of opcodes is assigned to columns 6kiginiFH and which set is the alter-
native.

Binary modeandsource modeefer to two ways of assigning opcodes to the instruction set for

the 8930 architecture. One of these modes must be selected when the chip is configured. De-
pending on the application, binary mode or source modepmuaduce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.

The &930 architecture has two types of instructions:
* instructions that originate in the M@%1 architecture
* instructions that are common with the M&851 architecture

Figure 4-7 shows the opcode map for binary mode. Area | (columns 1 througtaislénAF7)

and area Il (columns 6 through Fake up the opcode map for the instructions that originate in

the MCS 51 architecture. Area lll in Figure 4-7 represents the opcode map for the instructions

that are common with the MCS 251 architecture (Table A-7). Some of these opcodes are reserved
for future instructions. Note that the opcode values for areas Il and Il are identicalHBEH

To distinguish between the two areas in binary mode, the opcodes in area Il are given the prefix
A5H. The area Ill opcodes are thus AS06H—A5FFH.

Figure 4-8 shows the opcode map for source mode. Areas Il and Il have switched places (com-
pare with Figure 4-7). In source mode, opcodes for instructions in area Il require the ASF escape
prefix while opcodes for instructions in area Il do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4 shows
the opcode assignments for three sample instructions.

45.1 Selecting Binary Mode or Source Mode

If a system was originally developed using an MCS 51 microcontroller, and if thex930-8
based system will run code written for the MCS 51 microcontroller, performance will be better
with the &930 running in binary mode. Object code written for the MCS 51 microcontrotsr
faster on the #30.

However, if most of the code is rewritten using the MCS 251 instruction set, performance will be
better with the 8930 running in source mode. In this case, @38 can run significantly faster
than the MCS 51 microcontroller.

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod-
ified on an &930, choose binary mode. You can use the object code without reassembling the
source code. Yooan also assemble the source code with an assembler for the MCS 251 architec-
ture and have it produce object code that is binary-compatible with MCS 51 microceositrolle

4-12

DEVICE CONFIGURATION

A5H Prefix
OH 5H 6H FH 6H FH
OH) OH
| : I Il
FH ; FH
MCS® 51 MCS 51 MCS 251
Architecture Architecture Architecture
A4131-01
Figure 4-7. Binary Mode Opcode Map
A5H Prefix
OH 5H 6H FH 6H FH
OH) OH
| : Il [
FH ; FH
MCS® 51 MCS 251 MCS 51
Architecture Architecture Architecture

A4130-01

Figure 4-8. Source Mode Opcode Map

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 4-4. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction

Binary Mode Source Mode

DEC A 14H 14H
SUBB A,R4 9CH A59CH
SUB R4,R4 A59CH 9CH

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is liketpdace more ef-

ficient code. For a program whetiee choice is not clear, the better mode carfooed by
experimenting with a simulator.

For both architectures, an instruction with a prefixed opcode requires one more byte for code stor-
age, and if an additional fetch is required for the extra byte, the execution time is increased by
one state. This means that using fewer prefixed opcodes produces more efficient code.

46 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For devices with 16 Kbytes of on-chip code memory, the EMAP# bit (UCONFIG1.0) provides
the option of accessing the upper half of on-chip code memory as data memory. This allows code
constants to be accessed as data in region 00: using direct addressing. See “Accessing On-chip
Code Memory in Region 00:” on page 3-9 for the exact conditions required for this mapping to
be effective.

EMAP# = 0. For the 83930AE and 83930HE, the uppghtKbytes of on-chip code memory
(FF:2000-FF:3FFFH are mapped to locationd£000H—-00: FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not oéalgresses in the
range 00:EO000H—-00:FFFFH accesseenal RAM.

4.7 INTERRUPT MODE (INTR)

The INTR bit (UCONFIGL1.4) determines what bytes are stored on the stack when an interrupt
occurs and how the RETI (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order and uses
them as the 16-bit return address in region FF:.

For INTR = 1, an interrupt pushes the three PC bytes and the PSW1 register onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte address
space.

4-14

intel.

Programming
Considerations

intel.

CHAPTER 5
PROGRAMMING CONSIDERATIONS

The instruction set for the architecture supports the instruction set for th® BIC&chitecture

and MC® 251 architecture. This chapter describes the addressing modes and summarizes the in-
struction set, which is divided into data instructions, bit instructions, and control instructions. The
program status word registers PSW and PSW1 are also described. Appendix A, “Instruction Set
Reference,” contains an opcode map and a detailed description of each instruction.

NOTE

The instruction execution times given in Appendix A are for code executing
from external memory and for data that is read from and written to on-chip
RAM. Execution times are increased by accessing peripheral SFRs, accessing
data in external memory, using a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRsx(® 3:0) increases the
execution time. These cases are noted in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source modandBinary moderefer to the two ways of assigning opcodes to the instruction set

of the &930. Depending on the application, one mode or the other may produce more efficient
code. The mode is established during device reset based on the value of the SRC bit in configu-
ration byte UCONFIGO. For information regarding the selection of the opcode mode, see “Op-
code Configurations (SRC)” on page 4-12.

5.2 PROGRAMMING FEATURES OF THE 8x930 ARCHITECTURE

The instruction set fon®30 microcontrollers provides the user with instructions that exploit the
features of the MCS 251 architecture while maintaining compatibility with the instruction set for
MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8-bit, 16-
bit, or 32-bit opeands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are access-
ed with fewer addressing modes.) This capability increases the ease and efficiency of program-
ming the &30 microcontroller in a high-level language such as C.

The instruction set is divided into data instructions, bit instructions, and control instructions.
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data; bit in-
structions manipulate bits; and control instructions manage program flow.

5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte
boundaries is not required. Words and dwords are stored in memory and the registdiidile in
endienform.

5-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 5-1. Data Types

Data Type Number of Bits
Bit
Byte 8
Word 16
Dword (Double Word) 32

5211 Order of Byte Storage for Words and Double Words

The &930 microcontroller stores words (2 bytes) dodble words (4 bytes) in memory and in

the register file in big endien form. In memory storage, the most significant byte (MSB) of the
word or double word is stored in the memory byte specified imgtriction; the remaining bytes

are stored at higher addresses, with the least significant byte (LSB) at the highest addtdsss. W
and double words can be stored in memory starting at any byte address. In the register file, the
MSB is stored in the lowest byte of the register specified in the instruction. For a description of
the register file, see “8x930 Register File” on page 3-9. The code fragment in Figure 5-1 illus-
trates the storage of words and double words in big endien form.

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of RO, R1, ...,
R7; i.e., the range of n is 0—7. The instruction ADD Rm,#data uses “Rm” to denote RO, R1, ...,
R15; i.e., the range of m is 0-15. Table 5-2 swarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the &930 architecture, memory addresses include a region number (00:, 01:, ..., FF:) (Figure
3-5 on page 3-7). SFR addresses have a prefix “S:” (S:000H-S:1FFH). The distinction between
memory addresses and SFR addresses is necessary because memory locai60si-00:0

00:01FFH and SFR locations S:000H-S:1FFH can both be directly addressed in an instruction.

5-2

PROGRAMMING CONSIDERATIONS

Memory
200H 201H 202H 203H
MOV WRO,#A3B6H
| | AsH | BeH | | MOV 00:0201H,WR0
MOV DR4,#0000C4D7H
Register File
0 1 2 3 4 5 6 7
[A3H | B6H | | | oon | ooH | can [D7H |
—_ | - -
—
WRO DR4
Contents of register file and memory after execution
A4242-01

Figure 5-1. Word and Double-word Storage in Big Endien Form

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers

Register Register Destir_|ation Soqrce Register Range
Type Symbol Register Register
Ri — — RO, R1
Byte RN — — RO-R7
Rm Rmd Rms RO-R15
Word WRj WRjd WRjs WRO0, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DRS, ..., DR28, DR56, DR60

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad-
dressed only directly. For compatibility, firmware tools f&®80 microcontrollers recognize this
notation for instructions in thex830 architecture. No change is necessary in any code written for
MCS 51 controllers.

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, ..., FF:) and the
SFR prefix (S:) are required. Also, firmware tools for tk@3® architecture permit 00: to be used

for memory addresses 00H-FFH and permit the prefix S: to be used for SFR addriessesin

tions in the 8930 architecture.

5-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

5.2.4 Addressing Modes

The &930 architecture supportise following addressing modes:
¢ register addressing The instruction specifies the register that contains the operand.
¢ immediate addressing The instruction contains the operand.
¢ direct addressing The instruction contains the operand address.

¢ indirect addressing The instruction specifies the register that contains the operand
address.

¢ displacement addressingThe instruction specifies a register and an offset. The operand
address is the sum of the register contents (the base address) and the offset.

¢ relative addressing The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

* bit addressing The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Modes” on
page 5-4, “BitAddressing” onpage5-10, and “Addressing Modes f@ontrol Instructions” on
page 5-12.

5.3 DATAINSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 5-4
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data instruc-
tions in the MCS 251architecture.

NOTE
References to registers RO—R7, WR0-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status Words” on page 5-15)gieters in all banks (active and
inactive) can be accessed as memory locations in the range 00H-1FH.

Instructions from the MCS 51 architecture access external memory thtrmgh
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DR56 or theDPXL SFR (see “Dedicated Registers” on page 3-12).

5-4

PROGRAMMING CONSIDERATIONS

intel.

53.1.1 Register Addressing

Both architectures address registers directly:

* MCS 251 architecture. In the register addressing mode, the operand(s) in a data instruction
are in byte registers (RO—R1%ordregisters (WR0, WR2, ..., WR30), or dword registers
(DRO, DR4, ..., DR28, DR56, DR60).

* MCS 51 architecture. Instructions address registers RO—R7 only.

5.3.1.2 Immediate

Both architectures use immediate addressing.

* MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#datal16). Dword operations use 16-bit immediate data in the lower word,
and either zeros in the upper word (denoted by #0datal6), or ones in thevapper
(denoted by #1datal6). MOV instructions that place 16-bit immediate datadntord
register (DRK), place the data either into the upper word while leaving the lower word
unchanged, or into the lowerord with a sign ex@nsion or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4) that
specifies the amount of the increment/decrement.

* MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3 Direct

* MCS 251 architecture. In the direct addressing mode, the instructionrsotita address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8G906t-0
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H-S:1FFH) as
bytes only. (See the second note in “Data Addressing Modes” on page 5-4 regarding SFRs
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words in
memory (dirl6 = 00:0000H-00:FFFFH).

* MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

Table 5-3. Addressing Modes for Data Instructions in the MCS ® 51 Architecture

Mode Address Range of Assembly Language Comments
Operand Reference
. RO-R7
Register O0H—1FH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H—7FH On-chip RAM
Direct ir8 =
SFRs dir = 80H—FFH SFR address
or SFR mnemonic.

8x930AXx, 8x930HXx USER’'S MANUAL

Table 5-3. Addressing Modes for Data Instructions in the MCS

intel.

® 51 Architecture (Continued)

Mode Address Range of Assembly Language Comments
Operand Reference
Accesses on-chip RAM or the
O0H-FFH @RO, @R1 lowest 256 bytes of external
data memory (MOVX).
Indirect Accesses external data
0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
Accesses region FF: of code
0000H-FFFFH @A+DPTR, @A+PC memory (MOVC).
5314 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (R0O—R15). The source address
is a byte, word, odword. The two architectures do indirectdressing via different registers:

* MCS 251 architecture. Memory is indirectly addressed via worddamad registers:

— Word register (@WRj, j=0, 2, 4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H-00:FFFFH.

— Dwordregister (@DRk, k=0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. (If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack
pointer register SPX.)

* MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and exrnal data RAM. (See the second note in “Data Addressing Modes” on
page 5-4 regarding the region of external data RAM that is addressed by instructions in the
MCS 51 architecture.)

— Byte register (@RI, i = 1, 2). Registers RO and R1 indirectly address on-chip memory
locations 0OH—FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructicses
these indirect modes to access code memory and external data RAM.

— 16-bit program counter (@ A+PC). The MOVC instruction uses this indirect mode to
access code memory.

5-6

intel.

PROGRAMMING CONSIDERATIONS

Table 5-4. Addressing Modes for Data Instructions in the MCS ~ ® 251 Architecture
Mode Address Range of Assembly L._emguage Comments
Operand Notation
00:0000H—00:001FH RO-R7, WR0-WRS, DRO, and
Register R0—R15, WR0—WR30, DR2 are in the register bank
9 (RO-R7, WRO-WR3, | pro—DR28, DR56, DR60 currently selected by the
DRO, DR2) (1) PSW and PSW1.
Immedlate, N.A. (_Operan_d is in the #short=1, 2, or 4 Used only in increment and
2 bits instruction) decrement instructions.
Immediate, N.A. (Operand is in the _
8 bits instruction) #data8 = #00H-#FFH
Immediate, N.A. (Operand is in the _ B
16 bits instruction) #datal6 = #0000H—#FFFFH
DI 00:0000H-00:007FH dir8 = 00:0000H-00:007FH On-chip RAM
irect,

8 address bits

SFRs

dir8 = S:080H—S:1FFH (2)
or SFR mnemonic

SFR address

Direct,
16 address bits

00:0000H-00: FFFFH

dirl6 = 00:0000H-00:FFFFH

Indirect,
16 address bits

00:0000H-00:FFFFH

@WR0O-@WR30

Indirect,
24 address bits

00:0000H-FF:FFFFH

@DRO-@DR30, @DR56,
@DR60

Upper 8 bits of DRk must be
00H.

Displacement,
16 address bits

00:0000H-00:FFFFH

@WRj + dis16 =

@WRO + OH through
@WR30 + FFFFH

Offset is signed; address
wraps around in region 00:.

Displacement,
24 address bits

00:0000H—FF:FFFFH

@DRK + dis24 =

@DRO + OH through
@DR28 + FFFFH,
@DR56 + (OH-FFFFH),
@DR60 + (OH-FFFFH)

Offset is signed, upper 8 bits
of DRk must be 00H.

NOTES:

1. These registers are accessible in the memory space as well as in the register file (see “8X930
Register File” on page 3-9).
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8x930 all
SFRs are in the range S:080H-S:0FFH.

5-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

5.3.1.5 Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@ WRj+dis16) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WR]. The instruction contains
a 16-bitsigned offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceed
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com-
puted address wraps around the top of region 0§:, @005H + FOOOH becomes 1005H).

Twenty-four-bit displacement addressing (@ DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DRO, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contaiBbia signed dbet

which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Tabl&-19 on page A-13pperate on byte and word data that is accessed in
several ways:

¢ as the contents of the accumulator, a byte register (Rn), or a word register (WR})
* in the instruction itself (immediate data)
* in memory via direct or indirect addressing

The ADDC and SUBB instructions (Tab%19) are the same as those for MCS 51 microcontrol-
lers.

The CMP (compare) instruction (Table A-20 on pAg#4) calculates the ddrence of two bytes

or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. The dif-
ference is not stored. The operands can be addressed in a variety of modes. The most frequent use
of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-14 lists the INC (increment) and DEC (decrement) instructions. The in-
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and incremb or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers acollotzps.

The &930 architecture provides the MUL (multiply) and DIV (divide) instructions for unsigned
8-bit and 16-bit data (Table A-22 on page A-15). Signed multiply and divide are left for the user
to managelftrough a conwusion process. The following operations are implemented:

¢ eight-bit multiplication: 8 bits< 8 bits » 16 bits

* sixteen-bit multiplication: 16 bitg 16 bits . 32 bits

* eight-bit division: 8 bits- 8 bits - 16 bits (8-bit quotient, 8-bit remainder)

* sixteen-bit division: 16 bits 16 bits - 32 bits (16-bit quotient, 16-bit remainder)

5-8

Int9|® PROGRAMMING CONSIDERATIONS

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WR;js), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is storeaviorthe
register that contains the first operand register. For exampleprsigeict from aninstruction

MUL R3,R8 is stored in WR2. Similarly, fdr6-bit multiplies, the result is stored in thievord
register that contains the first operand register. For exampl@rdideict from thenstruction

MUL WR6,WR18 is stored in DR4.

For 8-bit divides, the operands are byte registers. The result is storeaviorthesgister that con-

tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A6-bit divide is similar. The fst operand is a word register, and the result is
stored in the double word register that containswatl register. If the second operand (the di-
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meaningless.

5.3.3 Logical Instructions

The &930 architecture provides a set of instructions that perform logical operations. The ANL,
ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate on
bytes and words that are accessed via several addressing mode#\(Z8hb& page A-16). A

byte register, word register, or the accumulator can be logically combined with a register, imme-
diate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulatox980 microcontroller has three shift commands for byteveord
registers:

e SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0
¢ SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0
* SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

5.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-18) and the exchange, push, and
pop instructions (Table A-25 on page?1). Instructions that move onlysingle bit are listed

with the other bit instructions in Table A-26 on page A-22.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
8x930 architecture. MOV can transfer a bytard, or dword between any twegisters or be-
tween a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from externafmogy to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H (see “Dedicated Registers” on page 3-12).

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu-
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit

5-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi-
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg-
ister or to memory.

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions:

* SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit) These instructions can set,
clear or complement any addressable bit.

* ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement).These instructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

* MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

¢ Bit-conditional jump instructions execute a jumphié bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are described
in “Conditional Jumps” on page 5-13.

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5).
The bit instructions that are unique to the MCS 251 architecture can address a wider range of bits
than the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within

a certain register, or it can be specified by a bit address in the range 00H-7FXH93bi@r@hi-

tecture does not have bit addresses as such. A bit can be addressed by name or by its location with-
in a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

¢ RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG” are
assumed to be defined in user code.

e |T1lis bit 2 in TCON, which is an SFR at location 88H.

5-10

Int9|® PROGRAMMING CONSIDERATIONS

Table 5-5. Bit-addressable Locations

Bit-addressable Locations

Architecture
On-chip RAM SFRs

MCS® 251 Architecture 20H-7FH All defined SFRs

SFRs with addresses ending in OH or 8H:

MCS 51 Architecture 20H-2FH 80H. 88H, 90H, 98H, ... F8H

Table 5-7 lists the addressing modes for bit instructions and Table A-26 ol2ygumma-

rizes the bit instructions. “Bit” denotes a bit that is addressed by an instruction in the MCS 251
architecture and “bit51" denotes a bit that is addressed by an instruction in the MCS 51 architec-
ture.

Table 5-6. Addressing Two Sample Bits

Location Addressing MCS® 51 MCS 251
Mode Architecture Architecture
Register Name RAMREG.5 RAMREG.5
) Register Address 23H.5 23H.5
On-chip RAM
Bit Name RAMBIT RAMBIT
Bit Address 1DH NA
Register Name TCON.2 TCON.2
Register Address 88.2H S:88.2H
SFR
Bit Name IT1 IT1
Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Architecture |Mariants |Bit Address Memory/SFR Address Comments
MCS® 251 Memory | NA 20H.0—7FH.7
Architecture -
(bit) SFR NA All defined SFRs
Memory | OOH-7FH 20H.0—7FH.7
Nehiog SFR defined
Architecture _ s are not define
(bit51) SFR 8OH-F8H XXHLO-XH.T, here XX =80, atal bitadressable
T T e ocations.

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and condi-
tional and unconditional jumps (see Table A-27 on page A-23). Instead of executing the next in-
struction in the queue, the processor executes a target instruction. The control instruction provides

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

the address of a target instruction either implicitly, as in a return from a snlerourtexplicitly,
in the form of a relative, direct, or indirect address.

The 8930 has a 24-bit program counter (PC), which allows a target instruction to be anywhere
in the 16-Mbyte address space. However, as discussed in this section, some control instructions
restrict the target address to the curteitbyte or 64-Kbyte address range by allowing only the
lowest 11 or lowest 16 bits of the program counter to change.

5.5.1 Addressing Modes for Control Instructions
Table 5-8 lists the addressing modes for the control instructions.

* Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

¢ Direct addressing: The control instruction provides a target address, which can have 11 bits
(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addrll: Only the lower 11 bits of the PC are changed; i.e., the target address must be in
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addrl6: Only the lower 16 bits of the R& changed; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.
* Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LIMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

— For the instruction IMP @A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.

5-12

Int9|® PROGRAMMING CONSIDERATIONS

Table 5-8. Addressing Modes for Control Instructions

Description Adlgrr(;e\z(sjf(;ts Address Range
Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction
Direct, 11-bit target address (addrl1l) 1 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24)t 24 00:0000H-FF:FFFFH
Indirect (@WRj)* 16 Current 64 Kbytes
Indirect (@A+DPTR) 16 S:[libzt%{igion specified by DPXL (reset

These modes are not used by instructions in the MCS® 51 architecture.

5.5.2 Conditional Jumps

The &930 architecture supports bit-conditional jumps, compare-conditional jumps, and jumps
based on the value of the accumulator. A bit-conditional jump is based on the state of a bit. In a
compare-conditional jump, the jump is based on a comparison of two operands. All conditional
jumps are relative, and the target address (rel) must be in the @fF6ehyte bbck of code. The
instruction set includes three kinds of bit-conditional jumps:

¢ JB (Jump on Bit): Jump if the bit is set.
¢ JNB (Jump on Not Bit): Jump if the bit is clear.
¢ JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.
“Bit Addressing” on page 5-10 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW1 reg-
isters and interprets their flags asulgh they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.

The condition flags are used to test one of the following six relations between the operands:
¢ equal (=), not equak
* greater than (>), less than (<)
¢ greater than or equat), less than or equak)

For each relation there are two instructions, one for signed operands and one for wségned
ands (Table 5-9).

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 5-9. Compare-conditional Jump Instructions

Operand Relation
Type = Yy > < S £
Unsigned JG JL JGE JLE
- JE JINE
Signed JSG JSL JSGE JSLE

5.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SIJMP jump to addresses relative to the program
counter. AJMP, LIMP, and EJMP jump to direct or indirect addresses.

* NOP (No Operation) is an unconditional jump to the next instruction.
* SJMP (Short Jump) jumps &my instruction within -128 to 127 of the next instruction.

¢ AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of mmaory. The address can be direct or indirect.

¢ LJIMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

¢ EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

5.5.4 Calls and Returns
The 8&930 architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call is to an address that is in the s@aiébyte block of memory as the address of ibat
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction followsing a
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to retherattdress following
a subroune call. The return address can bgwlnere in the 16-Mbyte address space.

5-14

Int9|® PROGRAMMING CONSIDERATIONS

RETI (Return from Inteupt) provides a return from an interrupt service routine. The operation
of RETI depends on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

* For INTR =0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept
additional interrupts at the same priority level as the one just processed.

¢ For INTR =1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
bytes and then returns to the specifideb address, which can bayavhere in the 16-
Mbyte address space. RETI also clears the interrupt request line. (See the note in Table 5-8
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations ok@B08microcontroller.

5.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register (Figure 5-2) anBrthgram Status Word 1 (PSW1)
register (Figure 5-3) contain four types of bits:

* CY,AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.
* The P bit indicates the parity of the accumulator.

¢ Bits RS0 and RS1 are programmed by firmware to select the active register bank for
registers RO-R7.

* FO0 and UD are available to the user as general-purpose flags.

The PSW and PSWL1 registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions (see “Bit Address-
ing” on page 5-10). The PSW and PSW1 bits are used implicitly in the conditional jump instruc-
tions (see “Conditional Jumps” on page 5-13).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 register
exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are identical
to the corresponding bits in PSW; i.e., the same bit can be accessed in either registerlTable
lists the instructions that affect the CY, AC, OV, N, and Z bits.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

Flags Affected (1), (5)
Instruction Type Instruction
CcYy OV | AC(2) N z
ADD, ADDC, SUB, X X X X X
SUBB, CMP
Arithmetic INC, DEC X X
MUL, DIV (3) 0 X X X
DA X X
ANL, ORL, XRL, CLR A, X X
) CPL A, RL, RR, SWAP
Logical
RLC, RRC, SRL, SLL, X X X
SRA (4)
CJINE X X X
Program Control
DJINE X X

NOTES:

1. X =the flag can be affected by the instruction.

0 = the flag is cleared by the instruction.

The AC flag is affected only by operations on 8-bit operands.

If the divisor is zero, the OV flag is set, and the other bits are meaningless.

For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
The parity bit (PSW.0) is set or cleared by instructions that change the contents of the
accumulator (ACC, Register R11).

aprwnN

5-16

PROGRAMMING CONSIDERATIONS

PSW Address: S:DOH
Reset State: 0000 0000B
7 0
cy AC FO Rs1 || Rso ov uD P
Bit Bit Function
Number Mnemonic

7 CY Carry Flag:
The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:
The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 FO Flag 0:
This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:
These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).
RS1 RSO Bank Address
0 0 0 00H-07H
0 1 1 08H-0FH
1 0 2 10H-17H
1 1 3 18H-1FH

2 (e)Y] Overflow Flag:
This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ubD User-definable Flag:
This general-purpose flag is available to the user.

0 P Parity Bit:
This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

Figure 5-2. Program Status Word Register

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

PSW1 Address: S:D1H
Reset State: 0000 0000B
7 0
cy AC N RS1 ‘ ‘ RSO ov z —
Bit Bit Function
Number Mnemonic
7 CY Carry Flag:

Identical to the CY bit in the PSW register.

6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4-3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.
2 (e)Y] Overflow Flag:

Identical to the OV bit in the PSW register.
1 z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Figure 5-3. Program Status Word 1 Register

5-18

intel.

Interrupt System

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The &930, like other control-oriented microcontroller architectiiresiploys a program inter-

rupt method. This operation branches to a subroutine and performs some service in response to
the interupt. When the subroutine completes, executisnmees at the point where the interrupt
occurred. Interrupts may occur as a result of interr@88 activity (e.g., timer overflow) or at

the initiation of electrical sighals external to the microcontroller (e.g., serial port communication).

In all cases, interrupt operation is programmed by the system designer, who determines priority
of interrupt service relative to normal code execution and other interrupt service routines. Ten of
the eleven interrupts are enabled or disabled by the system designer and may be manipulated dy-
namically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam-
pled by the 8330, latches the event into a flag buffer. The priority of the flag (see Table 6-2) is
compared to the priority of other interrupts by the interrupt handler. A high priority causes the
handler to set an interrupt flag. This signals the instruction execution unit to execute a context
switch. This context switch breaks the current flow of instruction sequences. The execution unit
completes the current instruction prior to a save of the program counter (PC) and tfedda@s

with the start address of a firmware service routine. The firmware service routine executes as-
signed tasks and as a final activity performs a RETI (return from interrupt instruction). This in-
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and reloads
the program counter. Program opératthen continues from the original point of interruption.

Table 6-1. Interrupt System Input Signals

Signal . Multiplexed
Name Type Description With
INT1:0# | External Interrupts 0 and 1. These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
IT1:0 are clear, bits IE1:0 are controlled by a low level trigger on
INT1:04#.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”

T A non-maskable interrupt (MI#) is not included on the 830.

6-1

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Interrupt Enable

IPHO/IPLO

Priority Select

,—)

IENO
EA D
External 0
ITO 1
INTO# [3— (rcon.0) IEO |—»te oo lo
EXO0 !
11 \ TCON.1 :
1
Timer O > TFO te_o—o | o

TCON.5 :
External 0 1
IT1 a

|
1 t \ TCON.3 |
|
|

Highest
Priority
Interrupt

[] {
29
Y Y Y Y
] ti

Interrupt Polling Sequence

Timer 1 > TF1 te_—o—o o 24 :- Ny
. TCON.7 ETL ! c -
Serial Port 1
Receive m : —l>
SCON.0 Lol o7 o1
Transmit > E ES : o—);»
SCON.1 1
Timer 2 : —ls
N P = =
T2EX [3 [ExF] ET2 | T PhL
T2CON.6 I
PCA 0 :
Counter I(ECC,\EOD.O) :
Overflow CCON.7 1 0 4. >
: 1 & :‘*
PCA 04 FCCCC:F)’(MX.O) £C : -— s
Match or ; _II
Capture 1 5 !
1

CCON.4:0

A5042-02

Figure 6-1. Interrupt Control System

6-2

Int9|® INTERRUPT SYSTEM

6.2 8x930 INTERRUPT SOURCES

Figures 6-1 and 6-2 illustrate the interrupt control system. X88®has eleven interrupt sourc-

es; ten maskable sources and the TRAP instruction (always enabled). The maskable sources in-
clude two external interrupts (INTO# and INT1#), three timer interrupts (timers 0, 1, and 2), one
programmable counter array (PCA) interrupt, one serial port interrupt, and three USB interrupts
(one of which doubles as a hub interrupt). Eachriint# (except TRAP) has an interrupt request

flag, which can be set by firmware as well as by hardware (see Table 6-3). For some interrupts,
hardware clears the request flag when it grants an interrupt. Firmware can clear any request flag
to cancel an impending interrupt.

Interrupt Enable Priority Select
USB Endpoint Done 0 E;A‘
IEN1 IPH1/IPL1
Receive 1 : —
FIFLG, FRXIEX 1 | 1 o __L|
FIFLG1 FIE, s o
0 FIE1 EF : °
Transmit FTXIEx !
L :
0 1
Any Start !
of Erame ASOF Lo SOFIE 0 i P
SOFH.6 SOFH.5 e_—o—ol o1&
USB Hub 0 ESOF/Hub 1 . Bt
Receive _)-_/‘ 0
HRXDO 1I HRXEO !
HIFLG g1 HIE :
Transmit HTXEO :
1
1
UsB 1
Resume P(G:zil'\lﬂ] L._’I’ T e
- ESR ! -—
USB @ -
Suspend > - T
PCON1.0
i_________________—____l LowestPriorityInterrupt(J
USB —>|_}—’)
RST |
: Reset URS o URDIS |
| PCONL1.3 PCONL1.4 |
'l 8X930Ax Only |
A5100-02

Figure 6-2. USB/Hub Interrupt Control System

6-3

8x930AXx, 8x930HXx USER’'S MANUAL

Table 6-2. Interrupt System Special Function Regist ers

intel.

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. Enables and disables the receive S:A2H
and transmit done interrupts for the four function endpoints.

FIEL USB Function Interrupt Enable Register. Available on the 8x930Ax only, S:A3H
this register enables and disables the receive and transmit done interrupts for
the function endpoints 4 and 5.

FIFLG USB Function Interrupt Flag Register. Contains the USB function’s transmit S:COH
and receive done interrupt flags for non-isochronous endpoints.

FIFLG1 USB Function Interrupt Flag Register. Contains the USB function’s transmit S:C1H
and receive done interrupt flags for non-isochronous endpoints. This register,
available in the 8x930Ax only, contains the function interrupt flags for
endpoints 4 and 5.

HIE Hub Interrupt Enable Register. Contains the hub interrupt enable bits. S:A1H

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt status flags. S:E8H

IENO Interrupt Enable Register 0. Enables individual programmable interrupts. S:A8H
Also provides a global enable for the programmable interrupts. The reset value
for this register is zero (interrupts disabled).

IEN1 Interrupt Enable Registerl . Enables individual programmable interrupts for S:B1H
the USB interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register 0 . Establishes relative priority for S:B8H
programmable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register 0 . Establishes relative priority for S:B7H
programmable interrupts. Used in conjunction with IPLO.

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for S:B2H
programmable interrupts. Used in conjunction with IPH1.

IPH1 Interrupt Priority High Register 1. Establishes relative priority for S:B3H
programmable interrupts. Used in conjunction with IPL1.

PCON1 USB Power Control. Contains USB global suspend and resume interrupt bits. S:DFH
Also contains the USB reset separation enable and interrupt bits for the
8x930Ax. See Figure 15-2 on page 15-4.

SOFH Start of Frame High Register. Contains isochronous data transfer enable S:D3H
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit time S:D2H

stamp received from the host.

NOTE: Other SFRs are described in their respective chapters and in Appendix C, “Registers.”

6-4

Int9|® INTERRUPT SYSTEM

6.2.1 External Interrupts

External interrupts INTO# and INT1# (IM#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits ITO and IT1 in the TCON register (see Figure 11-6
on page 11-8). If IX= 0, INTx# s triggered by a detected low at the pin. IKE 1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX) i(Etke

IENO register (see Figurg-12). Events on the extal intarupt pins set the interrupt request

flags IBxin TCON. These request bits are cleared by hardware vectors to service routines only if
the interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt service
routine must clear the request bit. External hardware must deassert INTx# before themervice
tine completes, or an additional interrupt is requedtaternal inerrupt pins must be deasted

for at least four state times prior to a request.

External interrupt pins are sampled once eveuy state times (a framergth of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt requestbit BEXCPU clears ExXau-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Table 6-3. Interrupt Control Matrix

Global Timer Serial Timer Timer
t
Interrupt Name Enable PCA 5 Port 1 INT1# 0 INTO#

Bit Name in [ENO EA EC ET2 ES | ETL EXL ETO EXO0
Register
Interrupt Priority-
Within-Level
(10 = Low Priority, NA ’ 6 5 4 3 2 1
1 = High Priority)
Bit Names in:

IPHO Reserved | IPH0.6 | IPHO0.5 | IPHO.4 | IPHO.3 IPHO.2 | IPHO.1 IPHO.0

IPLO Reserved | IPL0.6 | IPLO.5 | IPLO.4 | IPLO.3 IPLO.2 IPLO.1 IPLO.0
Programmable for
Negative-edge NA Edge No No No Yes No Yes

Triggered or Level-
triggered Detect?

Interrupt Request CCON: | T2cON:

Flag in CCON, NA CF T2 " | SCON: | TCON: | TCON: | TCON: | TCON:
T2CON, SCON, or CCRx EXFD RI, TI TF1 IE1 TFO IEO
TCON Register

Interrupt Request Edge Edge
Flag Cleared by No No No No Yes Yes, Yes Yes,
Hardware? Level No Level No
ISR Vector Address FF: FF: FF: FF: FF: FF: FF:

NA 0033H | 002BH | 0023H | 001BH 0013H 000BH 0003H

T The 8x930 also contains a TRAP interrupt, not cleared by hardware, with a vector address of FFOO7BH.
For a discussion of TRAP and other interrupt sources, see “8x930 Interrupt Sources” on page 6-3.

Additional interrupts specific to USB and USB hub operation appear in Table 6-4.

6-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 6-4. USB/Hub Interrupt Control Matrix

USB Global USB Function USB Hub/SOF
Interrupt Name Suspend/Resume [Non-Isochronous [Isochronous
and USB Reset t Endpoint] Endpoint]
Bit Name in IEN1
Register ESR EF ESOF
Interrupt Priority-
Within-Level
(10 = Low Priority, 10 9 8
1 = High Priority)
Bit Names in:
IPH1 IPH1.2 IPH1.1 IPH1.0
IPL1 IPL1.2 IPL1.1 IPL1.0
Programmable for
Negative-edge N/A N/A N/A
Triggered or Level-
triggered Detect?
Interr_upt Request PCON1: FIFLG: SOFH:ASOF,
Flag in PCON1, GSUS .
FTXDx, FRXDx HIFLG:
FIFLG, HIFLG, or GRSM 0123 HTXDO. HRXDO
SOFH Register URSTT R '
Interrupt Request
Flag Cleared by No No No
Hardware?
ISR Vector Address FF:0053H FF:004BH FF:0043H

T USB Reset interrupt applies to the 8x930Ax only.

6.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 11-6 on page 11-8) are
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 11-4 on page 11-6). When

a timer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt ser-
vice routine. Timer interrupts are enabled by bits ETO, ET1, and ET2 in the IENO register (see

Figure 6-12).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 11-12 on page 11-17). Neither flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then
clear the bit. Timer 2 interrupt is enabled by ET2 in register IENO.

6-6

Int9|® INTERRUPT SYSTEM

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five event
flags (CCK) and the PCA timer overflow flag (CF) in the CCON register (see Fitg+#& on
pagel2-14). All PCA interruptshare a common interrupt vector. Bii® not cleared blgard-

ware vectors to service routines. Normally, interrupt service routines resolve interrupt requests
and clear flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

The PCA interrupt is enabled by bit EC in the IENO register (see Figure 6-1). In addition, the CF
flag and each of the C@Fags must also be individually enabled by bits ECF and EGICFeg-

isters CMOD and CCAPM respectively, for the flag to generate an interrupt (see Figve

on page 12-13 and Figure 12-9 on page 12-16).

NOTE

CCFx refers to five separate bits, one for each PCA module (CCFO0, CCF1,
CCF2, CCF3, CCF4). CCAP¥refers to 5 separate registers, one for each
PCA module (CCAPMO, CCAPM1, CCAPM2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits Rl and Tl in the SCON register (see
Figure 13-2 on page 13-4). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves RI or Tl interrupt generation and cleassetiad port request flag. The

serial port interrupt is enabled by bit ES in the IENO register (see Figure 6-12).

6.5 USB INTERRUPTS

There are three types of USB interrupts, as shown in Figure 6-2 on page 6-3: The USB function
interrupt, used to control the flow of non-isochronous data; the hub/any start-of-frame interrupt
(SOF), used to signal a hub interrupt or to monitor the transfer of isochronous data; and the global
suspend/resume interrupt, used to allow USB power control and, fotdBeAx only, to provide

a separate USB ietrupt. These interrupts are enabled using the IEbi$ter. See Table 6-4 and
Figure 6-13.

6.5.1 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochronous da-
ta: the receive done interrupt and the transmit done interrupt. Individual USB function interrupts
in the &930 are enabled by setting the corresponding bitlser-IE register (Figure 6-3). The
8x930Ax, with its six function endpoints, also uses the FIE1 register (Figure 6-4) to enable inter-
rupts for endpoints 4 and 5.

NOTE

In order to use any of the USB function interrupts, the EF bit in the IEN1
register must be enabled.

6-7

8x930AXx, 8x930HXx USER’'S MANUAL

The USB Function Interrupt Flag register (FIFLG, as shown in Figure 6-5) is used to indicate
pending function interrupts for a given endpoint. TR83®AX, with its six function endpoints,

also uses the FIFLG1 register (Figure 6-6) to indicate interrupts for endpoints 4 and 5. For all bits
in FIFLG or FIFLG1, a ‘1’ indicates that an interrupt is actively pending for that endpoint; a ‘0’
indicates that the ietrupt is not active. The imeipt status is shown ithe FIFLG or FIFLG1
register regardless of the state of the gpomding interrupt enable bitihe FIE or FIE1 register

(Figures 6-3 and 6-4).

intel.

FIE

Address:
Reset State:

S:A2H

0000 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0
FRXIE3 FTXIE3 FRXIE2 FTXIE2 ‘ ‘ FRXIE1 FTXIE1 FRXIEO FTXIEO
Nua::\er Mne?r:tonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).
6 FTXIE3 Function Transmit Interrupt Enable 3:
Enables transmit done interrupt for endpoint 3 (FTXD3).

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIEO Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint O (FRXDO).

0 FTXIEO Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint 0 (FTXDO).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value is still reflected in the FIFLG register.

Figure 6-3. FIE: USB Function Interrupt Enable Register

6-8

Int9|® INTERRUPT SYSTEM

EIE1 Address: S:A3H
Reset State: 0000 0000B

Function Interrupt Enable Register 1. Available on the 8xX930Ax only, this register enables and
disables the receive and transmit done interrupts for function endpoints four and five.

7 0
— — — — H FRXIES | FTXIE5S | FRXIE4 | FTXIE4

Nua::\er Mne?r:tonic Function
7:4 — Reserved:
3 FRXIE5S Function Receive Done Interrupt Enable 5:
Enables receive done interrupt for endpoint 5 (FTXD5).
2 FTXIES Function Transmit Interrupt Enable 5:
Enables the transmit done interrupt for endpoint 5 (FTXD5).
1 FRXIE4 Function Receive Interrupt Enable 4:
Enables the receive done interrupt for endpoint 4 (FRXD4).
0 FTXIE4 Function Transmit Interrupt Enable 4:
Enables the transmit done interrupt for endpoint 4 (FTXD4).

NOTE: When the FRXIE.5:4 or FTXIE.5:4 is set, the interrupt is enabled and it will cause an
interrupt to the CPU, when a transmit of receive done flag is set. If the FRXIE.5:4 and
FTXIE.5:4 is cleared, the interrupt is disabled. All these bits can be read/write by firmware.

Figure 6-4. FIE1: USB Function Interrupt Enable Register

The USB function generates a receive done interrupt for an endpgint 0-3) by setting the
FRXDx bit in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6). Only non-isochronous trans-
fer can cause a receive done interrupt. Receive done interrupts are generated oallyofites
following are true:

1. Avalid SETUP or OUT token is received to function endpwiaind
2. Endpointx is enabled for reception (RXEPEN in EPCON = ‘&hd

3. Receive is enabled (RXIE =‘1") and STALL is disabled (RXSTL = ‘0") for OUT tokens
(or the token received is a SETUP tokeamd

4. A data packet is received with no time-outregardlessof transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underruahpd

5. There is no data sequence PID error.

6-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Because the FRXDbit is set and a receive done interrupt is generated regardless of transmission
errors, this condition means either:

1.

Valid data is waiting to be serviced in the receive FIFO for function endpaimd that
the data was received without error and has been acknowledged; or

Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must check
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endp@irt0-3) by setting the
FTXDx bit in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6). Only non-isochronous transfer
can cause a transmit done interrupt. Transmit done interrupts are generated orayl whtre
following are true:

1.
2
3.
4

5.

A valid IN token is received to function endpaxmand
Endpointx is enabled for transmission (TXEPEN = ‘18nd
Transmit is enabled (TXIE = ‘1") and STALL is disabled (TXSTL = ‘@ind

A data packet/byte count has been loaded in the transmit FIFO and was transmitted in
response to the IN token +egardlessof whether or not a FIFO error occuasid

An ACK is received from the host or there was a time-out in the SIE.

Because the FTXPbit is set and a transmit done interrupt is generated regardless of transmission
errors, this condition means either:

1.

The transmit data has been transmitted and the host has sent an acknowledgment to
indicate that is was successfully received; or

A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditionsspahde
accordingly in the ISR.

NOTE

Setting an endpoint interrupt’s bit in the Function tnipt Enable register
(FIE or FIE1, as shown in Figures 6-3 and 6-4) means that the interrupt is
enabled and will cause an interrupt to be signaled to the microcontroller.
Clearing a bit in the FIE register disables the associated interrupt source,
which can no longer cause an interrupt even though its value will still be
reflected in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6).

T The 8&930Ax can be configured for up to six endpoints, 0-5.

6-10

Int9|® INTERRUPT SYSTEM

EIELG Address: S:COH
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0
FRXD3 FTXD3 FRXD2 FTXD2 ‘ ‘ FRXD1 FTXD1 FRXDO FTXDO
Nuager Mne?r:tonic Function

7 FRXD3 Function Receive Done Flag, Endpoint 3

6 FTXD3 Function Transmit Done Flag, Endpoint 3

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXDO Function Receive Done Flag, Endpoint 0

0 FTXDO Function Transmit Done Flag, Endpoint O

NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bitindicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

Figure 6-5. FIFLG: USB Function Interrupt Flag Register

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

FIFLG1 Address: S:C1H
Reset State: 0000 0000B

Function Interrupt Flag Register 1. Available on the 8xX930Ax only, this register contains the USB
Function’s Transmit and Receive Done interrupt flags for non-isochronous endpoints.

7 0
— — — — H FRXD5 | FTXD5 | FRXD4 | FTXD4

Nuager Mne?r:tonic Function
7:4 — Reserved:
Write zeros to these bits.

3 FTXD5 Function Receive Done Flag, Endpoint 5:
2 FTXD5 Function Transmit Done Flag, Endpoint 5:

1 FRXD4 Function Receive Done Flag, Endpoint 4:

0 FTXD4 Function Transmit Done Flag, Endpoint 4:

NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bitindicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

Figure 6-6. FIFLG1: USB Function Interrupt Flag Register

6.5.2 USB Start-of-frame Interrupt

The USB start-of-frame interrupt (SOF) is used to control the transfer of isochronous data. The
8x930 frame timer attempts to synchronize to the frame time automatically. When the frame timer
is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure 6-7). To enable
the start-of-frame interrupt, set the SOFIE bit in SOFH.

The &930 generates a start-of-frame interrupt whenever a start-of-frame packet is received from
the USB lines, or whenever a start-of-frame packet should have been received (i.e., an artificial
SOF). The 830 generates an SOF interrupt by setting the ASOF bit in the SOFH SFR. When a
start-of-frame interrupt occurs, the@0 loads the current value of the frame timer into the
SOFH/SOFL registers (Figures 6-7 and 6-8).

6-12

intel.

INTERRUPT SYSTEM

NOTE

The start-of-frame interrupt shares an interrupt vector with the hub interrupt.
When this interrupt is triggered, firmware must examine the ASOF bit in the
SOFH SFR to determine that it was the start-of-frame interrupt that was
triggered, and not the hub interrupt.

SOFH

Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7

SOFACK

ASOF

SOFIE FTLOCK ‘ ‘ SOFODIS TS10 TS9 TS8

Bit

Number

Bit
Mnemonic

Function

7

SOFACK

SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and itis cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

ASOF

Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T, S.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

SOFIE

SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

FTLOCK

Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

Figure 6-7. SOFH: Start of Frame High Register

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

SOFH (Continued) Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0
SOFACK ASOF SOFIE FTLOCK ‘ ‘ SOFODIS TS10 TS9 TS8

Bit Bit

. Function
Number Mnemonic

3 SOFODIS | SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight T, s.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

Figure 6-7. SOFH: Start of Frame High Register (Continued)

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0
TS7:0

Bit Bit

. Function
Number Mnemonic

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Figure 6-8. SOFL: Start of Frame Low Register

6-14

Int9|® INTERRUPT SYSTEM

The &930 uses the start-of-frame interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from memory
and loaded into the transmit FIFO in preparation for transmission in the next frame; or

2. When receiving: An isochronous packet has been received in the previous frame and
needs to be retrieved from the receive FIFO.

Since the start-of-frame packet could be corrupted, there is a chance that a new frame could be
started without successful reception of the SOF packet. For this reason, an artificialB®F is
vided. The frame timer signals a time-out when an SOF packet has not been received within the
allotted amount of time. In this fashion, the&80 generates an SOF interrupt reliably once each
frame within 1 us of accuracy, except when this interrupt is suspended or when the frame timer
gets out-of-sync with the USB bus frame time.

In summary, in order to utilize the USB start-of-frame functionality for isochronous data transfer,
the following must all be true:

1. The global enable bit must be set. That is, the EA bit must be set in the IENO register
(Figure 6-12).

2. The isochronousndpoint any SOF interrupt must be enabled. ThahésESOF bit must
be set in the IEN1 register (Figure 6-13).

3. The start-of-frame interrupt must be emablThat is, the SOFIE bit must be set in the
SOFH Reqgister (Figure 6-7).

NOTE

The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a 1 ms pulse, subject to the accuracy of the USB start-of-frame. This pin is
enabled by clearing the SOFODIS bit in the SOFH register.

6.5.3 USB Hub Interrupt
The USB hub interrupt is used to signal a receive done or transmit done for hub endpoint 0.
To enable the hub interrupt:

1. Setthe global enable bit (EA) in the IENO register (Figure 6-12)

2. Enable the hub endpoint 0 transmit done and receive done interrupts individually:

a. To enable the receive done interrupttisetHRXEO bit in the Hub Interrupt Enable
SFR (HIE, as shown in Figure 6-9)

b. To enable the transmit done interrupt, set the HTXEO bit in HIE

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HIE Address: S:AlH
Reset State: Oxxx xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0
_ _ — H — — HRXEO HTXEO

Nu‘r?’r::;)er Mne?r:tonic Function
72 — Reserved:
Write zeros to these bits.
1 HRXEO HRXEO:
Enable the hub endpoint 0 receive done interrupt (HRXDO).t
0 HTXEO HTXEO:
Enable the hub endpoint 0 transmit done interrupt (HTXDO0).t

T For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.

Figure 6-9. HIE: Hub Interrupt Enable Register

The USB Hub Interrupt Flag Rester (HIFLG, as shown in Figure 6-10) is used to indipated-

ing hub interrupts. For all bits in HIFLG, a ‘1’ indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt statehasvn in the HIFLG register
regardless of the state of the corresponding interrupt enable bit in the HikEeR¢Figure 6-9).

NOTE
The hub interrupt shares an interrupt vector with the start-of-frame interrupt.
When this interrupt is triggered, firmware must examine the HIFLG SFR to
determine that it was the hub interrupt that was triggered and not thefsta
frame interrupt.

6-16

Int9|® INTERRUPT SYSTEM

HIELG Address: S:E8H
Reset State: 0xxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub

endpoint 0.

7 0
— — - || = — HRXDO | HTXDO
Bit Bit .

Number Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXDO Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXDO Hub Transmit Done, Endpoint O:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:

1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits
are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXDO and HTXDO, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.

Figure 6-10. HIFLG: Hub Interrupt Status Register

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

6.5.4 USB Global Suspend/Resume Interrupt

The 8930 supports USB power contrtiirough firmware. The USB power control register
(PCON1, as shown in Figure 15-2 on page 15-4) facilitates USB power control B8 &-
cluding global suspend/resume and USB function resume.

NOTE
On the &930Ax only, the global suspend/resume interrupt shares an interrupt
vector with the USB reset interrupt. When this interrupt is triggered, firmware
must examine the GSUS and GRSM bits in the PCON1 SFR (Figure 15-2 on
page 15-4) to determine that it was the global suspend/resume interrupt that
was triggered, and not the USB reset interrupt.

6.5.4.1 Global Sus pend

When a global suspend is detected by t838, the global suspend bit (GSUS of 1) is set

and the global suspend/resume interrupt is generated. Global suspend is defined as bus inactivity
for more than 3 ms on the USB lines. For additional information, see “Global Suspend Mode” on
page 15-8.

6.5.4.2 Global Resume

When a global resume is detected by tk@3®, the global resume bit (GRSM of PCON1) is set

and the global suspend/resume interrupt is generated. As soon as resume signaling is detected or
the USB lines, the oscillator is restarted. After executing the resume interrupt service routine, the
8x930 resumes operation from where it was when it was interrupted by the suspend interrupt. For
additional information, see “Global Resume Mode” on page 15-10.

6.5.4.3 USB Remote Wake-up

The &930 can also initiate resume signaling to the USB lines through remote wake-up of the
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up
has to be initiated through assertion of an enabled external interrupt. The external interrupt has to
be enabled and it must be configured with level trigger and with higher priority than a suspend/re-
sume interrupt. An external interrupt restarts the clocks to tB80Band program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RWU in
PCONL1) to drive resume signaling on the USB lines to the host or upstosamfter executing

the external ISR, the program continues execution from where it was put into powerdown mode
and the 830 resumes normal operation. For additional information, see “USB Remote Wake-
up” on page 15-10.

6.5.5 8x930Ax USB Reset Separation

The &930Ax features an optional USB reset that functiordependently from the chip reset.
When the PCON1 SFR's URDIS bit is set, the MCS 251 core and peripherals will not reset when
a USB reset signal is detected. After a@3)Ax with URDIS set detects a USB reset signal, it
resets all the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and generates
a USB reset interrupt. USB reset signals can originate only from the host PC or upstream hub.

6-18

Int9|® INTERRUPT SYSTEM

NOTE

The use of a separate USB reset is recommended only for applications where
the device is required to be operated continually, even when the PC is
powered-off. All other applications are advisediagbusing the separate USB
reset. Leaving the URDIS bit clear will ensure a robust, chip-level reset.

The USB reset must be implemented partially in firmware, including an
initialization routine as part of chip start-up. To ensure compliance with USB-
specified timing constraints and minimize the potential for data corruption,
you must implement flag checking as part of your main routine, subroutines,
and ISRs. These requirements increase the complexity of your firmware code.

If the &930Ax is in powerdown or suspend mode when the separate USB reset interrupt is gen-
erated, the device will wake up from powerdown or suspend mode upon receiving the USB reset
signal. The ISR of a bus-powered device must set the LC bit of PCON (Figure 15-1 on page 15-3)
in order to operate at 3 MHz. Thiasures that the device meets the 100 mA current limit during
enumeration, as required by tbimiversal Serial Bus Specificatio8elf-powered devices (i.e.,
devices drawing less than 100mA from the USB wires) may choose not to switch to Low Clock
mode after detecting the USB reset.

NOTE

If desired, your firmware can handle the separate USB reset without using an
ISR. To do this, you must clear the ESR bit in the IEN1 SFR. The USB reset
hardware operations will still take place, but the ISR will not be called. That is,
step 1 and step 2 under “USB Reset Hardware Operations” on page 6-22 will
still occur, but step 3 will not. Your firmware must poll the URST flag
periodically to detect the USB reset and takeathperopriate action.

Since the global suspend and global resume interrupts share the same interrupt
vector as USB reset, your firmware must also poll the GRSM and GSUS bits
in PCONL1 to detect global suspend or resume.

If, instead, yolchoose to implement a separate USB reset using an ISR, follow the procedure out-
lined in the following subsections and shown in Figure 6-11.

6.5.5.1 Initialization Required for USB Reset

Because USB reset implementation depends heavily on firmware, your code must perform the
following initialization prior to execution of the main routine (See Figure 6-11):

1. To enable the USB reset interrupt on tk@3AX, your initialization routine must set the
following bits to ‘1"
a. the EA bit of IENO (Figure 6-12)
b. the ESR bit of IEN1 (Figure 6-13)
c. the URDIS bit of PCON1 (Figure 15-2 on page 15-4)

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

6-20

Use bit 2 of IPH1/IPL1 to set the priority of the USB reset interrupt (See “Interrupt
Priorities” on page 6-27).

NOTE
It is recommended that you set the USB reset interrupt to the highest priority.

After enabling the USB reset interrupt and assigning it a priority, your initialization
routine should clear the USB_RST_FLG flag. This flag is a global variable declared in

your firmware, not a bit in an SFR.

This flag, an indicator that a USB reset has occurred, will be examined at various points in
your main routine, subroutines, and ISRs.

tel.

USB_RST_FLG
=1?

Continue with
Main Routine

Clear USB_RST_FLG;

Initialize USB-related SFRs;

Flush USB FIFOs;

ISR
Complete

INTERRUPT SYSTEM
Initialization Routine: USB Reset

SS;tIIEI’E\‘l\iOEESAR Hardware | USB Reset, :
Set PCONLURDIS; | ' Global Suspend, .
Set Interrupt Priority; L ! Resume ISR .
USB_RST_FLG =0; = : .
. - !
4 : :

= 1
2 Reset all USB blocks; ' !
Main Routine: 2 Set PCON.URST; ' Check -0 !
(normal processing Generate USB Reset 1 PCONL.URST - !
until interrupt occurs) Interrupt; 1 ' :
X '
N 1
1 1
> 1 !
i i 1
§ %A(;?gr;joeu\ggg : Perform Global 1
5 . Suspend/Resume f
g . ISR 1
g ! |
) . 1
1 1
Periodically Test . 1
USB_RST_FLG . Clear PCON1.URST; I
. USB_RST FLG=1 .
. (Bus Powered?— 1
, Set PCON.LC) '
P= == === = === == - '
USB . 1
Yes Initialization Routine . 1
1 1
1 1
1 1
1 1

A5206-01

Figure 6-11. USB Reset Separation Operating Model

6-21

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

6.5.5.2 USB Reset Hardware Operations

When the host initiates a USB reset signal, the following series of events is performed by the
8x930Ax hardware (See Figure 6-11):

1. Upon detecting a USB reset signal, tk@3Ax hardware resets all the USB blocks (i.e.,
the FIFOs, the SIU, the SIE, and the USB transceiver).

As a result of this process, all USB-related SFRs are reset to their default reset states. This
includes EPINDEX, EPCON, SOFL, SOFH, FIE, FIFLG, FADDR, TXSTAT, TXDAT,
TXCON, TXFLG, TXCNTL, TXCNTH, RXSTAT, RXDAT, RXCON, RXFLG,

RXCNTL, RXCNTH, and PCONL1. Note that PCON1 is only partially reset — the URDIS
and URST bits retain their original values.

Because of this hardware reset, any USB-related operations (e.g.,TMDAT,A) will
not provide valid data.

The &930Ax sets the PCON1.URST bit to indicate a USB reset to the ISR.

If the ESR bit in IEN1 is set, the®30Ax generates a USB reset interrupt, which causes a
branch to the interrupt service routine whose vector is located at FF:0053H. This ISR
services both the USB reset imgt and the global suspend/resume interrupt.

6.5.5.3 USB Reset ISR

Because the USB reset interrupt shares an interrupt vector with the USB global suspend/resume
interrupt, the interrupt service routine must play a dual role. The ISR must first cBEk1s
URST bit to ensure that this interrupt is indeed a USB reset interrupt.

If URST = ‘0, then this interrupt must be a global suspend/resume interrupt and the ISR must

branch to service that type of interrupt. See “USB Global Suspend/Resume Interrupt” on page
6-18 for a description of this portion of the ISR.

If the URST bit is set to ‘1’, then this interrupt is a USB reset interrupt. The ISR miistnpe
the following procedure (See Figure 6-11):

1. Clear PCON1's URST bit — to indicatieat the USB reset intempt has been serviced.
2. Setthe user flag USB_RST_FLG that was cleared as part of your initialization routine.

This flag is discussed in “Initialization Required for USB Reset” on page 6-19. Setting this

flag is necessary to inform your firmware routines that a USB reset has occurred and that
USB initialization must be performed.

3. Bus-powered devices must set the LC bit of PCON (Figure 15-1 on page 15-3) in order to
operate at 3 MHz. This ensurnat the device meets thimiversal Serial Bus
Specificatiors 100 mA current limit during enumeration.

4. Restore any register values and return from interrupt.

The rest of the USB reset procedure will be initiated by a USB initialization routine that can be
called from the main routine, subroutines, or other ISRs.

6-22

Int9|® INTERRUPT SYSTEM

6.5.5.4 Main Routine Considerations

Although the USB-related SFRs were reset by the USB reset ISR, they must also be initialized
by a special USB initialization routine called by the main routine. Since the USB reset interrupt
can occur at any time, the only way the main routine will know that a USB reset occurred is to
periodically check the USB reset flag (USB_RST_FLG). This is the firmwarghagvas set in

Step 2 of the “USB Reset ISR” on pa@@2.

When a set reset flag is detected, the main routine branches to a USB initialization routine, which
performs the following tasks (See Figure 6-11):

1. Clearthe user flag USB_RST_FLG.

Clearing this flag indicates that USB initialization is not required. Clear this flag first in
case a second USB reset occurs during this initialization routine, rendering this
initialization invalid.

2. Initialize the USB-related SFRs to the values required by yogram.

If your application requires any other SFRs to be initialized upon USB regetIEON),
now is the time to do so.

Restore any USB-related user flags specific to your application.

Flush all USB FIFOs. This is done by setting RXCLR in RXCON and TXCLR in
TXCON. This must be done for each function endpoint.

5. Return to the calling routine.

At this point, the main routine can resume normal processing. Eventually, the host PC will trans-
mit a SETUP token. This will trigger an interrupt that will perform USB enumeration.

NOTE
USB specifications require that all devices must be able to accept a device

address via a SET_ADDRESS command no later than 10 ms after the reset is
removed.

It is recommended that you ensure thattotal time requiretbr the following is less than 10ms:

1. The time to complete and exit from the USB reset ISR (accounting for latency — see
“Interrupt Processg” on page 6-32)

2. The time for the maximum number of instructions that could execute before your code
recognizes that a USB reset has occurred (by checking USB_RST_FLG) and calls your
USB initialization routine

3. The time to execute your USB initialization routine

This time constraint may require you to check USB_RST_FLG at multiple points in your code
(and within any ISRs that may take longer than 10ms to perform). By inserting this checkpoint,
your program can branch from a routine (or ISR) after the USB reset without having to complete
the routine (or ISR). Your program can contirthe interrupted routine after ensuring that the
device is ready for USB enumeration.

6-23

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CAUTION

If a USB reset interrupt occurs during execution of a USB receive ISR (e.g.,
receive done or start-of-frame), thed80Ax will reset the USB hardware.

This will render invalid any data received during the USB transfer. If this is
not detected by your firmware, misprocessing can occur.

The risk of USB reset-related misprocessing can be redugedifUSB receive/transmit ISRs
check USB_RST_FLG before returning. If this flag is geyr code should branch to the USB
initialization routine to initialize the USB-related SFRs and flush the FIFOs. If this is done, the
only potential opportunity for misprocessing would be if the USB reset interrupt occurs between
the test of USB_RST_FLG and the branch to the USB initialization routine.

NOTE
Because of the risk of misprocessing, however slight, it is recommended that
applications that will not substantially benefit from a separate USB reset
disable this option (by leaving the URDIS bit in PCONL1 cleared) to simplify
firmware coding and ensure a robust, chip-level reset.

6.6 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by
the appropriate interrupt enable bit in the IENO register at S:A8H (see Figure 6ih&)IBN1
register at S:B1H (see Figuéel3). Note IENO als@ontains a global disable bit (EA). If EA is

set, interrupts are individually enabled or disabled by bits in IENO and IEN1. If EA is clear, all
interrupts are disabled.

6-24

intel.

INTERRUPT SYSTEM

IENO

Address:
Reset State:

S:A8H
0000 0000B

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

7

EA

EC

ET2 ES H ET1 EX1

ETO

EXO0

Bit
Number

Bit
Mnemonic

Function

EA

Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0-6 of this register, as well as the interrupts enabled by the bits in the

IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which

is always enabled.

EC

PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.

ET2

Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

ES

Serial /O Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.

ET1

Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

EX1

External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

ETO

Timer O Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

EXO0

External Interrupt O Enable:
Setting this bit enables external interrupt 0.

Figure 6-12. IENO: Interrupt Enable Register 0

6-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

IEN1 Address: S:B1H
Reset State: xxxx XO00H
Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.
7 0
— — — - || = ESR EF ESOF
Bit Bit : Function
Number Mnemonic
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 ESR Enable Suspend/Resume:
USB global suspend/resume interrupt enable bit.
1 EF Enable Function:
Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.
0 ESOF Enable USB Hub/Start of Frame:
Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.

6-26

Figure 6-13. IEN1: USB Interrupt Enable Register

Int9|® INTERRUPT SYSTEM

6.7 INTERRUPT PRIORITIES

Ten of the eleven®30 interrupt sources (TRAP excluded) may be individually programmed to
one of four priority levels. This is accomplished with the X2#PLX.x bit pairs in the interrupt
priority high (IPH1/IPHO in Figuré-14 and 6-16) and interpt priority low (IPL1/IPLO) regis-

ters (Figures 6-15 and 6-17). Specify the priority level asvehin Table 6-5 using IPHQ (or
IPH1x) as the MSB and IPL®(or IPL1X) as the LSB.

Table 6-5. Level of Priority

Priority Level IPH1. x,IPL1.x | IPHO.x, IPLO.x
0 Lowest Priority 00 00
1 01 01
2 10 10
3 Highest Priority 11 11

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-

terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other
interrupt source. Higher priority interrupts are serviced before lower priority interrupts. The re-
sponse to simultaneous occurrence of equal priority interrupts (mpleshwithin the samiur-

state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table 6-6).

Table 6-6. Interrupt Priority Within ~ Level

Priority Number Interrupt Name
1 (Highest Priority) INTO#
2 Timer O
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7 PCA
8 USB Hub / SOF
9 USB Function
10 USB Global Suspend/Resume

6-27

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

IPHO Address: S:B7H
Reset State: x000 0000B
Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):
IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPHO.6 IPHO.5 IPHO.4 ‘ ‘ IPHO.3 IPHO.2 IPHO.1 IPHO.0
Nuataer Mne?r:tonic Function
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPHO.6 PCA Interrupt Priority Bit High
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High
2 IPHO.2 External Interrupt 1 Priority Bit High
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High
0 IPHO.0 External Interrupt O Priority Bit High

Figure 6-14. IPHO: Interrupt Priority High Register O

6-28

intel.

INTERRUPT SYST

EM

IPLO

Address: S:B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPLO.6 IPLO.5 IPLO.4 ‘ ‘ IPLO.3 IPLO.2 IPLO.1 IPLO.O
Nua:)er Mne?r:tonic Function
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPLO.6 PCA Interrupt Priority Bit Low
5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial /0 Port Interrupt Priority Bit Low
3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt 1 Priority Bit Low
1 IPLO.1 Timer O Overflow Interrupt Priority Bit Low
0 IPLO.O External Interrupt O Priority Bit Low

Figure 6-15. IPLO: Interrupt Priority Low Register 0

6-29

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Address: S:B3H

IPH1
Reset State: x000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — — - || = IPH12 | IPHL1 | IPH1.0
Nulr?r;lt:\er Mne?r:tonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High
IPH1.1 USB Function Interrupt Priority Bit High
0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High

Figure 6-16. IPH1: Interrupt Priority High Register 1

6-30

intel.

INTERRUPT SYSTEM

IPL1

Address: S:B2H
Reset State: x000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — — - || = IPL1.2 IPL1.1 IPL1.0
Nua:)er Mne?r:tonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low
IPL1.1 USB Function Interrupt Priority Bit Low
0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low

Figure 6-17. IPL1: Interrupt Priority Low Register 1

6-31

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Eig8je
Response timis the amount of time between the interrupt request and the resulting break in the
current instruction streanhatencyis the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

Response Time
osc MAARARARLLAAARA AR AR ALAAAAAR AR
Siave oy U U UUULUUULn
Time
External '
Interrupt B\ ///

Request ' i

S Ending Instructions Push PC || Call ISR ‘ ISR

'
! '

-
v

Latency

A4153-01

Figure 6-18. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at leasfour state times prior to assertion. In this chapter all

external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meetWand M. specifications prior to any state time

under discussion. This setup state time is not included in examples or
calculations for either response or latency.

6-32

Int9|® INTERRUPT SYSTEM

6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-18). Two of eight inter-

rupts are latched and polled per state time within any given window of four state-times. One ad-
ditional state time is required for a context switch request. For code branches to jump locations
in the current 64-Kbyte memory region (compatible with MCS 51 microcontsplldne context

switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll
states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

* The source request is an internal interrupt with highugh@riority to take precedence over
other potential interrupts,

* The request is coincident with internal execution and needs no instruction completion time,
* The program uses an internal stack location, and
* The ISR is in on-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari-
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architec-
ture’s code set. In the case of tk®80, the longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects tsptbnse time and la-

tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 6-18). Re-
sponse time (and therefore latency) is affectetiwy primary factors: the incidence of the re-

quest relative to the fotstate-time sample witow and the completion time of instructions in the
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE
External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the aend half of the next state time. Therefotest
sample and poll/request portion of the minimum fixed response and latency
time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs adiately after a sample has
been taken (i.e., requested in the second half of a sample state time).

6-33

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-19).

Response Time = 6

0osC

State Time Ly
INTO# QSSS [22
Sample INTO# LT LT LT (|
Request L
Ten State
Instruction S Push PC S
A4155-02

Figure 6-19. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state @sdbe request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-20). The
total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

6-34

Int9|® INTERRUPT SYSTEM

Response Time =4

OSsC
State Time [igigigigigigigh

INTO# “SS [227

Sample INTO# — L LI | L
Request L
Ten State
Instruction S Push PC S
A4154-02

Figure 6-20. Response Time Example #2
6.8.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the long83808nstruction used in the program

must fully execute prior to a context switch. The instruction execution time is reduced by one
state with the assumption the instruction state overlaps the request state (therefore, 16-bit DIV is
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and variable
interrupt times (see Table 6-7) to this instruction time to predict latency. The worst-case latency
(both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

Table 6-7. Interrupt Latency Variables

External
INTO#, >64K External External External
Variable INT1#, Eli)g;:ggL 5@3@ Jump to M(\%Ar;r;ci;ry Stack Stack Stack
T2EX ISR (1) State <64K (1) >64K (1) | Wait State
Number
of 1 per 1 per
States 1 2 1 8 bus cycle 4 8 bus cycle
Added
NOTES:

1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte. — Internal execution
— <64K jump to ISR — Internal stack
— Internal peripheral interrupt

6-35

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

6.8.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO# has made the request one
state prior to the sample state (as in Fidi#20). Unlike Figure 6-20, the sponse time for this
assumption is three state times as the current instruction completes in time for the branch to occur.
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-7, one state
is added for an INTO# request from external hardware; two siedesddedor external execu-

tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added for the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less
one state).

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted
Base Case Minimum Fixed Time 16 16
INTO# External Request 1

External Execution

<64K Byte Stack Location

Execution Time for Current DIV Instruction | 3 20
TOTAL 26 43

6.8.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instructions in Appendix
A, “Instruction Set Reference”). There are three causes of blocking conditions with hardware-
generated vectors:

1. Aninterrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

The instruction irprogress is RETI or any write to the IENO, IEN1, IPHO, IPH1, IPLO or
IPL1 registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in-
struction inprogress ompletes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additiemabpistif the in-
struction in progress is a RETI or any write to IENO, IEN1, IPHO, IPH1, IPLO or IPL1. The com-
plete polling cycle is repeated every four state-times.

6-36

Int9|® INTERRUPT SYSTEM

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU break@gteuction stream sequence, re-
solves all instruction pipeline decisions, and pushes mufiipigram countefPC) bytes onto the

stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the UCONFIG1 (Figure 4-4 on page 4-6)
configuration byte. The complete sample, poll, request and context switch vector sequence is il-
lustrated in the interrupt latency timing diagram (FigéH&8).

NOTE

If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking oom it

removed, then the denied interrupt is ignored. In other words, blocked
interrupt requests are not buffered for retention.

6.8.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETI instruction in thepSRPE

address bytes off the stack (as well as PSW1 for INTR = 1) and execution resumes at the suspend-
ed instruction stream.

NOTE

Someprograms written for MCS 51 microcontrollers use REBtéad of RET

to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In th&3B0, this causes a compatibility
problem if INTR = 1 in configuration byte CONFIG1. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routine is called and pops the same four bytes when the RETI is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure thex830 with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and IE1), the
first interrupt routine (if more than seven bytes long) must execute a jump to some atf@yme
location. This prevents overlap of the start address of the following interrujterout

CAUTION

It is recommended that programmers set the contents of EPINDEX and/or
HPINDEX once, at the start of each routine, instead of writing to the
EPINDEX register prior to each access of an endpoint-indexed SFR and to
HPINDEX prior to each access of a port-indexed SFR.

This means that interrupt service routines must save the contents of the
EPINDEX and HPINDEX registers at the start of the routine and restore the
contents at the end of the routine to prevent the EPINDEX and HPINDEX
registers from being corrupted.

6-37

intel.

USB Function

intel.

CHAPTER 7
USB FUNCTION

This chapter describes the FIFOs and special function registers (SFRs) associated with the USB
function interface. This chapter, along with Chapter 2, “Architectural Overview” and Chapter 9,
“USB Programming Models,” describes the operation of function interface ox®3€&x and
8x930Hx USB microcontrollers.

A data flow model for USB transactions, intended to bridge the hardware and firmware layers of
the 8930, is presented in truth table form in Appendix D, “Data Flow Model.” The model de-
scribes 8930 behavior in response to a particular USB event, given a known state/configuration.

The USB signals discussed in this chapter are described in Table 7-1. Pinout diagrams for the
8x930Ax and &930Hx appear in Appendix B, “Signal Descriptions.”

The SFRs described in this chapter are listed in Table 7-2. The SFR definition tables that appear
in this chapter also appear in alphabetical order in Appendix C, “Registers.”

7.1 FUNCTION INTERFACE

The function interface provides a USB interface capability for one USB function. The main com-
ponents of the function interface are the serial bus interface engine (SIE) and the function inter-
face unit (FIU). Refer to the block diagrams in Figure 2-3 on page 298(8x) and Figure 2-4

on page 2-7 (@30Hx). The operation of the function interface is discussed in “Universal Serial
Bus Module” on page 2-12. On thed80Hx, the hub accesses the function interface by means of
the internal downstream port.

7.1.1 Function Endpoint Pairs

The endpoint pairs implemented on th&®80Ax and &930Hx. are listed in Tables 2-5. The
EPINDEX register selects the endpoint pair for any given data transaction.

The 8930Ax can be programmed to supporteit four function endpoint pairs (4EPP, 0-3) or

six function endpoint pairs (6EPP, 0-5). See the EPCONFIG register (Figure 7-1 on page 7-5).
The selection is made during initialization and should not be changed during program execution.
Endpoint 0 handles and only control data transfers. Entpaithrough 4 handle all four data
transfer types: control, isochronous (ISO), interrupt, and bulk. Endpoint 5 handles three data
transfer types: control, interrupt, and bulk.

The 8&930Hx supports four function endpoint pairs (identical tofthe-endpoint paipption on
the 8930Ax) and two hub endpoint pairs. See “USB Hub Endpoints” on Bab@
7.1.2 Function FIFOs

The 8930 provides a transmit/receive FIFO pair in support of each endpoint pair. Figure 7-1 on
page 7-5 shows the byte capacities of k@38 FIFOs. For thex®30Ax (with the four-endpoint
pair option selected) and the9BO0HYx, the function endpoint 1 transmit/receive FIFO pair can be

7-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

programmed for capacities of 256/256, 512/512, 1024/0, or 0/1024 bytes respectively. This is
done with the FFSZ1:0 bits in the TXCON register associated with function endpointl.

For the &930Ax with the six-endpoint option selected, progréma endpoint 1 transmit/receive
FIFOs for 256/256 bytes (FFSZ1:0 = 00).

Transmit FIFOs are written by the CPU and then read by the FIU for transmission on the USB.
Receive FIFOs are written by the FIU following reception from the host PC, then read by the
CPU. All transmit FIFOs have the same architecture, and all receive FIFOs have the same archi-
tecture.

7.1.3 Special Function Registers (SFRs)

The FIU controls operations thughthe use of four sets of special functions registers (SFRs): the
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table
7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SFRs are
described in Chapter 6, “Interrupt System.” Table 3-5 on Bat@ and Table 3-6 on page 3-17
memory maps of all thex830 SFRs.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH,
and FADDR. The SOFH and SOFL SFRs are defined in Figure 6-7 on page 6-13 and Figure 6-8
on page 6-14. The remaining registers are defined in Figurahrouigh 7-6.

Table 7-1. Non-hub USB Signal Descr iptions

Signal - Alternate
Name Type Description Function
PLLSEL2:0 | Phase-locked Loop Select. Three-bit code selects the USB —

data rate (see Table 2-4 on page 2-10).

SOF# O Start of Frame. The SOF# pin is asserted for eight states when —
an SOF token is received.

Do, Duo /O | USB Port 0. Dpg and D,,g are the data plus and data minus —
lines of differential USB upstream port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KQ pullup resistor at D,,q. For full-speed
devices, provide an external 1.5 KQ pullup resistor at Dp.
NOTE: For the 8x930Ax, either Dyg or D,,g must be pulled
high. Otherwise a continuous SEO (USB reset) will be
applied to these inputs causing the 8x930Ax to stay in
reset.
For the 8xX930Hx, provide an external 1.5 KQ pullup
resistor at Dpq So the device indicates to the host that
itis a full-speed device.

ECAP | External Capacitor . Must be connected to a 1 pF capacitor (or —
larger) to ensure proper operation of the differential line driver.
The other lead of the capacitor must be connected to V.

7-2

Int9I® USB FUNCTION

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, and
TXCNTH. These registers are defined in Figures fir8ugh 7-11 beginning on page 7-18.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL, and
RXCNTH. These registers are defined in Figures 7-13 through 7-16 beginning on page 7-27.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in-
dexed

CAUTION

Unless otherwise noted in the bit definition, SFRs can be read and written by
firmware. All SFRs should be written usingad-modify-write instructions

only, due to the possibility of simultaneous writes by hardware and firmware.
These instructions are listed in “Read-Modify-Write Instructions” on page
10-5.

7.13.1 Endpoint-inde xed SFRs

As indicated in the SFR memory maps in Table 3-5 on page 3x88(8x) and Table 3-6 on

page 3-17 (8930Hx), certain USB SFRs are endpoint-indexed. These SFRs are implemented as
banks of registers similar to register file locations RO-R7 (Fi@dreon page 3-11). Endpoint-
indexed SFRs are accessed by means of the SFR address and the current conter®dNf the E
DEX register (which selects ttepropriate bank).

With the exception of hub endpoint 1, there is a bank of SFRs (TXDAT, TXCONLEXEtc.)

for each hub and function endpoint pair. Thus tk@38Ax, with four-endpoint pair option se-
lected, has four TXCON registers. When EPINDEX = 0000 0001, the function endpoint 1 TX-
CON is accessed. When EPINDEX = 0amuL0, the function endpoint 2 TXCON is accessed.
The contents of a given SFR are retained when other endpoints are selected.

Only SFRs necessary for device operation are implemented. For example, since hub endpoint 1
is transmit only, RXDAT for that endpoint is not implemented. Tigh+orderbyte count regis-

ters (TXCNTH and RXCNTH) are implemented only for function endpoint 1, since only that
endpoint pair has FIFOs larger than 32 bytes.

7.13.2 Endpoint Selection

The most significant bit of thendpoint index register (EPINDEX) selects hub or function.The
low-order bits (EPINX2:0 for the six-endpoint pair option and EPINX1:0 for the four-endpoint
pair option) indicate the endpoint and serve as an index value for selecting the SFR bank. To spec-
ify the endpoint pair, write a value of the form ZxxXYYB or Zxxx xxYYB to EPINDEX,

where Z specifies hub or function and YYY and YY specify the endpoint number. See Figure 7-2.

It is recommended tharogramners set the contents of EPINDEX once, at the start ofreaech

tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed SFR.
This means that interrupt service routines must save the contents of the EPINDEX register at the
start of the routine and restore the contents at the end of the routine to prevent the EPINDEX reg-
ister from being corrupted.

7-3

8x930AXx, 8x930HXx USER’'S MANUAL

Table 7-2. USB Function SFRs

intel.

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint S:E1H
specified by EPINDEX.

EPCONFIG | Endpoint Configuration Register. Selects the four-endpoint pair or six- S:C7H
endpoint pair configuration for function endpoint 1 (8X930Ax only).

EPINDEX Endpoint Index Register. Selects the appropriate endpoint pair. S:F1H

FADDR Function Address Register. Stores the USB function address for the S:8FH
device. The host PC assigns the address and informs the device via
endpoint 0.

RXCNTH Receive FIFO Byte-Count High Register. High register in a two-register S:E7H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register S:E6H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCON Receive FIFO Control Register. Controls the receive FIFO specified by S:E4H
EPINDEX.

RXDAT Receive FIFO Data Register. Receive FIFO data is read from this register S:E3H
(specified by EPINDEX).

RXFLG Receive FIFO Flag Register. These flags indicate the status of data S:E5H
packets in the receive FIFO specified by EPINDEX.

RXSTAT Endpoint Receive Status Register. Contains the endpoint status of the S:E2H
receive FIFO specified by EPINDEX.

TXCNTH Transmit Count High Register. High register in a two-register ring buffer S:F7H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer S:F6H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCON Transmit FIFO Control Register. Controls the transmit FIFO specified by S:F4H
EPINDEX.

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register S:F3H
(specified by EPINDEX).

TXFLG Transmit Flag Register. These flags indicate the status of data packets in S:F5H
the transmit FIFO specified by EPINDEX.

TXSTAT Endpoint Transmit Status Register. ~ Contains the endpoint status of the S:FAH
transmit FIFO specified by EPINDEX.

7-4

Int9I® USB FUNCTION

EPCONFIGT Address: S:C7H
Reset State: XXXX XXX0B

Endpoint Configuration Register. Selects the six-endpoint pair option or four-endpoint pair option as
the 8x930Ax function endpoint pair configuration.

7 0
_ _ _ _ ‘ ‘ _ — — SIXEPPEN
Bit Bit Function
Number Mnemonic
7:1 — Reserved:
Write zeroes to these bits.
0 SIXEPPEN Six-endpoint pair enable:tt

Set this bit to select the six-endpoint pair (6EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0 Transmit Receive

FIFO FIFO
Oxxx X000 xx 16 16
Oxxx x001 ooftt 256 256
Oxxx X010 xx 32 32
Oxxx x011 xx 32 32
Oxxx x100 xx 32 32
Oxxx x101 xx 16 16

Clear this bit to select the four-endpoint pair (4EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0 Transmit Receive

FIFO FIFO

Oxxx xx00 xx 16 16
Oxxx xx01 00 256 256
01 512 512

10 1024 0

11 0 1024

Oxxx xx10 xx 16 16
Oxxx xx11 XX 16 16

T 8x930Ax only. Early sample devices did not have this SFR.
T Select the endpoint configuration during initialization and do not change during program execution.

11 When using function endpoint 1 in the six-endpoint pair configuration, clear the FFSZ1:0 bits in
TXCON to select the 256-byte size for the transmit and receive FIFOs.

Figure 7-1. EPCONFIG: Endpoint Conf iguration Register

7-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

EPINDEX Address: S:F1H
Reset State: 1xxx x000B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0
8X930Hx ‘ HORF ‘ — ‘ — ‘ — ‘ ‘ — ‘ — ‘ EPINX1 ‘ EPINXO ‘
7 0
8X930AX ‘ — ‘ — ‘ — ‘ — ‘ ‘ — ‘ — ‘ EPINX1 ‘ EPINXO ‘
4 EPP - 5
8X930AX ‘ — ‘ — ‘ — ‘ — ‘ ‘ — ‘ EPINX2 ‘ EPINX1 ‘ EPINXO ‘
6 EPP
Bit Bit

. Function
Number Mnemonic

7 HORF Hub/function Bit:

(8X930Hx) | 1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

— Reserved:
(8X930AX) Although the reset state for this bit is “1", always write a zero to this bit for
8X930Ax applications.
6:3 — Reserved:
Write zeros to these bits.

2 — Reserved:
8X930Hx or | Write a zero to this bit. 8xX930Hx
8X930Ax
(4 EPP)
1:0 EPINX1:0 | Endpoint Index:
8X930Hx | EPINDEXT EPINDEXT (8x930Hx only)
or 0xxx xx00 Function Endpoint O 1xxx xx00 Hub Endpoint 0
8X930Ax | Oxxx xx01 Function Endpoint 1 1xxx xx01 Hub Endpoint 1

(4 EPP) 0xxx xx10 Function Endpoint 2
0xxx xx11 Function Endpoint 3

2:0 EPINX2:0 | Endpoint Index:

8X930Ax | EPINDEXT

(6 EPP) 0xxx X000 Function Endpoint O
0xxx X001 Function Endpoint 1
0xxx x010 Function Endpoint 2
O0xxx x011 Function Endpoint 3
0xxx x100 Function Endpoint 4
Oxxx x101 Function Endpoint 5

T The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive
FIFO pair. The value in this register plus SFR addresses select the associated bank of endpoint-
indexed SFRs (TXDAT, TXCON, TXFLG, TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTHIL,
EPCON, TXSTAT, and RXSTAT).

Figure 7-2. EPINDEX: Endpoint Index Register

7-6

intel.

USB FUNCTION

+

EPCON

(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2,3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7

0

RXSTL

TXSTL

CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic

Function

7

RXSTL

Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

TXSTL

Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK

CTLEP

Control Endpoint:*
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

RXSPM

Receive Single Packet Mode:*

Set this bit to configure the receive endpoint for single data packet operation.
When enabled, only a single data packet is allowed to reside in the receive
FIFO.

NOTE: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model.
However, itis possible to have a control endpoint configured in dual
packet mode as long as the firmware handles the endpoint
correctly.

RXIE

Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet overrides this bit if it is cleared, and
place the receive data in the FIFO.

For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

Figure 7-3. EPCON: Endpoint Cont rol Register

7-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

EPCON (Continued) Address: S:E1H
(Endpoint-indexed) Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2,3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.
7 0
RXSTL TXSTL CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN

Bit Bit

. Function
Number Mnemonic

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bitis used to enable the transmit endpoint. When disabled, the endpoint
does not respond to a valid IN token. This bit is hardware read only. Note
that endpoint O is enabled for transmission upon reset.

T For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

Figure 7-3. EPCON: Endpoint Control Register (Continued)

7-8

Int9I® USB FUNCTION

TXSTAT Address: S:F2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ ‘ TXSOVW | TXVOID TXERR TXACK

Bit Bit

. Function
Number Mnemonic

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): T

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:
Write zeros to these bits.
4 TXFLUSH | Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW | Transmit Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. Tt

2 TXVOID Transmit Void (read-only): T11

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.
This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in

response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

T The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

1 For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 7-4. TXSTAT: Transmit FIFO Status Register

7-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXSTAT (Continued) Address: S:F2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ ‘ TXSOVW | TXVOID TXERR TXACK

Bit Bit

. Function
Number Mnemonic

1 TXERR Transmit Error (read-only):tt

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8xX930Ax
with 6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXACK bit at the end of the data
transmission (this bit is mutually exclusive with TXACK). For isochronous
transactions, this bit is not updated until the next SOF.

0 TXACK Transmit Acknowledge (read-only):tt

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax with
6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXERR bit at the end of data
transmission (this bit is mutually exclusive with TXERR). For isochronous
transactions, this bit is not updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

T The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

11 For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 7-4. TXSTAT: Transmit FIFO Status Register (Continued)

7-10

Int9I® USB FUNCTION

RXSTAT Address: S:E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit Function
Number | Mnemonic
7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): T

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written

along with the new RXSEQ value.

NOTE: Always verify this bit after writing to ensure that there is no conflict
with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP | Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.

T Under normal operation, this bit should not be modified by the user.
T For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

11 The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

Figure 7-5. RXSTAT: Receive FIFO Status Register

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXSTAT (Continued) Address: S:E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified

by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit

. Function
Number Mnemonic

4 EDOVW End Overwrite Flag:T This flag is set by hardware during the handshake
phase of a SETUP stage. It is set after every SETUP packet is received and
must be cleared prior to reading the contents of the FIFO. When set, the
FIFO state (FIF and read pointer) remains locked for this endpoint until this
bit is cleared. This prevents a prior, ongoing firmware read from corrupting
the read pointer after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
NOTE: Make sure the EDOVW bit is cleared prior to reading the contents
of the FIFO.

3 RXSOVW | Receive Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read. 11

2 RXVOID Receive Void Condition (read-only): Tt

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked

2. The EPCON register’'s RXSTL bit is set

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.
T For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

11 The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

Figure 7-5. RXSTAT: Receive FIFO Status Register (Continued)

7-12

Int9I® USB FUNCTION

RXSTAT (Continued) Address: S:E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit

. Function
Number Mnemonic

1 RXERR Receive Error (read-only):tT

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.
This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is

set when active. This bit is updated with the RXACK bit at the end of data
reception and is mutually exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only): Tt

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8xX930Ax with 6EPP) is

set when active. This bit is updated with the RXERR bit at the end of data
reception and is mutually exclusive with RXERR.

T Under normal operation, this bit should not be modified by the user.
T For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

11 The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

Figure 7-5. RXSTAT: Receive FIFO Status Register (Continued)

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

FADDR

Address: S:8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0
— AB:0
Bit Bit)
Number | Mnemonic Function
7 — Reserved:
Write a zero to this bit.
6:0 A6:0 7-bit Programmable Function Address:
This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is hardware read-only.

7-14

Figure 7-6. FADDR: Function Address Register

Int9I® USB FUNCTION

7.2 TRANSMIT FIFOS

The 8930 has a transmit FIFO for each function endpoint pair. In this manual, the term “transmit
FIFO” refers to the transmEIFO associated with the current endpoint pair specified by the
EPINDEX register. 8330 FIFOs are listed in Table 2-5 and Table 2-6 on page 2-13.

7.2.1 Transmit FIFO Overview
The transmit FIFOs are circulating data buffers with the following features:
* support for up to tweeparate data sets of variable sizes
* a byte count register to store the number of bytes in the data sets
* protection against overwriting data in a fElFO
¢ capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 7-7). The transmit FIFO and its associated
logic can manage up to two data sets, data set 0 (dsO) and data set 1 (ds1). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

From CPU> | Write Pointer |———
8X930 CPU T
Writes to FIFO
Data Set 1
l FIU Reads FIFO
<—| Read Pointer | |To USB Interfact>
REVRP ADVRM
Byte Count Data Set 0
Registers
TXCNTH
TXCNTL j«<—{ Read Marker |

A4258-02

Figure 7-7. Transmit FIFO Outline

The CPU writes to the FIFO location specified byhe pointer which automatically incre-
ments by one after a write. Thead markerpoints to the first byte of data written to a data set,
and theread pointerpoints to the next FIFO location to be read by the function interface. The
read pointer automatically increments by one after a read.

T When operating in dual packet mode, the maximum packet size shoulthbstdtalf the FIFO size to ensure that
both packetsvill simultaneouslyit in the FIFO (see the Epdint description in th&niversal Serial Bus
Specificatiof.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

When a good transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read the last data set for retransmission. The read marker advance and read pointer reversal car
be accomplished two ways: explicitly by firmware or automatically by hardware, as specified by
bits in the transmit FIFO control register (TXCON).

7.2.2 Transmit FIFO Registers
There are five registers directly involved in the operation of the transmit FIFOs:
e TXDAT, the transmit FIFO data register

¢ TXCNTH and TXCNTL, the transmit FIFO byte count registers referred to jointly as
TXCNT

* TXCON, the transmit FIFO control register
¢ TXFLG, the transmit FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
transmit FIFO associated with the current endpoint specified by the EPINDEX register. Figures
7-8 through 7-11 beginning on page 7-18at#®e the transmit FIFO registers and provide bit def-
initions.

7.2.3 Transmit Data Register (TXDAT)

Bytes are written to the transmit FIFO via TXDAT, the transmit FIFO dajfiatex (Figure 7-8
on page 7-18).

7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)

The format of the transmit byte count register depends on tipoem. For endpoint 1, registers
TXCNTH and TXCNTL form a two-register, ten-bit ring buffer. For endpoints 0, 2, gathc

for the &930A%, endpoints 4 and 5), TXCNTL is used alone as alfiteing buffer. These for-

mats are shown in Figure 7-9 on page 7-19. The term TXCNT refers to either of these arrange-
ments.

The transmit FIFO byte count register (TXCNT) stores the number of bytes in either of the two
data sets, data set 0 (ds0) and data set 1 (ds1). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. The CPU first writes data bytes to TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNT. TXCNT must be written after the writeTlDAT to guarantee data
integrity. For function endpoint 1, TXCNTL should be written after TXCNTH. Writing to
TXCNTH does not affect the TXFIF bits, however writing to TXCNTHL does set the
associated TXFIF bits.

7-16

intel.

USB FUNCTION

NOTE

TXCNTH does not need to be written if it is always O0H, as the reset value is
00H. However, if TXCNTH is not 00H, &hould always be written even

though the value does not change from the previous cycle; this is because the
byte count registers are 2-byte circular buffers and not “static” registers.

For all endpoints except function endpoint 1, TXCNTH is not available and
TXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and should
always be written with ‘0’

The function interface reads the byte count register to determine the number of bytes in the set.

7.2.5 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which datas@ts
and/or ds1) have been written into the FIFO and are armed (ready for transmission). See the left
side of Table 7-3. FIF= 1 indicates that data selas been written and is armed. Following reset,
FIF1:0 = 00, signifying an empty FIFO. FIF1:0 also determine which data set is written next.
Note that FIFO specifies the next data set to be written, except for the case of FIF1:0 = 11. In this
case further writes to TXDAT or TXCNT argriored.

NOTE

To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

Two events cause the data set index bits to be updated:

* A new data set is written to the FIFO: th&80 writes bytes to the FIFO via TXDAT and
writes the number of bytes to TXCNT. The data set index bits are updated after the write to
TXCNT. This process is illustrated in Table 7-3.

¢ A data setin the FIFO is successfully transmitted: the function interface reads a data set
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read marker is
advanced. Note that in ISO mode, this happens at the next SOF.

Table 7-3. Writing to the Byte Count Register

FIELO Data Sets Written Set ‘;‘c’)r#‘;é}\l"TV”te Wite bytes Lo
ds1 dso to TXDAT.

0 0 No No (Empty) ds0 —> Write byte —> |0 1

0 1 |No Yes (L set) ds1 C&’g:ﬁ 11

1 0 | Yes No (1 set) ds0 1 1

1 1 |Yes Yes (2 sets) Write ignored 1 1

8x930AXx, 8x930HXx USER’'S MANUAL

Table 7-4 summarizes how the actions following a transmission depend on the TXISO bit, the

ATM bit, the TXACK bit, and the TXERR bit.

intel.

Table 7-4. Truth Table for Transmit FIFO Management

TXISO ATM TXERR TXACK Action at End of Transfer Cycle
(TXCON.3) | (TXCON.2) | (TXSTAT.1) | (TXSTAT.0) y

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.

NOTE

For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF

bits.
TXDAT Address: S:F3H
(Endpoint-indexed)’ Reset State: XXXX XXXXB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0
Transmit Data Byte
Bit Bit Function
Number | Mnemonic
7:0 TXDAT.7:0 | Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

T For hub endpoint 1, TXDAT is used in a different manner. See Figure 8-6 on page 8-12.

7-18

Figure 7-8. TXDAT: Transmit FIFO Data Register

Int9I® USB FUNCTION

TXCNTH, Address: S:F7H
TXCNTL S:F6H
(Endpoint-indexed)

Reset States: Endpoint 1 TXCNTH xxxx xx00B
TXCNTL 0000 0000B

Other
Endpoints’ TXCNTL xxx0 0000B

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints.

15 (TXCNTH) Endpoint 1 8

. - [- [= [= J0 =1 = | 8 [Bcs |

7 (TXCNTL) 0

‘ BC7 ‘ BC6 ‘ BCS ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘

7 (TXCNTL) Other Endpoints 0

‘ — ‘ — ‘ — ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
Bit Bit Function

Number Mnemonic

Function Endpoint 1

15:10 — Reserved.
Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count. (write, conditional readt™)
Ten-bit, ring buffer. Stores transmit byte count (TXCNT). Implemented for
function endpoint 1 only.

Other Endpoints®

7:0 — Reserved.
Write zeros to these bits.

4.0 BC4:0 Transmit Byte Count. (write, conditional readt™)
Five-bit, ring buffer. Stores transmit byte count (TXCNT) for endpoints 0, 2,
and 3.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.

T Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.

Figure 7-9. TXCNTH/TXCNTL Transmit FIFO Byte Count Registers

NOTE

To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNT.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXCON Address: S:F4H
(Endpoint-indexed) Reset State: Function Endpoint 1 000x 0100B
Other Endpoints’ 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0
Function ‘ TXCLR ‘ FFSZ1 ‘ FFSZ0 ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoint 1 7 0
Other ‘ TXCLR ‘ — ‘ — ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoints T

Bit Bit Function

Number Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT

register.
6:5 FFSZ1:0 FIFO Size:
For function endpoint 1 only (EPINDEX = 0000 0001B), these bits select
Function the sizes of both the transmit and receive FIFOs. (There are no FFSZ bits
Endpoint 1 | in the corresponding RXCON.) These bits are not reset when the TXCLR
only bit is set in the TXCON register.
FFSZ1:0 Transmit Size Receive Size
00 256 256
01 512 512
10 1024 0
11 0 1024
— Reserved:
Other End- | Values read from this bit are indeterminate. Write zero to this bit.
points *
4 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.
3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and
must be cleared by firmware.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8 X930Ax
only).

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer
when ATM = 0, are used for test purposes,

Figure 7-10. TXCON: Transmit FIFO Control Register

7-20

Int9I® USB FUNCTION

TXCON (Continued) Address: S:F4H
(Endpoint-indexed) Reset State: Function Endpoint 1 000x 0100B
Other Endpoints® Oxxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0
Function ‘ TXCLR ‘ FFSZ1 ‘ FFSZ0 ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoint 1 0
Other ‘ TXCLR ‘ — ‘ — ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoints T

Nuaif:\er Mne?ritonic Function

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISOTX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)
1. to origin of next data set 2. to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

1 ADVRM | Advance Read Marker Control (non-ATM mode only)**:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This
bit is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)*t:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the
FIU can reread the last set for retransmission. Hardware clears this bit
after the read pointer is reversed. This bit is effective only when the
ADVRM, ATM, and TXCLR bits are all clear.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8x930Ax
only).

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer
when ATM = 0, are used for test purposes,

Figure 7-10. TXCON: Transmit FIFO Control Register (Continued)

7-21

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXFLG Address: S:F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number Mnemonic

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
firmware (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNT for traceability. See
the TXFLUSH bitin TXSTST.
NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

T When set, all transmissions are NAKed.

Figure 7-11. TXFLG: Transmit FIFO Flag Register

7-22

Int9I® USB FUNCTION

TXFLG (Continued) Address: S:F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number Mnemonic

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag (read, clear only)*:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through firmware. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bitin TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the TXCNT doesn't agree with the data, hardware sets TXURF. This
indicates that the transmitted data was corrupted by a bit-stuffing or CRC
error.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag':

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

T When set, all transmissions are NAKed.

Figure 7-11. TXFLG: Transmit FIFO Flag Register (Continued)

7-23

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

7.3 RECEIVE FIFOs

The &930 has a receive FIFO for each function endpoint pair. In this manual, the term “receive
FIFO” refers to the receive FIFO associated with the current endpoint pair specified by the EPIN-
DEX register. 830 FIFOs are listed in Table 2-5 and Table 2-6 on page 2-13.

7.3.1 Receive FIFO Overview
The receive FIFOs are circulating data buffers with the following features:
* support for up to tweeparate data sets of variable sizes
* a byte count register that accesses the number of bytes in the data sets
¢ flags to signal a full FIFO and an empty FIFO
¢ capability to re-receive the last data set

Figure 7-12 illustrates a receive FIFO. A receive FIFO and its associated logic can manage up to
two data sets, data set 0 (ds0) and data set 1 (ds1abillg to have two data sets in théFO
supports back-to-back recégpis.

In many ways the receive FIFO is symmetrical to the transmit FIFO. The FIU writes to the FIFO
location specified by therite pointer which increments by one automatically following a write.
Thewrite markerpoints to the first byte of data written to a data set, ande#e pointerpoints

to the next FIFO location to be read by t®@3). The read pointer increments by one automati-
cally following a read.

FIU Writes to FIFO
<—| Write Pointer I From USB Interface

Data Set 1

< To CPU | I Read Pointer |—> Write Marker

8X930 CPU
Reads FIFO
Data Set 0 Byte Count
Registers
RXCNTH
RXCNTL

A4259-02

Figure 7-12. Receive FIFO

T When operating in dual packet mode, the maximum packet size should not exceed ireeHiBEDsize to ensure
that both packets will simultaneously fit in the FIFO (see the endpoint descriptorUnitiegsal Serial Bus
Specificatioi.

7-24

Int9I® USB FUNCTION

When a good raption is completed, the write marker can be advanced to the position of the write
pointer to set up for writing the next data set. When a bad reception is completed, the write pointer
can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the data again. The write marker advance and write pointer reversal can be accom-
plished two ways: explicitly by firmware or automatically by hardware, as specified by bits in the
receive FIFO control register.

The &930 should not read data from the receive FIFO before all bytes are received and success-
fully acknowledged because the reception may be bad.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data in
the receive FIFO. In the single packet mod&3® can monitor the FIFO empty flag (RXEMP
bit in RXFLG) to avoid reading a byte when the FIFO is empty.

7.3.2 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:
* RXDAT, the receive FIFO data register

¢ RXCNTH and RXCNTL, the receive FIFO byte count registers referred to jointly as
RXCNT

* RXCON, the receive FIFO control register
* RXFLG, the receive FIFO flag register

These registers are endpoint indexed, i.e., they are used as set to control the operation of the re-
ceive FIFO associated with the current endpoint specified by the EPINDEX register. Fidires
through 7-11 beginning on pag@e27 desribe the receive FIFO registers and provide bit defini-
tions.

7321 Receive Data Register (RXDAT)

Received data bytes are written to the receive FIFO via the receive FIFO data register (RXDAT).

7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)

The format of the receive byte count register depends on the endpoint. For endpoint 1, registers
RXCNTH and RXCNTL form a ten-bit ring buffer which accommodates packet sizes of 0 to
1023 bytes. For endpoints 0, 2, and 3, RXCNTL is used alone as five-bit ring buffer to accom-
modate packet sizes of 0 to 16 bytes. These formats are shown in Table 7-14 B2Baghe

term RXCNT refers to either of these arrangements.

The receive FIFO byte count register (RXCNT) stores the number of bytes in either of the two
data sets, data set 0 (ds0) and data set 1 (ds1). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. The USB interface first writes the received data packet into the receive FIFO.

2. The USB interface then writes the number of bytes that were written into the receive FIFO
to the byte count register RXCNT.

7-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

NOTE

For all endpoints except function endpoint 1, RXCNTH is not available and
RXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and will
always be read as ‘0’

The CPU reads the byte count register to determine the number of bytes in the set.

The receive byteount register hasraad/write indexo allow it to access the byte count for either

of the two data sets. This is similar to the methodology used for the transmit byte count register.
After reset, the read/write index points to data set 0. Thereafter, the following logic determines
the position of the read/write index:

¢ After a read of RXCNT, the read/write index (RXFIF) is unudped
¢ After a write of RXCNT, the read/write index (RXFIF) is toggled

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Receive FIFO Data Set Management” on page 7-26).

CAUTION
Do not read RXCNT to determine if data is present in the receive FIFO. A read
attempt to RXCNT during the time the receive FIFO is empty causes the
RXURF flag in RXFLG to be set. Always read the RXFIF bits in RXFLG to
determine if data is present in the receive FIFO. The RXFIF bits are updated
after RXCNT is written (at the end of the receive operation, and at thédBOF
ISO data).

7.3.3 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG register) to
indicate which data sets are present in the receive FIFO (see Table 7-5).

Table 7-5. Status of the Receive FIFO Data Sets

Data Sets Written
FIF1:0
dsl ds0
0 0 | No No (Empty)
0 1 |No Yes (1 set)
1 0 |Yes No (1 set)
1 1 |Yes Yes (2 sets)

Table 7-6 summarizes how the actions following a reception depend on the RXISO bit, the ARM
bit, and the handshake issued by tk@3®.

7-26

Int9I® USB FUNCTION

Table 7-6. Truth Table for Receive FIFO Management

RXISO ARM RXERR RXACK Action at End of Transfer Cycle
(RXCON.3) | (RXCON.2) | (RXSTAT.1) | (RXSTAT.0) y

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically. The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data

was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

NOTE

For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF

bits.
RXDAT Address: S:E3H
(Endpoint-indexed) Reset: XXXX XXXXB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0
RXDAT.7:0

Bit Bit

. Function
Number Mnemonic

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read

data from the receive FIFO, the 8x930 reads from this register. The write
pointer and read pointer are incremented automatically after a write and

read, respectively.

Figure 7-13. RXDAT: Receive FIFO Data Register

7-27

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

RXCNTH,
RXCNTL

(Endpoint-indexed)

Address:
Reset States:
Endpoint 1 RXCNTH
RXCNTL
Other
Endpoints’ RXCNTL

S:E7H
S:E6H

XXXX Xxx00B
0000 0000B

xxx0 0000B

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8
L - 1 - - [- J[= [— [s | Becs |
7 (RXCNTL) 0
‘ BC7 ‘ BC6 BC5 ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
7 (RXCNTL) Other Endpointst 0
T —_ — | Bca || Bc3a | B2 | Bo1 | BCO |
Nu‘rgnitaer Mne?ritonic Function

Endpoint 1

15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.

Ten-bit, ring buffer byte. Stores receive byte count (RXCNT). Implemented

for function endpoint 1 only.

Other Endpoints’

7:0

Reserved. Write zeros to these bits.

4:0

BC4:0

Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count (RXCNT). 3.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.

Figure 7-14. RXCNTH/RXCNTL: Receive FIFO Byte Count Registers

CAUTION

Do not read RXCNT to determine if data is present in the receive FIFO.
Always read the FIF bits in the RXFLG register. RXCNT contains random
data during a receive operation. A read attempt to RXCNT during the time the
receive FIFO is empty causes the RXURF flag in RXFLG to be set. Always
read the FIF bits to determine if data is present in the receive FIFO. The
RXFLG FIF bits are updated after RXCNT is written (at the end of the receive
operation).

7-28

Int9I® USB FUNCTION

RXCON Address: S:E4H
(Endpoint-indexed) Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0
RXCLR — RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP

Bit Bit

. Function
Number Mnemonic

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and

RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation

is completed.
6 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.
5 RXWS Receive FIFO Wait-state Read:

At the 8x930 core frequency of 12 MHz, not all instructions that access the
receive FIFO are guaranteed to work due to critical paths inherent in the
8x930 architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:*

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:T

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

T ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

Figure 7-15. RXCON: Receive FIFO Cont rol Register

7-29

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXCON (Continued)
(Endpoint-indexed)

Address: S:E4H
Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0
RXCLR — RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP
Bit Bit Function
Number | Mnemonic
2 ARM Auto Receive Management:
When set, the write pointer and write marker are adjusted automatically
based on the following conditions:
RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced
When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.
NOTE: This bit should always be set, except for testing.
1 ADVWM Advance Write Marker: T
(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.
0 REVWP Reverse Write Pointer: T
(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.
REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

T ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

7-30

Figure 7-15. RXCON: Receive FIFO Control Register (Continued)

intel.

USB FUNCTION

RXFLG
(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO

specified by EPINDEX.
7

0

RXFIF1 RXFIFO

— — H RXEMP | RXFULL | RXURF | RXOVF

Bit Bit
Number Mnemonic

Function

7:6 RXFIF1:0

Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-5 on page 7-26). The RXFIF bits are updated after each

write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC
01 Set RXFFRC

00 Unchanged
00 Unchanged
11 Set RXFFRC 10/01 Unchanged
10 Set RXFFRC 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements” RXFIF
immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you
utilize control endpoints in single-packet mode only.

X X X X

5:4 —

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

3 RXEMP

Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

T When set, all transmissions are NAKed.

Figure 7-16. RXFLG: Receive FIFO Flag Regi ster

7-31

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXFLG (Continued)
(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7

0

RXFIF1

RXFIFO

— — H RXEMP | RXFULL | RXURF | RXOVF

Bit
Number

Bit
Mnemonic

Function

2

RXFULL

Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals the
read pointer. Hardware clears the bit when the full condition no longer exists.
This is not a sticky bit and always tracks the current status of the receive
FIFO, regardless of ISO or non-ISO mode.

RXURF

Receive FIFO Underrun Flagt:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following

rule: Firmware events cause status change immediately, while USB events

cause status change only at SOF. Since underrun can only be caused by

firmware, RXURF is updated immediately. You must check the RXURF flag

after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bitis set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

RXOVF

Receive FIFO Overrun Flagt:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through firmware, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.t

T When set, all transmissions are NAKed.

7-32

Figure 7-16. RXFLG: Receive FIFO Flag Register (Continued)

Int9I® USB FUNCTION

7.4 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electrical”
chapter olUniversal Serial Bus Specificatiolhe specification defines: differential’l’, differen-
tial'0’, idle ('J’ state), non-idl€’K’ state), start-of-packet, end-of-packet, disconnect, connect, re-
set, and resume. The USB employs NRZI data encoding when transmitting packets. Refer to
“Data Encoding/Decoding” in theniversal Serial Bus Specificatidor a description of NRZI

data encoding and decoding. To ensure adequate signal transitions, bit stuffing is employed by
the SIE when transmitting data. The SIE also does bit unstuffing when receiving data. Consult
the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrical” chap-

ter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, and so
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next LSB
and so on. The SIE ensures that the LSb is first, butd®@08programmer must ensure the order

of the bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protocol Lay-
er” chapter ofUniversal Serial Bus Specificatiomhe FIU communicates data information and
handshaking instructions to the SIE. Programmers should consult the “Interconnect Description,”
“USB Devices,” and “USB Host” chapters Ohiversal Serial Bus Specificatidar detailed in-
formation on how the host and function communicate.

7.5 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even if the receive FIFO is not
empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXSTAT
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STOVW
indicates a SETUP-initiated over-write (flush) isgrogress After the SETUP transaction is
completed (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating the re-
ceive FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP packet,
regardless of whether the receive FIFO is full or empty always sequences through the STOVW,
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of @88 CPU data read cycle (from

a previous USB transaction), the receive FIFO could underrun, thus setting the RXURF bit of
RXFLG and positioning the read pointer in an unknown state. To previentSlTOVW resets

and locks the read pointer. The read pointer will remain locked until both the STOVW and
EDOVW bits are cleared.

CAUTION

For SETUP packets only, firmware must clear EDOVW prior to reading data
from the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a SETUP packet, firmware should always check the STOV\ECOWW

flags before setting the RXFFRC bit. When a SETUP packet either has been or is being received,
setting of RXFFRC has no effect if either STOVW or EDOVW is set. It is up to the user to clear
EDOVW which disbles the RXFFRC blocking mechanism. Also note that the RXSETUP =1
condition causes IN and OUT tokens to be NAKed automatically until RXSETUP is cleared. This

7-33

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

is true even if the transmit and/or receive endpoint is stalled (TXSTL = 1, RXSTL = 1), and is
done to allow the clearing of a stall condition on a control endpoint.

NOTE

To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

7.6 1SO DATA MANAGEMENT

ISO data management must always be performed in dual-packet medeigtst are not gener-

ated when an I1SO transmit or receive cycle is completed; ISO protocols should alvegys be
chronized to the SOF interrupt. When transmitting, data written into the transmit FIFO at frame
n is pre-buffered to be transmitted in frame n+1. This guarantees that data is always available to
the host when requested anytime in a frame. When receiving, data written into the receive FIFO
at frame n is pre-buffered to be read-out in frame n+1. This guarah&etata from the host is
always available to the function every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokenthi&drost are nator-
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the token.
Function firmware needs to recognize this error condition and reconfigure the endpoints accord-

ingly.

7.6.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an isochro-
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by
hardware. This error condition can be detected by checking TXFIF1:0 = 11 at SOF. When this
occurs, the oldest data packet will be flushed and the transmit FIFO read-pointers and read-mark-
ers will be advanced to the start “address” of tlowsd data packet. The TXFIF will also be up-
dated. Therefore, the second packet will be ready to be transmitted for the next frame. The first
data packet is lost. The transmit flush bit, TXFLUSH in TXSTAT, is also set when this occurs.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. TXOVF, TXURF, and TXFIF are handled uk&dollowing rule:
firmware events cause status change immediately while USB events only cause status change at
SOF. For example:

* TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
¢ TXURF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

¢ TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefore,
writes to TXCNT will “increment” TXFIF immediately. However, a successful USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.

The following bits do not follow the above rule:
¢ TXEMP/TXFULL: These always reflect the current status of the FIFO.
* TXFLUSH: Firmware can detect a flush by monitoring this bit.

7-34

Int9I® USB FUNCTION

7.6.2 Receive FIFO ISO Data Management

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. RXOVF, RXURF, and RXFIF are handled tisenfpllowing rule:
firmware events cause status change immediately while USB events only cause status change at
SOF. For example:

* RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
* RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

* RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefore,
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

¢ RXEMP/RXFULL: The rule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.

7-35

intel.

USB Hub

intel.

CHAPTER 8
USB HUB

This chapter describes the operation of the Intel Universal Serial Bus (USB) on-chip hub, as im-
plemented in theX®30Hx. This chapter introduces on-chip hub operation and includes informa-
tion on bus enueration,hub endpoint status and configuration, hub port control, hub suspend
and resume, and hub power control.

The &930Ax microcontroller does not include a hub feature. Hence, this chapter does not apply
to the &930Ax. To see how the hub fits in the380Hx architecture, see Chapter 2, “Architectural
Overview.”

8.1 HUB FUNCTIONAL OVERVIEW

The on-chip hulprovides an electrical interface between the USB host and the downstream ports.

In many cases, this relationship exists as an interface between a USB host and other discrete USB
devices. Besides serving as a control interface between the host and the downstream ports, the
hub is also a USB device and mustpend to the standard USB requestsédbed in Chapter

9 of Universal Serial Bus Specificatipas well as hub class-specific requests (defined in Chapter

11 ofUniversal Serial Bus Specificatipn

The functionality between the PC host anddbe/nstream ports that landled by the hub in-
cludes:

¢ Connectivity management

* Downstream device connect/disconnect detection

* Power management, including suspend and resume functions
* Bus fault detection and recovery

¢ Full and low-speed device support

The hub functionality can be divided into twab-functions: the hub repeater and the hub con-
troller. The hub architecture is described in “The 8x930Hx USB Module” on page 2-14. A dia-
gram of the hub architecture is shown in Figure 2-4 on page 2-7.

The hub controller function is split between four modules:
* Hub interface unit (HIU)
¢ Serial bus interface engine (SIE)
¢ Transmit and receive FIFOs for hub endpoint 0 and endpoint 1
* 8x930Hx CPU

8-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

A functional diagram of the hub is shown in Figure 8-1 on page 8-2. The diagram shows the root
port, which is the upstream port (port 0); the repeater, which is responsible for managing connec-
tivity on a per packet basis; theb controller, which provides status and control and permits host
access to the hub; three exteralvnstream ports, which provide a means of expanding the USB
by permitting the connection of additional PC peripherals; and the internal downstream port,
which provides an interface to the embedded function.

Root Port

| Port 0 |

Hub
Controller HADDR

Hub Endpoint 0, Endpoint 1

Function Interface

Internal
Downstream Port

Port 4

Hub Repeater

FADDR

CPU

Function Endpoints

8X930Hx

port1 | [Portz | | Port3

External Downstream Ports

A5116-01

Figure 8-1. 8X930Hx Hub Functional Diagram

Refer to chapter 11 dfniversal Serial Bus Specificatidor a more detailed description of the

hub and its functionality. For a description of the transceiver see the “Driver Characteristics” and
“Receiver Characteristics” sections of the “Electrical” chapter ofthigersal Serial Bus Spec-
ification. For electrical characteristics and data signal timing, see the “Bus Timing/Electrical
Characteristics” and “Timing Diagram” sections of the same chapter.

Table 8-1. USB Hub SFRs

Mnemonic Name Address

HADDR Hub Address Register. Used by the HIU to perform S:97H
token address decoding.

HIE Hub Interrupt Enable Register. Contains the hub S:A1H
interrupt enable bits. See “USB Hub Interrupt” on page
6-15.

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt S:E8H
status flags. See “USB Hub Interrupt” on page 6-15.

HPCON Hub Port Control. Enables, disables, resets, suspends, S:CFH
and resumes the four hub ports. USB port-indexed using
HPINDEX.

8-2

Int9I® USB HUB

Table 8-1. USB Hub SFRs (Continued)

Mnemonic Name Address

HPINDEX Hub Port Index Register. Provides port indexing into S:D4H
the HPSC, HPSTAT, and HPCON registers. See “Hub
Port Indexing Using HPINDEX” on page 8-23 for details.

HPPWR Hub Port Power Control. Controls power to the three S:9AH
downstream ports.

HPSC Hub Port Status Change. Indicates a change in reset, S:D5H
suspend, enable, disable, or connect status. USB port-
indexed using HPINDEX.

HPSTAT Hub Port Status. Provides D, D,,, low-speed device, S:D7H
power, reset, suspend, enable, and disable status for the
four hub ports. USB port-indexed using HPINDEX.

HSTAT Hub Status and Configuration. Used to examine or S:AEH
enable remote wake-up, stall feature, endpoint 1, over-
current status, and local power status

8.1.1 Port Connectivity States

In addition to the root port (port 0) the hub contains three external downstream ports, ports 1
through 3 and one internal downstream port, port 4.

Hub downstream ports may be in one of five possible states:

¢ powered off — Power-switched ports are a USB option supported byx@B3éia«. A
powered off port supplies no power downstregmnores all upstream-directed bus activity
on the port, and its signal output buffers are placed in the Hi-Z state.

¢ disconnected — Initial state upon power-up or reset, the port cannot propagate any
upstream or downstream sigmegi The port can detect a connect event, which causes it to
transition to the disabled state.

¢ disabled — Port can only propagate downstream-directed signaling arising from a reset
request. A disabled port does not propagate upstream signaling if the hub is awake, but will
detect disconnects and initiate resume signaling to the root port if the hub is suspended.

* enabled — Port propagates all downstream and upstream signaling.

¢ suspended — When suspended, the port will not stop propagating in the middle of a
transaction. If hub is awake, no upstream or downstream connectivity can propagate
through the port, except for downstream-directed reset signaling. If hub is suspended, idle-
to-resume is propagated.

The transitions between these states are shown in Figure 8-2.

8-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

PORT_POWER = OFF or
Reset on root port

Powered Off Else

(&)

PORT_POWER = ON

Y

Disconnected Else

(&)

Connect Detect

Disconnect Detect

Disabled Else

(&)

PORT_ENABLE or PORT_RESET
PORT_DISABLE - -
or Frame error

Enabled Else)
I —
Disconnect Detect PORT_SUSPEND

PORT_RESUME or

Suspended |eise) Remofe wakeup

Disconnect Detect I

A5121-01

Figure 8-2. Hub State Flow

These port states are tracked and managed in the hub repeater based on hardware events (e.g
physical connection/disconnection of a device on a port) and firmware execution of host com-
mands. Normal packet traffic is allowed to propagate through ports that are in the=tg isadie

only, as described in “Per-packet Signaling Connectivity” on page 8-5.

The root port is the only upstream port; it is permanexdlyered on and enabled. Ports bthgh

3 are external downstream ports. Theymower-switched ports that must be powered-on by host
command, detect a device connection and then become enabled via host commandrpger to p
agating USB packet traffic. Port 4 is an internal downstream port that is always powered on and
always physically connected. It functionally supports port engbT hat is, the downstream port
connectivity will not be enabled unless a port enable has been received from the host.

8-4

Int9I® USB HUB

8.1.2 Per-packet Signaling Connectivity

The hub repeater establishes connectivity between ports for upstream and downstream traffic on
a per-packet basis. Packet signaling connectivity for downstream, upstream, and idle traffic is il-
lustrated in Figure 8-3. While the host can communicate with all the downstream ports simulta-
neously, as shown in the “downstream connectivity” illustration in Figure 8-3, only one port can
communicate with the host at one time, as shown in the “Upstream Connectivity” illustration of
the same figure. The host selects one of the downstream ports for upstream communication.

Root Port r*_l Root Port Iil Root Port I_I
Port 4 Port 4
(Internal) (Internal)
— - Port 4
— :I :I (Internal)
f Y (Disabled) *l (Disabled) (Disabled)
Port1 Port2 Port3 Port1 Port2 Port3 Port1 Port2 Port3
Downstream Upstream Idle
Connectivity Connectivity
A5137-01

Figure 8-3. Packet Signaling Connectivity

Connections made by the repeater also depend on whether the port is attached to a full-speed or
low-speed device and whether the USB packet is a full-spekxivespeed packet (withow-

speed packets being identified by a PREamble token). Connections are made by the repeater us-
ing asynchronous control logic in order to meet the USB signal propagation requirements.

8.1.21 Connect ivity to Downstream Ports Attached With Full-sp eed Devices

Downstreantonnectivity is established upon detection of a start of packet (SOP) transmitted on
the root or upstream port by the USB host. As shown in Figure 8-3, the connection is made from
the root port (port 0) to all enabled downstream portsladtéh with full-speed devices (ports 1,

2, & 3 in this case). Connectivity ot established to any enabled ports attached with low-speed
devices. Upon detection of the end-of-packet (EOP), the repeater terminates the connectivity, re-
verting to the idle state, as shown in Figure 8-3.

Upstream connectivity is established upon detection of a SOP transmitted on any enabled down-
stream port. The connection is only made between a single downstream port and the root port by
the repeater, as shown in “upstream connectivity” in Figure 8-3. The USB protocol does not allow
packets to be transmitted by more than one downstream port simultaneatsiyan error sce-

nario where this happens, the repeater wahloose only one downstream port to connect up-
stream. Once again, upon detection of an EOP, the connectivity is terminated.

8-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

8.1.2.2 Connect ivity to Downstream Ports attached with Low-speed Devices

Downstream connectivity is estadllied in the same fashion fow-speed packets as for full-
speed packets, with the following exceptions:

1. Downstream low-speed packets are routed to all enabled ports, including ports attached
with low-speed and full-speed devices.

2. Downstream low-speed packets contain a low-speed PREamble field which is recognized
by the SIE. Upon detection of the PREamble, the repeater establishes the connection to all
enabled low-speed downstream ports.

3. Packet data is inverted at the ports attached to low-speed devices for both upstream and
downstream traffic.

Upstream connectivity is established in the same fashion for low-speed packets as for full-speed
packets, with the exception that no PREamble is propagated prior to low-speed packets. The root
port propagates low-speed packets upstream using full-speed signaling (edge rates).

8.2 BUS ENUMERATION

The USB host manages bus enumeration at system start-up or whenever a new USB device is at-
tached to the host or to a hublswnstream port. Initially, the USB hub is in the unenumerated
state and the hub addresgister (HADDR) contains the default value 00H. The host PC per-
forms bus enumeration in which it identifies and addresses devices attached to the bus. During
enumeration, a unique address assigned by the host is written to the HADDR of every hub device.
The steps of the bus enumeration process are given in “Bus Enumeration” on page 9-16.

Information on descriptors and the HADDR register, required for bus enumeration, is provided
in the following subsections.

8.2.1 Hub Descriptors

The &930Hx has five descriptors, as shown in Table 8-2. All are standard USB descriptors except
the hub descriptor, which is class-specific. There is no descriptenffoint 0. A hub has only

one valid configuration and interface. The actual descriptor field values are given in the section
of Universal Serial Bus Specificatiorferenced in the table.

The host reads the hub descriptors during bus enumeration. The host uses the values within the
descriptors to determine device configuration. The hub descriptor is divided into several parts,
which are shown in Table 8-3.

8-6

Int9I® USB HUB

Table 8-2. 8 xX930Hx Descript ors

Descriptor Size Uniy_ersal Serial Bus
Specification Reference
Device 18 bytes Section 9.7.1
Configuration 9 bytes Section 9.7.2
Interface 9 bytes Section 9.7.3
Endpoint 7 bytes Section 9.7.4
Hub 9 bytes Section 11.11.2

Table 8-3. Hub Descriptors

Field Size Offset Description
bDescLength 1 byte 0 Number of bytes in this descriptor, including this byte.
bDescriptorType 1 byte 1 Descriptor Type
bNbrPorts 1 byte 2 Number of downstream ports this hub supports.
wHubCharacteristics | 2 bytes 3 Determines power switching mode, identifies device as a

compound device, and describes the over-current protection
mode used by the device.

bPwrOn2PwrGood 1 byte 5 Time elapsed from when the power on sequence begins on a
port until power is good on that port.

bHubContrCurrent 1 byte 6 Maximum current requirements of the hub controller.

DeviceRemovable 1 byte 7 Indicates if a port has a removable device attached.

PortPwrCtriMask 1 byte Variable | Indicates if a port is affected by a gang-mode power control
request.

8-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

8.2.2 The Hub Address Register (HADDR)

During bus enumeration, the host PC communicates a unique address for the hub through hub
endpoint 0 using the set address command. Device firmmust interpret and write thisb ad-

dress to the Hub Address register (HADDR, as shown in Figure 8-4). This procedure is outlined
in “Bus Enumeration” on page 9-16.

HADDR Address: S:97H
Reset State: 0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0
‘ — ‘ Hub Address
Bit .
Number Function
7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

Figure 8-4. HADDR: Hub Address Register

8.3 HUB STATUS

Status and configuration of the USB hub function is performed by both standard and hub class-
specific USB requests. These requests, generated by the host PC, manage and configure the statu
of the hub and its downstream ports. These USB requests are listed and explained in “Hub Status
and Configuration” on page 9-17.

The hub has an internal downstream port (port 4) which operateredtffethan the external
downstream ports. Because port 4 is physically connected to the embedded function and is pow-
ered-on at all times, USB requests intended for internal downstream port 4 are handled differently
than similar requ&ts to the othedlownstream ports. The management of the individual hub ports

is discussed in “USB Hub Ports” on page 8-14.

The host PC may request that firmware check and change bits of the HSTAT SFR (Figure 8-5).
See Table 9-1 on page 9-17 for a list of USB requests and their associated firmware actions.

8-8

intel.

USB HUB

+

HSTAT

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7

Address: S:AEH
Reset State: x000 0000B

— HRWUPE

EP1STL | EP1EN H oVvISC — ovi —

Bit Bit
Number Mnemonic

Function

7 —

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

6 HRWUPE

Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit

is modified through the SetFeature and ClearFeature requests using the

DEVICE_REMOTE_WAKEUP feature selector. When ‘0,’ the hub blocks

resume signaling for connect/disconnect and resume events detected on

downstream ports.

NOTE: Do not set this bit until after the hub is enumerated and the host
issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

5 EP1STL

Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1," will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN

Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of

0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon

receipt of configuration value other than 0001H or a system or USB

reset.

NOTE: This bit must be set in order for the UPWEN# pin to enable
power to the downstream ports. Downstream power cannot be
applied until this is done.

3 oVviIsC

Hub Over-current Indicator Status Change (read/clear-only): T

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Bits 1 and 3 are returned in
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

response to a Get Hub Status request from the USB host. This response is

Figure 8-5. HSTAT: Hub Status and Configuration Register

8-9

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

HSTAT (Continued)

Address:
Reset State:

S:AEH
x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0
— HRWUPE | EP1STL | EP1EN || owisc — ovi —
Bit Bit Function
Number Mnemonic
1 oVi Latest Over-current Indicator (read-only): T
Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.
0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

T Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

Figure 8-5. HSTAT: Hub Status and Configuration Register (Continued)

8.4 USB HUB ENDPOINTS

Table 8-4 gives the packet size, transfer type and implementation ofB@H& hub endpoints.

Bulk and isochronous transfers are not supported by the hub endpoints. The hub handles control

transfers using endpoint O with a maximunchet size of eight bytes.

Hub endpoint 1 supports interrupt transfers only and has no endpoiiverbo&er. Emlpoint 1
is used to inform the host of a hub or port status change. Figure 8-7 on pagéu8tidk the

format used to transmit status change information to the host. Since endpoint 1 transmits a single
byte of information, TXDAT (Figure 8-6 on page 8-12) serves as the data buffer. Endpoint 1 op-

erations are primarily controlled by hardware and do not involve firmware, ekuephe
EP1STL and EP1EN bits in HSTAT (Figure 8-5).

8-10

Table 8-4. Hub Endpoint Configuration

Hub Max Packet Transfer Type Implementation
Endpoint Size yp P
0 8 bytes Control Firmware-
controlled
1 1 byte Status Change Hardware-
Interrupt controlled

Int9I® USB HUB

8.4.1 Hub Endpoint Indexing Using EPINDEX

The 8930Hx hub endpoint 0 uses the same communication registers (TXCNTL, RXCNTL, TX-
DAT, RXDAT, TXFLG, RXFLG, TXSTAT, RXSTAT, TXCON, and RXCON) as the embedded
USB function endpointsthe EPINDEX register (Figure 7-2 on page 7-6), used to access the reg-
isters of the USB function endpoints, is also used to access the registers éodpobts.

To access the communication SFRs for the hub endpoints, first write a ‘1’ to bit 7 of EPINDEX.
To access the internal USB function’s registers, write ‘0’ to EPINDEX’ bit 7. Regardless of
whether you are accessing the hub or function endpoints, the LSbs of EPINDEX are used to con-
trol which endpoint’s registers are accessed.

For additional information on how to use EPINDEX, see “Endpoint Selection” on page 7-3.

8.4.2 Hub Endpoint Control

Hub endpoint 1 of theX®30Hx is controlled primarily by hardware, with these exceptions:
* Firmware can read endpoint 1's TXDAT SFR

* Firmware can stall hub endpoint 1 in response to a Set_Feature (ENDPOINT_STALL)
request from the host by setting the EP1STL bit in HSTAT (Figure 8-5). Firmware can also
clear this bit in response to a Clear_Feature request.

* Firmware can enable hub endpoint 1 ispense to a Set_Configuiat request from the
host by setting the EP1EN bit in HSTAT (Figure 8-5 on page 8-9)

Firmware can control hub endpointiough its EPCONegister (Figure 7-3 on page 7-7) when
EPINDEX has previously been set to 80H. Hub endpoint control for endpoint O behaves identi-
cally to function endpoint control, except that hub endpoint 0 is always a single-packet, control
endpoint. Therefore, the corresponding bits (CTLEP and RXSPM) of its EPCON SFR are hard-
wired to ‘1.

8.4.3 Hub Endpoint Transmit and Receive Operations

The 8930Hx hardware uses hub endpoint 1's TXDAT register (Figure 8-6) to transmit a port sta-
tus change interrupt to the host. Figure 8-7 shows how a hub or port status change is reflected in
TXDAT.

TXDAT is cleared by firmware upon a ClearPortFeature request from the host. See “Monitoring
Port Status Change Using HPSC” on page 8-20 for a description of how firmware interacts with
the host to communicate a change in port status.

NOTE
Although the bits of hub endpoint 1's TXDAT SFR are firmware read-only,
bits 4:0 of TXDAT can be cleared indirectly by writing to a port's HPSC SFR.
Clearing all bits in a port's HPSC causes hardware to clear the bit associated
with that port in hub endpoint 1's TXDAT.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXDAT (For hub endpoint 1 only) EPINDEX=81H* Address: S:F3H
Reset State: 0000 0000B

7 0
— — — TXDAT.4 ‘ ‘ TXDAT.3 | TXDAT.2 | TXDAT.1 | TXDAT.O

Bit Bit Function
Number | Mnemonic
75 — Reserved:
Values read from these bits are indeterminate.
4.0 TXDAT.4:0 | Hub Endpoint 1 Status Change (read-onlytt):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDAT.O0 hub status change

TXDAT.1 port 1 status change

TXDAT.2 port 2 status change

TXDAT.3 port 3 status change

TXDAT.4 port 4 status change

A ‘1’ indicates a status change and ‘O’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bitis a ‘1. If all bits are zero, a NAK handshake is returned.

T TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 7-8 on page 7-18.

T Bits 4-0 can be set indirectly by firmware by writing to port xXs HPSC SFR. Setting any bit in port X's
HPSC results in the hardware setting bit x in TXDAT. Bits can be cleared indirectly in firmware by
clearing the condition that caused the status change.

Figure 8-6. TXDAT: Hub Transmit Data Buffer (Endpoint 1)

8-12

Int9I® USB HUB

Host PC
ﬂ Hub Endpoint 1

7 6 5 4 3 2 1 0

TXDAT A A A
ovIsC

ovi
(HSTAT
RSTSC
POVSC
PSSC
))) PESC
~ ~) PCSC
ORed HPSC HPSC
(Ports 2, 3, 4) (Port 1)
A5170-01

Figure 8-7. Status Change Communication To Host

The remaining hub transmit and receive registers communicate control information between the
host and either the internal function or the downstream ports. X@898x communicates this
control information through endpoint O using procedures identical to those outlined for the func-
tion control endpoint (function endpoint 0) in “Transmit FIFOs” on p@gkb and “Receive
FIFOs” on page 7-24.

NOTE
Hub endpoint 0's TX SFRs @, TXDAT, TXCNTL, TXFLG, and TXSTAT)
behave identically to their function counterparts. For example, when firmware
writes to endpoint 0’s TXDAT, hardware automatically transfers the byte into
the transmit FIFO before the next write to TXDAT. Placing the byte count into
hub endpoint 0’s TXCNTL prepares the bytes to be transmitted from the FIFO
through hub endpoint 0 at the next IN token.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

8.5 USB HUB PORTS

In addition to the root port (port 0) and the embedded function addressed by port 4, the hub con-
tains three external downstream ports, ports 1 through 3.

8.5.1 Controlling a Port Using HPCON

You can change a port’s status by writing an encoded hub port control comnthatiub port

control register (HPCON, as shown in Figure 8-8). All four ports can be controlled by HPCON
using the HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on &t

for a description of how port indexing works. Table 8-6 on &6 gives a complete description

of the encoded hub port control commands. TH838Hx hardware can also change the status of

a port, and some port features (i.e., low-speed/full-speed and connect/disconnect) can only be
changed by hardware.

8x930Hx hardware ignores certain USB port requests if the request has no meaning within the
context of the current port state. For example, there is no need to activate power to a port that is
enabled, disabled, or suspended, because a port in one of these states already has power appliec
An activate power request (SetPortFeature with a port power feature selestgrpisted for a

given port only when that port is in the powered-off state. For all other states, the request is ig-
nored by hardware. Table 8-5 depicts the state-related USB requests and the port states for which
they are ignored. Upon receipt of a state-related USB request, firmware must examine the HP-
STAT SFR to determine the current port state. If the port is in a state where the request will be
ignored by hardware, firmware must respond to the host by sending a STALL during the trans-
action status stage to indicate the command was not completed. Port states are discussed in “Port
Connectivity States” on page 8-3 and shown in Figure 8-2 on page 8-4.

Table 8-5. USB Requests Ignored by Hardware (by Port State)

Response by Port State [indicated by bit in HPSTAT]
USB Request Powered-Off Disconnected Disabled Enabled Suspended
[PPSTAT = 0] [PCSTAT =0] [PESTAT =0] | [PESTAT =1] | [PSSTAT =1]
SetPortFeature
(Port Power) Ignored Ignored Ignored Ignored
ClearPortFeature lanored
(Port Power) g
SetPortFeature
(Port Enable) Ignored Ignored Ignored Ignored
ClearPortFeature
(Port Enable) Ignored Ignored Ignored Ignored
SetPortFeature lanored lanored
(Port Reset) 9 9
SetPortFeature
(Port Suspend) Ignored Ignored Ignored Ignored
ClearPortFeature
(Port Suspend) Ignored Ignored Ignored Ignored

8-14

Int9I® USB HUB

After you request a port status change through HPCON, it may takeaB@Hk hardware a pe-

riod of time to affect the change, depending on the current state of the hub port and its current
operation. You can check the HPSC SFR to see that your latest change has taken effect, as de-
scribed in “Monitoring Port Status Change Using HPSC” on page 8-20.

NOTE

Port connect status cannot be changeaiuthh HP@N. This port feature is
controlled by physically connecting disconnecting a device from the port.

HPCON Address: S:CFH
Reset State: XXxX X000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

- 0
_ _ _ — H — HPCON2 | HPCON1 | HPCONO

Bit Bit .
Number Mnemonic Function
7:3 — Reserved:

Write zeros to these bits.
2:0 HPCON.2:0 | Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port

001 — Enable port

010 — Reset and enable port
011 — Suspend port

100 — Resume port

See Table 8-6 for a complete description of the encoded hub port control
commands.

Figure 8-8. HPCON: Hub Port Control Register

Port 4 represents the internal downstream port and differs from the three downstream ports. The
internal downstreanport is always connected (and cannot be disconnected). Hub port control
commands have a different effect on port 4 than they do on the external downstream ports, as
shown in Table 8-6.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table 8-6. Encoded Hub Port Control Commands

Code | Command Condition Res?)lt:sl’ZFZ;)]n X Results [Port 4]
000 Disable Firmware should Places port in the Same
port write ‘000’ to disabled state the next

HPCON upon time the bus is idle.
receipt of a
ClearPortFeature
with a
PORT_ENABLE
feature selector.
001 Enable Firmware should Places port in the Same
port write ‘001’ to enabled state the next
HPCON upon time the bus is idle.
receipt of a
SetPortFeature with
a PORT_ENABLE
feature selector.

010 | Resetand | Firmware should Causes port x to Causes an internal hardware reset of
enable write ‘010’ to immediately drive an the FIU and FIFO circuitry relating to
port HPCON upon SEO downstream for at | the embedded function. Certain

receipt of least 15 msec and then | embedded function SFRs are reset

SetPortFeature with | places the port in the to their default values (as listed in

PORT_RESET enabled state. “Embedded Function Reset” on page

feature selector. 8-24). After at least 15 ms, hardware
automatically places the port in the
enabled state. Firmware should
handle reset of any other firmware
and hardware features relating to the
embedded function immediately after
initiating the reset and enable
through this SFR (must be complete
by 15 ms from start of reset).

011 | Suspend Firmware should Places the port in an Suspends the embedded function’s
port write ‘011’ to idle “J" state the next port the next time the bus is idle,

HPCON upon time the bus is idle and | preventing port 4 from generating
receipt of prevents the port from | any USB traffic. Firmware should
SetPortFeature with | propagating USB traffic. | suspend port 4 only after doing any
PORT_SUSPEND necessary processing (i.e., putting
feature selector. any external components in a low-
power state) to place the embedded
function into a suspended state.
100 Resume Firmware should Causes port x to Places port 4 into the enabled state
port write ‘100’ to immediately drive a “K” | after 20 ms. Firmware should
HPCON upon state downstream for resume port 4 only after doing any
receipt of at least 20 msec necessary processing to take the
ClearPortFeature followed by a low- embedded function out of the
with speed EOP, and then suspended (low-power) state.

PORT_SUSPEND
feature selector.

places the port back in
the enabled state.

8-16

Int9I® USB HUB

8.5.2 Examining a Port’s Status Using HPSTAT

You can examine a port’s status using the hub port status register (HPS$Adwasin Figure

8-9 on page 8-18). The HPSTAT SFR can show thesfar any of thdour ports by using the
HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 8-23 for a de-
scription of how this indexing/orks.

HPSTAT gives the current,and D, values for the selected port; these implement the Get Bus
State diagnostic aid to facilitate system debug (Se&tinersal Serial Bus SpecificatiprHP-

STAT contains a bit that indicates when a low-speed device is attached to a port. HPSTAT also
shows a given port’s reset status, and whether the gmotisred on or off, connected or discon-
nected, enabled or disabled, or suspended.

NOTE

Firmware-initiated port status changes are not reflected in HPSTAT until the
next end-of-frame.

The HPSTAT SFR is read-only. To change the status of a port feature, you must do so indirectly
using the HPCON SFR. The®30Hx hardware can also change the status of a port, and some
features can only be changed by hardware. See “Controlling a Port Using HPCON” 8nlgage

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPSTAT Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, Dy, and Dy, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT ‘ ‘ PRSTAT PSSTAT PESTAT PCSTAT

Bit Bit

. Function
Number Mnemonic

7 DPSTAT D, Status (read-only):

Value of D, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to '1’, since there is no D, signal for the embedded port

6 DMSTAT Dy, Status (read-only):
Value of D,, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to '0’, since there is no D, signal for the embedded port.

4 PPSTAT Port Power Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 4: Hard-wired to '1’, since the internal function is always powered-on.

5 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 4: Hard-wired to '0’ (full-speed), since port 4 is permanently attached to
the embedded USB function.

NOTES:
Firmware returns the bits of this register in the first word of the 8xX930Hx' response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8xX930Hx supports ganged power
control and overcurrent indication.

Figure 8-9. HPSTAT: Hub Port Status Register

8-18

Int9I® USB HUB

HPSTAT (Continued) Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, D, and D,, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT ‘ ‘ PRSTAT PSSTAT PESTAT PCSTAT

Bit Bit

. Function
Number Mnemonic

3 PRSTAT Port Reset Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as a result of initiating a port x
reset by writing to HPCON. ‘1’ = reset signaling is currently asserted for port
x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2 point near
end of frame.

Port 4: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently suspended. ‘0’ = not suspended. Sampled
only at the EOF2 point near end of frame.

Port 4: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled only
at the EOF2 point near end of frame.

Port 4: Same as port x.

0 PCSTAT Port Connect Status (read-only):
Port x connect status from previous frame time.

Port x (x=1,2,3): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 4: Hard-wired to ‘1’, since the internal function is permanently
connected.

NOTES:

Firmware returns the bits of this register in the first word of the 8xX930Hx' response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8xX930Hx supports ganged power
control and overcurrent indication.

Figure 8-9. HPSTAT: Hub Port Status Register (Continued)

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

8.5.3 Monitoring Port Status Change Using HPSC

When firmware changes the status of a port, there may be a delay between the time firmware re-
quests the status change (using the HPCON register, as described in “Controlling a Port Using
HPCON” on page3-14)and the time hardware actually changes the state. This occurs because
some port changes require hardware to perform auxiliary functions (such as drivinglawstate
stream for up to 20ms). Additionally, some status changes are initiated by fer8waware

can determine when a port status change has occurred by monitoring the HPSC register (Figure
8-10 on page 8-21).

NOTE

Firmware-initiated port status changes are not reflected in HPSC until the next
end-of-frame.

The &930Hx uses the 1-byte TXDAT register associated with endpoint 1 to communicate a port
status change to the host (Figure 8-6 on Bd&). Bits in this register are set by th&®80Hx
hardware to indicate which ports (or the hub itself) have changed status.

After receiving notification of a port status change through endpoint 1, the host may request ad-

ditional information regarding the status change using a GetPortStatus req@a86tb8firm-

ware must respond to the GetPortStatus request by transmitting the contents of the HPSTAT and
HPSC registers to the host in a two-word format. This process is described in “GetPortStatus Re-
quest Firmware” on page 9-24.

The HPSC register (Figu& 10) indicates whiclport feature has changed status. Port features
whose status changes are reflected by HPSC include reset, suspend, enable, and connect.

8-20

Int9I® USB HUB

HPSC Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0
— — — RSTSC H — PSSC PESC PCSC

Bit Bit

. Function
Number Mnemonic

75 — Reserved:
Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 4: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:
Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=1,2,3): This bit is set by hardware upon completion of the firmware-
initiated resume process.

Port 4: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)

Figure 8-10. HPSC: Hub Port Status Change Register

8-21

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPSC (Continued) Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0
— — — RSTSC H — PSSC PESC PCSC

Bit Bit

. Function
Number Mnemonic

1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 4: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware at the EOF2 point near the end
of a frame due to hardware connects and disconnects.

Port 4: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)

Figure 8-10. HPSC: Hub Port Status Change Register (Continued)

NOTE

While the HPSC register indicates which port features have changed status, it
does not show the current status of any feature. Firmware must examine the
HPSTAT register to determine if a given port is currently reset, suspended,
powered on or off, connected or disconnected, enabled or disabled. See
“Examining a Port’s Status Using HPSTAT” on p&3&7 for details.

8-22

Int9I® USB HUB

8.5.4 Hub Port Indexing Using HPINDEX

A port indexing scheme is used for port-specific SFRs for reasons similar to those described in
“Endpoint Selection” on page 7-3 for endpoint-specific registers. Three sets of SFRs have been
mapped into the port-indexed scheme: HPSC, HPSTAT, and HPCON.

Ports 1-4 are indexed by the binary value of the two lower bits of HPINDEX (Figure 8-11). Port
0 is reserved for the root port, but it is not indexed by HPINDEX since there are no port-specific
SFRs for the root port.

CAUTION

Firmware writers may choose to set the contents of HPINDEX once at the start
of each routine instead of writing HPINDEX prior to each access of a port-
indexed SFR. Because of this, interrupt service routines must save the contents
of the HPINDEX register at the start of the routine and restore the contents at
the end of the ISR. This will prevent HPINDEX from being corrupted.

HPINDEX Address S:D4H
Reset State XXxX X000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

- 0
_ _ _ — H — HPIDX2 | HPIDX1 | HPIDXO

Bit Bit Function
Number Mnemonic
7:3 — Reserved:
Write zeros to these bits.
2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPID.2:0 bit combinations:

Port 1 = “001”
Port 2 = “010”
Port 3 = “011”

Port 4 = “100” (internal port)

NOTE: Port 0="000" (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.

Figure 8-11. HPINDEX: Hub Port Index Register

8-23

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

8.5.5 Embedded Function

The following subsections discuss considerations involved with the embedded function on inter-
nal downstream port 4. See “Embeddreohction Suspend and Resume” on page 8-26 for addi-
tional embedded function information.

8.5.5.1 Embedded Function Reset

The USB host can generate an embedded port reset command to the hub to reS&80the 8
embedded function. When this command is received, the embedded function's EPCON, FIFLG,
FIE, TXSTAT, RXSTAT, TXCON, RXCON, FADDR, and PCON1 SFRs are res¢hdo de-

fault values, as are the SOFACKSOF, SOFIE, and SOFODIS bits of SOFH. The EPINDEX

and SOFL SFRs remain unchanged. These SFRs are reset immediately after the write to HPCON,
however bus traffic to the embedded function remains inactive for 15 ms. You may use this time
frame to initialize the embedded function.

After an embedded function reset, the internal function must be re-enumerated by the host. This
procedure is given in “Unenumerated State” on page 9-2.

8.5.5.2 Embedded Function Remote Wake-up

The HRWUPE bit in HSTAT (Figure 8-5 on page 8-9) must be set in order for any downstream
port to initiate resume signaling. This includes port 4, the internal downstream port. Port 4 must
be suspended and the HRWUPE bit in HSTAT must be set before the embedded function can ini-
tiate a remote wake-up. This is done by setting the RWU bit in PCON1 (Figure 15-2 on page
15-4).

8.6 SUSPEND AND RESUME

8.6.1 Hub Global Suspend and Resume

USB requirements state that a USB device must be capable of being placed-ipaMer sus-

pend mode in which the device draws less than 500 pA from the USB lines. The hub and the em-
bedded function are placed in suspend mode when a continuous idle state of more than 3.0 msec
is detected on the hub root port. For an in-depth discussiox98D8&uspend and resume, see
“USB Power Control” on page 15-8.

Once the suspend has been detected, the GSUS bit in the PCON1 SFR is set and a microcontroller
interrupt is generated (See “USB Global Suspend/Resume Interrupt” on page 6-18).

Firmware services the global suspendrintpt by seting the PD bit of the PCON SFR. This shuts
off the device’s clocks and crystal oscillator, placing the hub and embedded function in a USB
suspend mode.

8-24

Int9I® USB HUB

A resume event can be signaled in any of three ways:

1. The hub repeater asynchronously detects a resume state due to resume signaling or a
connect/disconnect on the bus

The hub repeater detects a reset state on the bus’ root port
An external interrupt powers-up the entire device, with a resume sequence initiated in
firmware by setting the RWU bit in the PBI1 SFR (Figure 15-2 on page 15-4)

NOTE
Do not initiate a remote wake-up (by setting the RWU bit in PCON1) prior to

5ms after the last bus activity is detected (2ms afterx88@®@-x is
suspended).
8.6.2 Remote Connectivity

During the suspend state of the hub, logical connectivity can also be established if a pbygsical

nection/disconnection is made on one of the downstream ports, or if a resume condition is sig-

naled on a port, as shown in Figure 8-12 on page 8-26.

8.6.2.1 Resume Connect ivity

The HRWUPE bit must be set in the HSTAT register (Fi@1Eeon page 8-9) before the connect
or disconnect of a downstream device can initiate a remote wake-up. If this bit is not set, the

downstream connect or disconnect will be ignored as a remote wake-up event. If a remote wake-
up device signals a resume on a downstream port when the hub is in the suspend state (see Figure

8-12), the following process occurs:

1. The resume signaling causes the hub to wake up.

2. The repeater then establishes a connection from the port with the resume signal to the root

port and all other enabled downstream ports.

3. The connectivity is then changed to downstream-only from the root port to all enabled
downstream ports. This allows the host to drive the resume signaling downstream to the
rest of the USB bus.

NOTE

The &930Hx hub cannot request a remote wake-up, although its embedded
function can. For this to happen, the HRWUPE bit must be set in HSTAT and
the embedded function must be enabled. The embedded function triggers the
remote wake-up by setting the RWU bit in PCON1.

8-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

A Y
Root Port I_I Root Port r_l Root Port r_l
Port 4 Port 4
(Internal) (Internal)
:I Port 4 — —
(Internal) — - —
(Disabled) (Disabled) (Disabled)
Y Y
Port1 Port2 Port3 Port1 Port2 Port3 Port1 Port2 Port3
Suspended Hub Resume Downstream
with Resume (Port 1) Connectivity (Port 1) Connectivity
A5136-01

Figure 8-12. Resume Connect ivity
8.6.2.2 Connect ivity Due to Physical Connect/Disconnect

If a disconnect is made to a disabled port and the hub is in a global suspend state, a resume state
is signaled as described in “Resume Connectivity” on |8228.

8.6.3 Embedded Function Suspend and Resume

Selective suspend is initiated on a downstream port wherPai@ietature (suspend) command

is received from the host via the USB bus. Individual external ports or the internal port can be
suspended by USB command; however, the hub cannot be suspended by command. Refer to
Universal Serial Bus Specificatidior more detail on the behavior of selective suspend in the
USB system.

USB requirements state that the host can suspend the embedded function by issuing a SetPort-
Feature (PORT_SUSPEND) request to the hub’s port 4. Since the hub and function share hard-
ware such as the SIE, it is not possible to simply shut-off the clock to all circuitry associated with
the function when the hub is to remain operational.

When placed into the suspended state, the embedded function must behave as if it were connected
to a hub whose &gal downstream port was suspended. This means that the embedded function
must not respond to SOFs or any normal bus traffic. This is done automatically byareardw
Firmwareshould place any external circuitry associated with the embedded functidovin a

power state, if one exists. The embedded function should remain in this suspended state until the
host initiates a ClearPortFeature (PORT_SUSPEND) or a SetPortFeature (PORT_RESET) re-
quest to the hub, or until a remote wake-up is signaled by the embedded function via an external
interrupt.

8-26

Int9I® USB HUB

8.7 HUB POWER DISTRIBUTION

USB hubs can supply a specified amount of power to tt@imstream components and are re-
sponsible for reporting their power distribution capabilities to the host duringezation.Hubs

may be either locally powered, bus powered, or a combination of the two. The distinction is made
depending on how the user implements the power scheme at the board level, which should be in-
dicated in the value of the bmAttributes field of the configuration descriptor.

A hub can only supply power in a downstream direction and must never drive poieanps
Bus-powered hubs must have port power switching for the downstream ports and are required to
power off all downstream ports when the hub comes out of power-up or when it receives a reset
onits root port. Port power can also be switched on or off under control of the host PC. Port power
switching is optional for self-powered devices.

NOTE
Port power switching and over-current detection (discussed in the following
subsections) are mutually exclusive. Over-current detection is required only
for self-powered hubs, while port power switching is required only for bus-
powered hubs.

8.7.1 Port Power Switching

Port power switching is onlgupported on a gangdasis, therefore there is only one output pin
used to enable power to the downstream devices.

From a USB perspective, power can be enabled on a per-port basis, but the power enable is active
if any of the three ports are powered-on by the host. The host PC caiveblestitch power on

or off for a given port using a Set_Feature request with a Port_Power feature selector. The
8X930Hx firmware nust respond to this port power request by setting or clearing the appropriate
bit in the HPPWR SFR (Figui® 13). An exeption to this is the internal downstream port, Port

4, which is statically powered-on. The host PC may inquire about a port's potusr using
Get_Feature (Port_Power). Firmware must respond to this inquiry by checking and reporting on
the PPSTAT bit (bit 4) of HPSTAT (on page 8-19).

8-27

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPPWR Address: S:9AH
Reset State: xxx1 000xB

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.
7 0
— — — HPPWR .4 | | HPPWR.3 | HPPWR 2 | HPPWR.1 —

Bit Bit

Number | Mnemonic Function
75 — Reserved:
The value read from these bits is indeterminate. Write zeros to these bits.
4 HPPWR.4 Port Power Control Register for USB Port 4 (read-only):
Port 4 is an internal port and is always powered on. This bit is hard-wired to
.
31 HPPWR.3.1 | Port Power Control Register for USB Ports 1-3:

Bit 3 is power control for port 3, bit 2 for port 2, and bit 1 for port 1. These
bits are set and cleared by firmware via a USB host request SetPortFeature
with the PORT_POWER feature selector. These bits will also be cleared by
hardware upon detection of an over-current condition. This is done to
prevent oscillation of the UPWEN# pin during an over-current condition with
bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the port in a

disconnected state. A value of ‘0’ turns the downstream port power off.

NOTE: The UPWEN# pinis setto ‘1’ only if all three port power enable
bits (bits 3:1) are ‘0,’ due to the use of a ganged (shared) power
enable scheme.

0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Figure 8-13. HPPWR: Hub Port Power Control

8.7.2 Overcurrent Detection

The OVRI# pin is an input pin that indicates when an overcurrent condition has been detected on
one of the downstream devices at buard level. It is used to asynchronously disable the UP-
WEN# output pin, which switches power off to all three external ports. When the overcurrent
condition is removed, the OVRI# pin is deasserted to a ‘1’ state; however, the UPWEN# signal
remains inactive since the HPPWR3:1 bits are reset when an overcurrent condition is detected
(unlessfirmware has asserted one or more of these bits since the time the overcurrent was first
detected). Due to the asymohous nature of this signal, the user must be careful to guarantee that
the OVRI# input is not “glitchy” or noisy, since glitches on this signal could have a detrimental
impact on the system.

The state of the OVRI# pin can be read by the USB host via firmware, using the HSTAT (Figure
8-5 on page 8-9) OVI (HSTAT.1 — latest overcurrent indicator) and OVISC (HSTAT.3 — hub
overcurrent status change) bits. OVI indicates if the overcurrent bit is presently aé88rtad

8-28

USB HUB

intel.

de-asserted (‘1’). OVISC indicates whether the overcurrent status has changed since this bit was
first cleared by firmware (i.e., this bit acts as a “sticky” bit which must be cleared in firmware).

Another fact to consider about the overcurrent condition is that all external ports are placed in the
“powered off” state. This is true for both bus-powered and self-powered ports, even though self-
powered ports may still be powered. This condition will remain until the host enables power to
the ports via one of the HPPWR.3:1 bits.

8.7.3 Ganged Power Enable

The &930Hx uses a ganged power enable scheme to enable power to the three driemal
stream ports. This means that a single output pin, UPWEN# (pin 60) should be usdnbatdhe

level to switch power to all three of the downstream ports. The state of this power enable pin is
controlled in two ways:

* by the collective ORed value of bits 3:1 of the HPPWR SFR (Figure 8-13) under control of
firmware, and

* by the present state of the overcurrent sense input pin, OVRI# (pin 59).

If any of the HPPWR[3:1] bits are set, then the UPWEN# signal will be asserted (to a ‘0") as long
as the OVRI# signal is not asserted (i.e., OVRI # = ‘1')h#f OVRI# signal is asserted (‘0"), or

if all three of the power enable bits in HPPWR are cleared, then the UPWEN# signal will be deas-
serted (to a ‘1").

Table 8-7 describes the state of the UPWEN# signal for all conditions of the HPPWR[3:1] signals
and the OVRI# pin. Port power enable bits in HRPWR SFR (Figure 8-13 on pag8e28) are

set via the SetPortFeature PORT_POWER request from the USB host. They are cleared via the
ClearPortFeature PORT_POWER request, or by hardware upon detection of an overcurrent con-
dition.

Table 8-7. UPWIN# Pin State Truth Table

HPPWR.3 HPPWR.2 HPPWR.1 OVRI# UPWEN#
0 (disabled) 0 (disabled) 0 (disabled) 1 (disabled) | 1 (disabled)
X X 1 1 0 (enabled)
X 1 X 1 0
1 X X 1 0
X X X 0 (enabled) 1

Since a single power enable output is used for three ports, the value of thearatiegpiPPWR

bit doesnot necessarily reflect the actual state of the port power, since all three bits must be dis-
abled for power to be disabled. Similarly, a ‘1’ bit in HiePWR SFR might not reflect thadw-

er is actually enabled to any devices in the event of an overcurrent condition.

8-29

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Note that the power enable signal for the internal port, HPPWR (for port 4), does not affect the
state of the UPWEN# pin. Also, note tlmis-powered deviceaustuse the UPWEN# signal to
switch power to downstream ports, however, port power switching for self-powered devices is
optional.

NOTE

Before the UPWEN# pin can be enabled, the EP1EN bit in the HSTAT SFR
(Figure 8-5 on page 8-9) must be set. See Section 11.9 Ohilrersal Serial
Bus Specification

8.8 HUB DEVICE SIGNALS

Table 8-8 lists device signals associated with the hub. Pin assignments are shown in Appendix B.

Table 8-8. Signal Descriptions

Signal - Alternate
Name Type Description Function
Do, Duo /O | USB (Upstream) Port 0 . Dyg and D, are the data plus and —

data minus lines of differential USB port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KQ pullup resistor at D,,q. For full-speed
devices, provide an external 1.5 KQ pullup resistor at Dp.

NOTE: For the 8x930Hx, provide an external 1.5 KQ pullup
resistor at Dyq So the device indicates to the host that it is a full-
speed device.

Dy Dy1 I/O | USB (Downstream) Port 1 . Dyq and Dy,; are the voltage plus —
and voltage minus lines of differential USB port 1. You must
supply an external 15 KQ pulldown resistor for these lines.

Dp2, D2 /O | USB (Downstream) Port 2 . Dy, and Dy, are the voltage plus —
and voltage minus lines of differential USB port 2. You must
supply an external 15 KQ pulldown resistor for these lines.

Dp3, Dys I/0 | USB (Downstream) Port 3 . Dp3 and Dy,3 are the voltage plus —
and voltage minus lines of differential USB port 3. You must
supply an external 15 KQ pulldown resistor for these lines.

8-30

intel.

USB Programming
Models

intel.

CHAPTER 9
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface and the hub inter-
face. It provides flow charts of firmware routines needed to perform data transfers between the
host PC and the embedded function, as well as routines needed to handle hub-oriented USB re-
quests. It also describes briefly how the firmware interacts with therit®Bile hardware during

these operations. Data operations refer to data transfers over the USB, whereas event operations
are hardware operations such as attach and detach. For a description of the USB function interface
as well as its FIFOs and special functions registers (SFRs), refer to Chapter 7, “USB Function.”
For further information about the USB hub interface, see Chapter 8, “USB Hub.” For details on
data flow in USB transactions refer to Appendix D.

Section 9.1 through section 9.5diiss programming models for thé®80Ax. These models also
apply to the embedded function of th®80Hx. Section 9.6 contains the hptbgramming mod-

els for the 8930Hx.

| Unenumerated |

\

;I Idle/Application Code l

IN
token

Receive

) /

Figure 9-1. Program Flow

A4260-02

9-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

9.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and receive
SOF. Program flow iglepicted in Figure 9-1 along with the type of token associated with each
routine. Following device reset, the USB function enters the unenumerated state and after enu-
meration by the host, the idle state. From the idle state, it can enter any of the four routines.

9.1.1 Unenumerated State

Following device reset, the USB function entersuhenunerated state. Initially, the function
address register FADDR contains the default value 00H. The host PC performs bus enumeration
in which it identifies and addresses devices attached to the bus. During enumeration, a unique ad-
dress assigned by the host is written to FADDR.

NOTE
Although the 8930Hx performs the following enumeration process for its
embedded function, this process is only part of a larger enumeration process
for the hub. 830Hx firmware must perform the hub enumeration process
outlined in “Bus Enumeration” on page 9-16 beforefqening the following
process.

The &930Ax bus enumeration process has four steps:

1. Get descriptor. The host requests and reads the device descriptor tongeseich
information as device class, USB specification compliance level, maximum packet size for
endpoint 0, vendor id, product id, etc. For detailed information on device descriptors, see
the “Device Framework” chapter ldniversal Serial Bus Specification

2. Set address. The host sends tk#38's function address in a data packet using function
endpoint 0. Device firmware interprets the data and instructs the CPU to write the function
address to FADDR.

3. Get configuration. The host requests and reads the device configuration descriptor to
determine suchmiformafion as the number of interfaces and endpoints; endpoint transfer
type, packet size, and direction; power source; maximum power; etc. For detailed
information on configuration descriptors, see the “Device Framework” chapter in
Universal Serial Bus SpecificatioWhen the host requests the configuration descriptor,
all related interface and époint descriptors are returned.

4. Set configuration. The host assigns a configuration value to the device to establish the
current configuration. Devices can have multiple configurations.

9.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this statg98@ee&e-

cutes application code associated with the embedded function. Upon receipt of a token with the
assigned address, the module enters the designated routinex9BBer@mains in the idle state
when not processing USB transmissions.

9-2

Int9|® USB PROGRAMMING MODELS

9.1.3 Transmit and Receive Routines

When the 8330 is sending and receiving packets in the transmit and receive modes, its operation
depends on the type of data that is transferred—isochronous or non-isochronous—and the adjust-
ment of the FIFO markers and pointers—automatic or manual. These differences affect both the
8x930 firmware and the operation of thed80 hardware. For isochronous data, a failed transfer

is not retried (lossy data). Foon-isochronous data, a failed transfer can be repeated. Data that
can be repeated is considered lossless data. Automatic adjustment of the FIFO markers and point-
ers is accomplished by the function interface hardware. Manual adjustment is accomplished by
the 8930 firmware.

9.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, hub, and SOF interrupts, see
Chapter 6, “Interrupt System.”

9.2 TRANSMIT OPERATIONS

9.2.1 Overview

A transmit operation occurs in three major steps:
1. Pre-transmit data preparation by firmware
2. Data packet transmission by function interface hardware
3. Post-transmit management by firmware

These steps are depicted in a high-level view of transmit operations (Figure 9-2). The pre-transmit
and post-transmit operations are executed by the two firmware routines shown on the left side of
the figure. Function interface hardware (right side of the figure) transmits the data packet over the
USB line. Details of these operations are described in “Pre-transmit Operations” on page 9-6 and
“Post-transmit Operations” on page 9-7.

Transmit operations for non-isochronous data begin withtarrupt requesirom the embedded
function (e.qg., a keyboard entry). The pre-transmit routine (ISR) for the function writes the data
from the function to the transmit FIFO where it is held until the next IN token. Upon receipt of
the next valid IN token, the function interface shifts the data out of the FIFO and transmits it over
the USB. If the data packet is not ready for transmissik88®@hardware responds to the IN token

with a NAK. The post-transmit routine checks the transmission status and performs data manage-
ment tasks.

Completion of data transmission is indicated by a handshake returned by the host. This is then
used to generate a transmit done interrupt to signal the end of data transmission to the CPU. The
interrupt can also be used for activity tracking and fail-safe management. Fail-safe management
permits recovery from lockups that can only be cleared by firmware.

9-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Because a transmit done imgpt is generated regardless ofnigmission errors, this condition
means either:

1. The transmit data has been transmitted and the host has sent an acknowledgment to
indicate that is was successfully received; or

2. Atransmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditionsspuhde
accordingly in the ISR.

For 1ISO data transmission, the cycle is similar. The significant differences are: the cycle is initi-
ated by a start-of-fram@&OF) interrupt, there is no handshake associated with ISO transfer, and

a transmit done interrupt is not generated. For ISO data transfers, the transaction status is updated
at the end of the USB frame. The980 supports one ISO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 7-12 on page 7-24) have a major
influence on transmit operation:

* The TXISO bit (TXCON.3) determines whether the transmission is for isochronous data
(TXISO = 1) or non-isochronous data (TXISO = 0). For non-ismehus data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 9-2). Also, for non-
isochronous data, the post-transmit routine is an ISR; for isochronous data the post-transmit
routine is an ISR initiated by an SOF token.

* The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REVRP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitions in TXCON (Figure 7-12).

9-4

Int€|® USB PROGRAMMING MODELS

Firmware Hardware
(SIE, FIU, FIFOs)

Interrupt
(keyboard, joystick, modem)

Pre-transmit
Routine « Write data to transmit FIFO

* Write TXCNT /\ IN Token

ISR

» Send data over USB
* *If ATM = 1:
RETI — Adjust FIFO read marker and
read pointer
*If TXISO = 0:
TXISO = 0: Transmit done interrupt _ Receive host handshake
TXISO =1: SOF interrupt - Manage TXSEQ bit
¢ . Genera@e transmit done interrupt
or SOF interrupt

. Y\/
Post-
Transmit « Check status

" *If ATM =0:
Routine — Adjust FIFO read
marker and read pointer

v

RETI

A4262-02

Figure 9-2. High-level View of Transmit Operations

9-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

9.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy-
stick, scanner, etc. In event-control applications, the end function signals the availability of data

with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre-

pare the data for transmission and initiate the transmission process. The flow chart in Figure 9-3
illustrates a typical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start-of-frame (SOF) packet.

Start: Non-ISO

Vacancy No

in Transmit
FlFV
TXFIF1:0 # 11 in Dual-packet Mode

Yes TXFIF1:0 = 00 in Single-packet Mode

Transfer Packet to
Transmit FIFO through
TXDAT

Error in Yes

Transmit FIFO? TXOVF =1 (overflow)

No

Error
Recovery

Write Packet Size to
TXCNT

RETI
A5071-01

Figure 9-3. Pre-transmit ISR (Non-Isochronous)

9-6

Int9|® USB PROGRAMMING MODELS

9.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake receivec
from the host (non-isochronous data) osdxh on the transmission process itself (isocbus

data). For a non-isoctinous transfer, the function interface generates a transmit done interrupt.
The purpose of the post-transmit service routines is to manage the transmitter’s state and to ensure
data integrity for the next transmission. For isochronous data, the post-transmit routine should be
embedded within the transfer request routine because both are triggered by an SOF. The flow of
operations of typical post-transmit ISRs is illustrated in Figure Se#-{sochronous data) and

Figure 9-5 (isochronous data).

Start: Transmit Done ISR

|

Identify Interrupt and Endpoint
(check FTXDx bits in FIFLG register)

Clear Interrupt Flag
(FTXDx Bit)

Read Transaction Status
(TXSTAT Register)

(TXACK = 1) No AnkYes (TXERR =1)
Error?
Failed CRC,

Bit-stuffing, or
Timeout from Host No

(Underrun Flag
TXURF = 1?)

Error in
Transmit
FIFO?

Data Error recovery

T T
Advance Transmit FIFO to Reverse Transmit FIFO to
Next Packet Transmit Current Packet Retry
RETI

t Buffer Segmentation Management. Executed automatically by hardware, based on transaction
status, if ATM bit in TXCON is set.

A5072-01

Figure 9-4. Post-transmit ISR (Non-isochronous)

9-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Start: SOF ISR

For
Each Endpoint,

TXACK =1 No -
() Read Transaction Status

Yes (TXERR = 1)

(TXSTAT)
Transmit Error?,
+ (Failed CRC, Bit
Advance Transmit Stuffing, or Timeout
FIFO to next packet from Host) No Tranlii;?trllz?F o7
Check TXFLUSH Yes (TXURF = 1)
(error tracking)
Transmit FIFO
Error Recovery
Write Next Packet
to Transmit FIFO
+
Advance Transmit
FIFO to Next Packet
Overflow '\ ves (TXOVF=1)
Error in Transmit Write Next Packet
FIFO? to Transmit FIFO
No
Write Packet Size Yes Overflow *
to TXCNT Error in Transmit

(TXOVF =1) FIFO?

| Error Recovery I

Write Packet Size
to TXCNT

i

/

RETI

i Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit
in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

A5073-02

Figure 9-5. Post-transmit ISR (Isochronous)

9-8

Int9|® USB PROGRAMMING MODELS

9.3 RECEIVE OPERATIONS

9.3.1 Overview

A receive operation is always initiated by the host, which sends an OUT token 1®8@e 8he
operation occurs in two major steps:

1. Data packet reception by the function interface (hardware)
2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 9-6. The post-
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see “Post-receive Operations” on page 9-10. Function interface hardware (right side of fig-
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin wherx@39 8eceives a valid OUT token
from the host. The received data is written to a data buffer FIFO.XBI3® &dicates completion
of data received by returning a handshake to the host.

At the end of the receive cycle, thed80 generates a receive done interrupt to notify the CPU
that a receive operation has occurredgPam execution branches to the interrupt service routine
and transfers the data packet from the receive FIFO to its destination. The interrupt can also be
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiated by an
OUT token. At the end of the OUT transaction, 8x930Ax doesot return handshake to the

host and the receive done interrupt is not generated. Instead, the SOF interrupt is used for post
receive management. The data reception status is updated at the next SO®30hsufports

one I1SO packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 7-15 on page 7-29) have a major
influence on receive operation:

* The ISO bit (RXCON.3) determines whether the reception is for isochronous data (ISO = 1)
or non-isochronous data (ISO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates a receive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routine is an ISR; for
isochronous data the post-receive routine can be a neuhadutine or ISR initiated by an
SOF token.

* The ARM bit (RXCON.2) determines whether the FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitions in RXCON (Figure 7-15).

9-9

8x930AXx, 8x930HXx USER’'S MANUAL

Post-
Receive
Routine

Firmware

RXISO = 0: Receive done interrupt
RXISO = 1: SOF interrupt

!

ISR

« Check status and read data
*If ARM =0:
— Adjust FIFO write marker
and write pointer

v

RETI

Hardware
(SIE, FIU, FIFOs)

OUT Token

'

* Send data over USB
*If ARM =1:
— Adjust FIFO write marker and
write pointer
*If ISO =0:
— Send host handshake
— Adjust RXSEQ bit
* Generate receive done interrupt
or SOF interrupt

A4265-02

Figure 9-6. High-level View of

9.3.2 Post-receive Operations

Reception status is updated at the end of data reception based on the handshake received from the
host (non-isochronous data) or based on the transmission process itself (isochrao&edat
non-isochronous transfer, the function interface generates a receive done interrupkFRD
purpose of the post-receive service routine is to manage the receiver’s state to ensure data integ-
rity and latency for the next reception. The post-receive routine also transfers the data in the re-
ceive FIFO to the end function. For isochronous data, the post-receive routine should be called

by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 9-7 (non-isochronous da-

ta) and Figure 9-8 (isochronous data).

9-10

Receive Operations

USB PROGRAMMING MODELS

Start: Receive Done ISR

|

Identify Function Interrupt and Endpoint
(Check FRXDx Bits in FIFLG Register)

(RXACK=1)

}
|

Clear Interrupt Flag

Check

No RXSTAT for

Yes

Advance Receive FIFO
to next packet

Read Data Packet(s)

Errorin
Receive
FIFO?

Yes (RXURF = 1)

(RXERR=1)

Receive
Error

(Failed CRC or Bit Stuffing)

(RXOVF=1)

No Errorin

Y

Reverse Receive FIFO
to current packet retry

+

Check for
Another Packet in
Receive FIFO
(RXFIF1:0 # 00 in Dual
Port Mode)

No

Receive FIFO
Error R

ecovery

Unlock Current Packet from
Receive FIFO (set RXFFRC
Bit in RXCON)

!

Receive FIFO?

Yes (RXOVF=1)

Receive FIFO
Error Recovery

T Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction

if ARM bit in RXCON is set.

/

RETI

A5070-01

Figure 9-7. Post-receive ISR (Non-isochronous)

8x930AXx, 8x930HXx USER’'S MANUAL

Start: SOF ISR

For
Each Endpoint,
Read Transaction Status

(RXACK = 1) No Yes

(RXERR = 1)

(RXSTAT)
Transmit Error?,

(Failed CRC
or Bit Stuffing)

Advance Receive
FIFO to Next Packet

Error in

Advance Receive FIFO
to Next Packet Receive

| Read Data Packet I

Receive FIFO?

Yes (RXOVF = 1)

Receive FIFO
Error Recovery

Error
in Receive
FIFO?

Yes
(RXURF = 1)

Receive FIFO
Error Recovery

Data Reconstruction
by Application for
Lost Data

Unlock Current Packet
from Receive FIFO
(set RXFFRC bit in RXCON)

Unlock FIFO
(set RXFFRC)

Data Reconstruction
by Application for
Lost Data

/

RETI

T Buffer Segmentation Management. Executed automatically by hardware at the end of a data
transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current

packet regardless of transaction status.

A5074-01

Figure 9-8. Receive SOF ISR (Isochronous)

9-12

Int9|® USB PROGRAMMING MODELS

9.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in ordesponel to SETUP tokens. (This

will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol Layer”
section of théJniversal Serial Bus Specificatidor details of SETUP token transactions anot

tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is good).
Receive data transfer operations for a control endpoint are very similar to data transfers on non-
control endpoints for non-setup tokens. However, the response of a control endpoint is different
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receipt of a set-
up token, a control endpoint flushes the catdeof the receive FIFO before writing it with re-
ceived setup data. This may create an error condition in the FIFO due to the asynchronous nature
of FIFO reads by the CPU and simultaneous writes by the function interface. To prevent this,
STOVW and EDOVW are used to track when an overwrite is occurring. When the overwrite is
complete, the user must clear EDOVW to read the SETUP packet. If EDOVW is not cleared, user
firmware will only be able to read the first byte of the SETUP packet. Figure 9-9 illustrates the
operations of a typical post-receive routine for a control endpoint.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Start: Receive Done ISR

Identify Interrupt Endpoint

(check FRXDx bits in the FIFLG register) Clear Interrupt Flag
(RXACK = 1) No Rxg'}iqll'(for Yes (RXERR = 1)
Receive
Error
No
Normal
Yes (RXSETUP =1) Error
Handling
Setup Token Received OUT Token
Clear EDOVW Received
T
Read Data Packet
(STOVW =0 and
Receive FIFONO EDOVW =0)
Qverwrite?
Yes
(STOVW =1 or
EDOVW = 1) Error in
Receive FIFO?,
Overwrite No
Completed 1
Unlock Current Packet Error
Yes from Receive FIFO Recovery
(STOVW =0 and (set RXFFRC bit in RXCON)
EDOVW = 1) |
Clear Overwrite Bit (STOVW =0 and
(EDOVW) No EDOVW = 0)
‘—I (STOVW = 1 or
EDOVW = 1)
Overwrite Clear Firmware
Completed? Setup Flag
(STOVW =0 and Yes
EDOVW = 1)
Clear Overwrite Bit
(EDOVW)
Y
. . . RETI
Tlnhlblted in hardware if STOVW or EDOVW are asserted.
A5075-01

Figure 9-9. Post-receive ISR (Control)

9-14

Int9|® USB PROGRAMMING MODELS

9.5 START-OF-FRAME (SOF) TOKEN

Figure 9-10 illustrates the hardware operations performed by the function interface for a start-of-
frame (SOF) token. The host issues an SOF token at a nominal rate of once every 1.0 ms. An SOF
token is valid if the PID is good. The SOF token is not endpoint-specific; it should be received by
every node on the bus.

Valid SOF Token

(SOFH.6)| SetASOFBit |

End of
Transfer

Clear |(SOFH.7)
SOFACK
Bit

(SOFH.7) Set SOFACK.
(SOF token received
without error)

(SOFH, SOFL)| write SOF Registers

Y

Generate SOF Pulse
by Asserting SOF# Pin

i

Done

A4267-02

Figure 9-10. Hardware Operations for SOF Token

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

9.6 HUB OPERATION

The primary objective of thprogramning model suggested here is to explain the linkage be-
tween the hardware and firmware of thé@80Hx in operation.

9.6.1 Bus Enumeration

The USB host manages bus enumeration at system start-up or whenever a new USB device is at-
tached to the host or to a hublswnstream port. Initially, the USB hub is in the unenumerated
state and the hub address register HADDR contains the default value 00H. The host PC performs
bus enumeration in which it identifies and addresses devices attached to the bus. During enumer-
ation, a unique address assigned by the host is written t#&B®R of the hub device. An ex-

ample enumeration for the hub and downstream ports is given here:

1. Get device descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size for
endpoint 0, vendor id, product id, etc. For additional information onx8a08-x
descriptors, see “Hub Descriptors” on page 8-6.

2. Set address. The host sends t#838Hx's hub address in a data packet using hub endpoint
0. Device firmware interprets the data and instructs the CPU to write the hub address to
HADDR. See “The Hub Address Register (HADDR)” on page 8-8.

3. Get configuration descriptor. The host requests and reads the device’s configuration
descriptor to determine such information as the number of interfaces and endpoints;
endpoint transfer type, packet size, and direction; power source; maximuen; gbev
When the host requests the configuration descriptor, all related interface, endpoint, and
hub descriptors are returned. For additional information onx&80-x descriptors, see
“Hub Descriptors” on page 8-6.

4. Set configuration. The host assigns a configuration value to the device to establish the
current configuration.

5. Next, the hub downstream ports start the state flow shown in Figure 8-2 on page 8-4. The
host issues a SetPortPowerFeature request to the downstream ports that were declared in
the hub descriptor. This moves the hub downstream ports to the disconnect state.

6. As connect detects occur, the host is notified through hub endpoint 1 (status change
endpoint). The host then issues a GetPortStatus command retrieving the contents of
HPSTAT and HPSC to determine the change for a spetmfimstream port. Thieost
then issues a ClearPortConnectionFeature command which should cause the firmware to
clear the PCSC bit in the HPSC register. This will indirectly clear the appropriate bit in
TXDAT for hub endpoint 1. This moves the hub downstream port to the disabled state.

7. The host sends a SetPortResetFeature request for the specified downstream port. The host
receives a response through hub endpof{status change endpoint). The host issues a
GetPortStatus command retrieving the contents of HPSTAT and HPSC to determine the
change for the specified downstream port. The host then issues a ClearPortResetFeature
command which should cause the firmware to clear the RSTSC bit in the HPSC register.
This moves the hub downstream port to the enabled state.

9-16

Int9|® USB PROGRAMMING MODELS

8. At this point, the device connected to the downstream port goes through theraiom
process discussed in “Unenumerated State” on page 9-2 (i.e., GetDeviceDescriptor,
SetAddress, GetConfigurationDescriptor, and SetConfiguration).

9. The remaining external ports musttoough steps 6 through 8.

9.6.2 Hub Status and Configuration

USB communication with the USB hub function is performed via the standard and hub class-spe-

cific USB requests. These requests control status management and configuration of the hub and
its downstream ports. Since the hub is part of a compound device, it has an internal downstream
port (port 4) which is unique from the external downstream ports. This is because port 4 is phys-

ically connected to the embedded function and is powered-on at all times. Thus several USB re-

quests intended for internal downstream port 4 are handlededifly from similar requests to

the other downstream ports, as shown in Table 8-6 on page 8-16.

Table 9-1 is a summary of firmware actions required for standard USB requests sent to hub end-
point 0.

Table 9-1. Firmware Actions for USB Requests Sent to Hub

Feature Selector /

USB Request Firmware Action Required

Type
DEVICE_REMOTE | Set the HRWUPE bit of the HSTAT SFR. See “Hub
_WAKEUP Status” on page 8-8.

Stall the endpoint specified in the Setup PID. See “Hub
Endpoint Control” on page 8-11.

SET_FEATURE Endpoint 0 specified:
ENDPOINT STALL | 1. Load 80H into EPINDEX (for hub endpoint 0)
- 2. Set RXSTL and TXSTL bits of EPCON SFR.

Endpoint 1 specified:
Set EP1STL bit of HSTAT SFR.

DEVICE_REMOTE | Clear HRWUPE bit of HSTAT SFR. See “Hub Status” on
_WAKEUP page 8-8.

Cancel stall for the specified endpoint. See “Hub
Endpoint Control” on page 8-11.
CLEAR_FEATURE Endpoint 0 specified:
ENDPOINT STALL | 1. Load 80H into EPINDEX (for hub endpoint 0)
- 2. Clear RXSTL and TXSTL bits of EPCON SFR
Endpoint 1 specified:

Clear EP1STL bit of HSTAT SFR.

1. Store hub endpoint 1 configuration value from value
field in memory

SET_CONFIGURATION N/A 2. Set EP1EN bit of HSTAT SFR (Figure 8-5 on page
8-9) after the Status stage if 2-byte configuration
value = 0001H

GET_CONFIGURATION N/A Read configuration value (one byte) from memory and

send to the host.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table 9-1. Firmware Actions for USB Requests Sent to Hub (Continued)

USB Request

Feature Selector /
Type

Firmware Action Required

GET_DESCRIPTOR

Device

Read device descriptor from memory and transmit to
USB host through hub endpoint 0.

Configuration

Read configuration, interface, endpoint, and hub
descriptors from memory and transmit to USB host
through hub endpoint 0.

GET_INTERFACE

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

GET_STATUS

Device

Read HSTAT SFR bit HRWUPE (Figure 8-5 on page
8-9) and power configuration from memory and transmit
to USB host using hub endpoint 0.

Interface

Load 2 bytes of zero into transmit buffer and transmit to
USB host. These bits are reserved in the initial version of
USB.

Endpoint

Endpoint 0 specified:

Load transmit buffer with value of zero if endpoint 0 is not
stalled. No data can be returned if endpoint O is stalled,
since STALL will be transmitted instead.

Endpoint 1 specified:

Load value of EP1STL bit of HSTAT SFR into transmit
buffer (Figure 8-5 on page 8-9).

SET_ADDRESS

N/A

Read address value contained in request value field and
store in HADDR SFR (Figure 8-4 on page 8-8) after
successful completion of control transaction status
stage.

SET_DESCRIPTOR

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

SET_INTERFACE

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

SYNCH_FRAME

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent
during status stage

Table 9-2 summarizes firmware action for hub class-specific USB requests.

NOTE

Upon receipt of a state-related USB request (i.e., SetPortFeature,
ClearPortFeature), firmware must examine the HPSTAT SFR to determine the
current port state. If the port is in a state where the request will be ignored by

9-18

intel.

USB PROGRAMMING MODELS

hardware, instead of performing the action given in Table 9-2, firmware must
respond to théost by sending a STALL during the transaction status stage to
indicate the command was not completed. Table 8-5 depicts the state-related
USB requests and the port states for which they are ignored. See“Controlling a
Port Using HPCON” on page 8-14 for additional information.

Table 9-2. Firmware Action for Hub Class-Specific Requests

USB Requests

Feature Selector
/ Type / Index

Firmware Action Required

SetHubFeature

Unsupported request since there are no current feature selectors

to match this request in the initial version of USB.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage

ClearHubFeature

C_HUB_OVER_ | Clear HSTAT SFR bit OVISC (hub over-current status change bit).
CURRENT HSTAT is shown in Figure 8-5 on page 8-9.
Unsupported request.
C_HUB_LOCAL_ | 1. Load 80H into EPINDEX (for hub endpoint 0)
POWER 2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

GetBusState

Port1,2,3 0or4

Transfer the port bus signal values (D, and D, to the host for

diagnostic purposes.

1. Load xxxB into HPINDEX.2:0, where xxx is the binary
representation of the port index

2. Transfer the DPSTAT and DMSTAT bits of HPSTAT (Figure
8-9 on page 8-18) to the transmit buffer of hub endpoint 0.
Transmit these bits in a single byte, with DMSTAT as bit 0,
DPSTAT as bit 1, and bits 2-7 as ‘0’.

GetHubDescriptor

N/A

Read hub descriptor from memory and transmit to USB host
using hub endpoint 0.

SetHubDescriptor

N/A

Optional request for hubs which is not supported.

1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage

GetHubStatus

N/A

Communicate the hub over-current status change, local power
status change, current-overcurrent indicator, and current local
power status to the host:

Load HSTAT bits OVISC and OVI into transmit buffer, with LPS
as the LSb. The HSTAT SFR is shown in Figure 8-5 on page 8-9.

GetPortStatus

Port1,2,3 or 4

Load the HPSTAT and HPSC SFRs for hub port 1,2,3 or 4 into the
transmit buffer.

See “GetPortStatus Request Firmware” on page 9-24 for
additional information, including bit ordering and a flowchart.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 9-2. Firmware Action for Hub Class-Specific ~ Requests (Continued)

USB Requests

Feature Selector
/ Type / Index

Firmware Action Required

SetPortFeature

PORT_ENABLE

Enables address and endpoint decoding for the downstream

ports. For hub port 4, this enables address and endpoint decoding

for the embedded function.

1. Load xxxB into HPINDEX.2:0, where xxx is the binary
representation of the port index

2. Write “001" to bits 2:0 of the port's HPCON SFR (Figure 8-8
on page 8-15)

PORT_SUSPEND

Write “011” to bits 2:0 of the port's HPCON SFR.

If hub port 4 is specified, the user cannot suspend the embedded
function without also suspending the hub. Firmware must
suspend any non-hub functionality associated with the embedded
function prior to writing to HPCON. This is done by placing any
external device hardware into a low-power suspend mode.

See “SetPortFeature (PORT_SUSPEND) Firmware” on page
9-26 for additional information and a flowchart.

PORT_RESET

Write “010” to bits 2:0 of the port's HPCON SFR.

If port 4 is specified, firmware needs to reset all non-hub
functionality in the microcontroller. Upon writing to port 4’s
HPCON SFR, a hardware reset is generated to the FIU and
function FIFOs. Firmware must gracefully shut-down the
application code, peripherals, etc. prior to writing to port 4's
HPCON. Once written, the reset will be active in hardware for 10-
11 ms.

See “SetPortFeature (PORT_RESET) Firmware” on page 9-27 for
additional information and a flowchart.

PORT_POWER

Set bit x of HPPWR (where x is the port specified in the request
index field)

Port power-on is also supported for port 4, but only for reasons of
port compatibility since power for the embedded function cannot
be switched (i.e., writing bit 4 of HPPWR does not affect any
hardware).

9-20

intel.

Table 9-2. Firmware Action for Hub Class-Specific

USB PROGRAMMING MODELS

Requests (Continued)

USB Requests

Feature Selector
/ Type / Index

Firmware Action Required

ClearPortFeature

PORT_ENABLE

Requests port disable.

1. Load xxxB into HPINDEX.2:0, where xxx is the binary
representation of the port index

2. Write “000" to bits 2:0 of the port's HPCON SFR (Figure 8-8
on page 8-15)

For hub port 4, this will disable address and endpoint decoding for

the embedded function.

PORT_SUSPEND

Requests port resume.
Load xxxB into HPINDEX.2:0, where xxx is the binary
representation of the port index
2. Write “100" to bits 2:0 of the port's HPCON SFR (Figure 8-8
on page 8-15)
If port 4 is specified, firmware must also resume any non-hub
functionality associated with the embedded function prior to
writing to port 4's HPCON. This requires taking any external
device hardware out of a low-power suspend mode.

Request port power off.
If any port other than port 4 is specified:

Clear bit x of HPPWR (where x is the port specified in the
request index field)

PORT_POWER
Port power off is not supported for port 4. If port 4 is specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage
Request to clear port connect status change.
C_PORT_ 1. Load xxxB into HPINDEX.2:0, where xxx is the binary
CONNECTION representation of the port index
2. Clear PCSC bhit of HPSC SFR (Figure 8-10 on page 8-21)
Request to clear hardware-initiated port enable/disable status
change.
C_PORT_ 1. Load xxxB into HPINDEX.2:0, where xxx is the binary
ENABLE N)
representation of the port index
2. Clear PESC bit of HPSC SFR (Figure 8-10 on page 8-21)
Request to clear port suspend status change.
C_PORT_ 1. Load xxxB into HPINDEX.2:0, where xxx is the binary
SUSPEND representation of the port index
2. Clear PSSC bit of HPSC SFR (Figure 8-10 on page 8-21)
Unsupported request to clear port over-current status change.
The 8x930Hx implements over-current detection on a hub-wide
C_PORT_ basis, not on a per-port basis. If received:
OVERCURRENT | 1. Load 80H into EPINDEX (for hub endpoint 0)

2. Set TXSTL bit of EPCON SFR so STALL is sent during status
stage

C_PORT_RESET

Request to clear port reset status change.

1. Load xxxB into HPINDEX.2:0, where xxx is the binary
representation of the port index

2. Clear RSTSC bit of HPSC SFR (Figure 8-10 on page 8-21)

9-21

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

9.6.3 Port Status Change Communication

The flowchart in Figure 9-11 shows how the hub communicates a change in port status to the host.
This process involveBX930Hx hardware, 8930Hx firmware, and PC host firmware. THew-
chart illustrates the complete process at a high level. The process contains the following steps:

1. Any change in a port’s reset, suspend, enable, or connect status is communicated to the
host via hub endpoint 1's TXDAT register, as shown in Figure 8-7 on page 8-13. The
information passed through hub endpoint 1 is sufficient to indicate which port (or the hub
itself) changed status, but it does not indicate which status value changed or the current
value of any status indicator.

Firmware has no involvement with USB communication to hub endpoint 1 (status change
endpoint 1). This communication is handled completely in hardware and is discussed in
“USB HubEndpoints” on page 8-10

2. After the host receives notice of a change in port status through hub endpoint 1, host
firmware can determine which status value changed and the current value of all the port’s
status indicators by transmitting a GetPortStatus request through hub endpoint 0. This
request includes a Port_Index to tell 8€930Hx which port is of interest to the host. See
theUniversal Serial Bus Specificatidar additional information.

3. The host’'s GetPortStatus request triggers ¥88@’ GetPortStatus routine. The
firmware response to the GetPortStatus request provides the host with the port’s current
status along with an indication of any status changes that have occurred. See
“GetPortStatus Request Firmware” on page 9-24 for a complete description of this
routine.

4. The host resets the port status change indicators by issuing a separate ClearPortFeature
request for each bit in HPSC that showed a change. Each ClearPortFeature request will
include one of the following feature selectors:

a. C_PORT_CONNECTION — to clear HPSC.PCSC
b. C_PORT_ENABLE — to clear HPSC.PESC

c. C_PORT_SUSPEND— to clear HPSC.PSSC

d. C_PORT_RESET — to clear HPSC.RSTSC

5. 8930Hx firmware responds to each ClearPortFeature request by performingitmes act
shown in Table 9-2 on page 9-19.

6. Finally, the host must perform any actions necessitated by the status change.

9-22

Int€|® USB PROGRAMMING MODELS

Status Change
Communication

l

8X930Hx
communicates change
in port status to host
via hub endpoint 1

Host inquires into
status change via a
GetPortStatus
command

Firmware
responds through the
GetPortStatus
request routine

Host clears bits of HPSC
one at a time through
ClearPortFeature
commands

Firmware clears
HPSC bits through
ClearPortFeature
routines

Host performs any
actions necessitated by
status change

:

End

A5207-01

Figure 9-11. Hub-to-host Port Status Communication

9.6.4 Hub Firmware Examples

Several of the firmware routines given in Table 9-2 have been selected as examples. The remain-
ing routines should be coded similarly. The following subsections contain a flowchart and an ad-
ditional explanation for these routines:

* GetPortStatus (Port_Index)

9-23

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

* SetPortFeature (PORT_SUSPEND)
¢ SetPortFeature (PORT_RESET)

9.6.4.1 GetPortStatus Request Firmware

Firmware responds to a GetPortStatus call by returning four bytes to the host using the flowchart
procedure shown in Figure 9-12. The foytes are arranged intdwo-byte port status field and

a two-byteport change field containing the contents of the HPSTAT and HPSC SFRs, respective-
ly. Figure 9-13 shows the relationship between the four bytes returned by firmware and the con-
tents of the HPSTAT and HPSC registers.

Start:
GetPortStatus Request

l

Write 80H to
EPINDEX to access
hub endpoint 0's
TX registers

Write xxxB to HPINDEX
(xxx = port number)
to access port's
HP registers

Transfer HPSTAT to
TXDAT using
two-byte format

Transfer HPSC to
TXDAT using two-byte
format

Put 04H in TXCNTL
(to indicate 4 bytes
ready to transmit)

l

End

A5208-01

Figure 9-12. GetPortStatus Request

Transferring the contents of HPSTAT and HPSC into TXDAT requires additional codeavat
in the flowchart. The bits of HPSTAT must be “converted” into a two-byte port statdsdie

9-24

Int9|® USB PROGRAMMING MODELS

shown in Figure 9-13, and transmitted to the host fiB The bits of HPSC must also be trans-
mitted in a two-byte format, called the port changédfie

The bit names are given in Figu#€l 3, along with their position in the register (shown below the
bit name) and their position in the transmitted two-byte field (shown above the bit names). Firm-
ware must transmit the four bytes to the host in the byte order indicated (above the bit position).

NOTE
The HPSTAT bits are not directly mapped into the port status field. Firmware
must clear bit three of byte one to indicate that power is normal (not
overcurrent) for the port. This is done because #93@Hx indicates
overcurrent on a ganged, not per-port, basis.

Port Status Field Port Change Field
Byte 2 Byte 1 Byte 4 Byte 3

15 8|7 0 15 8|7 0

Get = I R A W [1 9l lololo
Port Reserved e R P o] P P P Reserved Plo|a|ala
ool 2°|alals ol |2]¢]2

Status Jla|€ al| |2)a|a o
64 '3210) o T T T 43210
~" \K—J
HPSTAT HPSC
A5117-01

Figure 9-13. Firmware Response to GetPortStatus

9-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

9.6.4.2 SetPortFeature (PORT_SUSPEND) Firmware

This USB request suspends the downstream ports. The number of the port to be suspended is in-
cluded in the request from the host. If hub port 4 is specified, firmware must also suspend any
non-hub functionality associated with the embedded function and place any external device hard-
ware into bw-power suspend mode priorweiting to hub port 4's HPCON SFR.

To implement this routine, firmware must write “011” to bits 2:0 ofggbg’s HPCON SFR. The
flowchart in Figure 9-14 illustrates the process.

SetPortFeature
(PortSuspend)

Y

Write xxxB to
HPINDEX
(xxx = port number)
to select the port

Place embedded
function and its
external device
hardware into low-
power suspend
mode

Is Suspend
for port 4?

Write 011B to
HPCON to -
suspend the port

i

End

A5166-01

Figure 9-14. SetPortFeature (PORT_SUSPEND) Routine

9-26

Int9|® USB PROGRAMMING MODELS

9.6.4.3 SetPortFeature (PORT_RESET) Firmware

This USB request resets the downstream ports. The number of the port to be reset is included in
the request from the host. To implement this routine, firmware must write “010” to bits 2:0 of the
port’s HPCON SFR. The flowchart in Figure 9-15 illustrates the process. Refer to Section 11.6.2
of theUniversal Serial Bus Specificatidar a detailed description of this USB command.

SetPortFeature
(PortReset)

Y

Write xxxB to
HPINDEX
(xxx = port number)
to select the port

Shut down
application code,
peripherals, etc.,

for embedded
function

Is Reset
for port 4?

Write 011B to
HPCON to
reset the port

A

i

End

A5167-01

Figure 9-15. SetPortFeature (PORT_RESET) Routine

If port 4 is specified, firmware must reset adin-hub functionality in the microcontroller. Firm-
ware must gracefully shut-down the application code, peripherals, etc. prior to writing to port 4's
HPCON.

Upon writing to port 4's HPCON SFR, a hardware reset is applied to the FIU and function FIFOs.
When this reset is applied, the embedded function’s EPCON, FIFLG, FIE, TXSTAT, RXSTAT,
TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their default values, as are the SO-
FACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPINDEX and SOFL SFRs remain un-

9-27

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

changed. These SFRs are reset immediately after the write to HPCON, however bus traffic to the
embedded function rerires inactive for 15 ms. You may use this time frame to initialize the em-
bedded function.

9-28

intel.

10

Input/Output Ports

intel.

CHAPTER 10
INPUT/OUTPUT PORTS

The 8930 has four 8-bit inpitutput (I/0O) ports for general-purpose /O, external memory op-
erations, and specific alternate functions (see Tabié). This chapter describes the ports and
provides information on port loading, read-modify-write instructions, external memory ac-
cesses. Chapter 16, “External Memory Interface,” contains additional information about external
memory operations.

10.1 INPUT/OUTPUT PORT OVERVIEW

All four 8x930 I/O ports are bidirectional. Each port contains a latch, an output driver, and an in-
put buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory opera-
tions. Port O drives the lower address byte onto the parallel address bus, and port 2 drives the
upper address byte onto the bus. In nonpage mode, the data is multiplexed with the lower address
byte on port 0. In page mode, the data is multiplexed with the upper address byte on port 2. Port
1 and port 3 provide both general-purpose I/O and special alternate functions.

Table 10-1. Input/Output Port Pin Descriptions

sze Type Qilge;;lnaartnee Alternate Description Alt%l;ggte

P0.7:0 /0 AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) 1/0
P1.0 /0 T2 Timer 2 Clock Input/Output 1/0
P1.1 1/0 T2EX Timer 2 External Input |
P1.2 /0 ECI PCA External Clock Input |
P1.3 /0 CEXO PCA Module 0 1/0 110
P1.4 /0 CEX1 PCA Module 1 1/0 110
P1.5 /0 CEX2 PCA Module 2 1/0 110
P1.6 /0 CEX3/WAIT# PCA Module 3 1/0 110
P1.7 /0 CEX4/A17/WCLK | PCA Module 4 1/O or 18th Address Bit 1/10(0)
P2.7:0 1/0 A15:8 Address (Nonpage Mode), Address/Data (Page Mode) 110
P3.0 /0 RXD Serial Port Receive Data Input 1 (110)
P3.1 1/0 TXD Serial Port Transmit Data Output 0O (0)
P3.2 I/0 INTO# External Interrupt O |
P3.3 l[e} INT1# External Interrupt 1 |
P3.4 110 TO Timer O Input |
P3.5 110 T1 Timer 1 Input |
P3.6 110 WR# Write Signal to External Memory O
P3.7 110 RD#/A16 Read Signal to External Memory or 17th Address Bit O

10-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

10.2 1/O CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 10-1 for aod$81A CPU

“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “read
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal
transfers the logical level of the port pin. Some port data instructions activate the “read latch” sig-
nal while others activate the “read pin” signal. Latch instructions are referred talasodéy-

write instructions (see “Read-Modify-Write Instructions” on pa@e5). Each I/O line may be
independently programmed as input or output.

10.3 PORT 1 AND PORT 3

Figure 10-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for its al-
ternate input or output function (Table 10-1).

To use a pin for general-purpose output, set or clear the corresponding bit kréugseer X =
1, 3). To use a pin for general-purpose input, set the bit inthegister. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in thieBister. When the latch is set, the
“alternate output function” signal controls the output level (Fidurel). The operation of ports
1 and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 10-5.

10.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, showr
in Figure 10-2, differs from the other ports in not having internal pullups. Fifi®on page
10-4 shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit xréugsier x =
0, 2). To use a pin for general-purpose input, set the bit inxhmegtster to turn off the output
driver FET.

10-2

Int9|® INPUT/OUTPUT PORTS

Vee
Alternate |
Read Output Inte”rna
Latch I/I Function Pullup
N | P3.x
Internal D 0
Bus P3.x
: Latch
Write to
Latch CL Q#
1 . -1
) Lo
ReF?d Alternate
in
Input
Function
A2239-01
Figure 10-1. Port 1 and Port 3 Structure
Address/
Read Data Control Vee
Latch LI
;; PO.x
Internal D Q _D
Bus PO.x N\
_ Latch 1
Write to 0
Latch CL Q#
1
Read l\l
Pin

A2238-01

Figure 10-2. Port 0 Structure

10-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Address Vee
|Contro|
Read Internal
Latch L Pullup
~ PLZ-]X
o —>—L
Internal 0
Bus D Q l/
P2.x
Latch
Write to v
Latch CL Q#
1
Read rl

Pin
A2240-01

Figure 10-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. “Extemnmalrivie
Access” on page 10-7 discusses the opmraif port 0 and port 2 as the external address/data bus.

NOTE

Port 0 and port 2 are precluded from use as general purpose I/O ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.

Except for these bus cycles, the pullup FET is off. All other port 0 outputs are
open drain.

10-4

Int9|® INPUT/OUTPUT PORTS

10.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called “read-modify-write” in-
structions. Table 10-2 contains a complete list of these special instructions. When the destination
operand is a port, or a port bit, these instructions read the latch rather than the pin.

Table 10-2. Read-Modify-Write Instructions

Instruction Description
ANL logical AND, e.g., ANL P1, A
ORL logical OR, e.g., ORL P2, A
XRL logical EX-OR, e.g., XRL P3, A
JBC jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL
CPL complement bit, e.g., CPL P3.0
INC increment, e.g., INC P2
DEC decrement, e.g., DEC P2
DJINZ decrement and jump if not zero, e.g., DIJNZ P3, LABEL
MOV PX.Y, C | move carry bit to bit Y of port X
CLR PX.Y clear bit Y of port X
SETB PX.Y set bit Y of port x

It is not obvious that the last three instructions in TalQk are read-modify-write ibsictions.

These instructions read the port (all eight bits), modify the specifically addressed bit, and write
the new byte back to the latch. These read-modify-write instructions are directed to the latch rath-
er than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels
at the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot
rise above the transistor’s base-emitter junction voltage (a value lower thaWwhkh a logic one

written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logic zero.
A read of the latch rather than the pin returns the correct logic-one value.

10.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirectional”
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see the 8930 datasheet) in response to an external logic-zero condition. Port 0 is a “true bidirec-
tional” pin. The pin floats when configured as input. Resets write logical one to all port latches.

If logical zero is subsequently written to a port latch, it can be returned to input conditions by a
logical one written to the latch. For additional electrical information, refer to the cux@3® 8
datasheet.

NOTE

Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

10-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Logical zero-to-one trsitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 10-4). This increases switch speed. The extra pullup briefly sources
100 times the normal internal circuit current. The internal pullups are field-effect transistors rath-
er than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on
when the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on
for two oscillator periods immediately after a zero-to-one transition in the port latch. A logic one

at the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associ-
ated nFET is switched off. This is a traditional CMOS switch convention. Current strengths are
1/10 that of pFET #3.

2 Osc. Periods Vee Vee Vee

nHL L

Port

Q#

From

D |

Port L

Latch I é7
Input Data < I Oﬂ :,4

Read Port Pin | >

—
=]

A2242-01

Figure 10-4. Internal Pullup Configurations

10.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zerag,(sgeevifica-

tions in the 8930 data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a logic-one
condition (Figure 10-4 on page 10-6). A logic-zero input turns off pFET #3. This leaves only
pFET #2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink
3.2 mA at logic zero (seey); in the &930 data sheet). However, the port O pins require external
pullups to drive external gate inputs. See the latest revision ok®88 8atasheet for complete
electrical design information. External circuits must be designed to limit current requirements to
these conditions.

10-6

Int9|® INPUT/OUTPUT PORTS

10.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi-
plexed on port 2, while port 0 outputs the lower address byte.

The 8930 CPU writes FFH to the PO register for all external memory bus cycles. This overwrites
previous information in PO. In contrast, the P2 register is unmodified for external bus cycles.
When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the port 2
pins.

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input.

In page mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte or a strong interrddyolFET to output
zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup FET to output ones or ashg internal pulldown FET to output zeros for the upper address
byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 16, “External Memory Interface”). External program memories utilize sig-
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RD1:0 configuration bitx9B@ @ses PSEN# or

RD# for data reads (See “Configuration Bits RD1:0” on page 4-8).

During instruction fetches, external program memory can transfer instructions with 16-bit ad-
dresses for binary-compatible code or with the external bus configured for extended memory ad-
dressing (17-bit or 18-bit).

External data nmory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on the in-
struction and the configuration of the external bus. TabI& lists thenstructions that can be
used for these bus widths.

Table 10-3. Instructions for External Data Moves

Bus Width Instructions
8 MOVX @Ri; MOV @Rm; MOV dir8
16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dirl6
17 MOV @DRk; MOV @DRk+dis
18 MOV @DRk; MOV @DRk+dis

10-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives,V. For write cycles, valid data is written to port O just prior

to the write (WR#) pin asserting,V Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port 0 before the read (RD#) pin is undriven
(refer to the 8930 datasheet for specifications). Wait states, by definition, affect bus-timing.

10-8

intel.

11

Timer/Counters and
Watchdog Timer

intel.

CHAPTER 11
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the &930. When operating as a timer, a timer/counter runs for a programmed length of time,
then issues an interrupt request. When operating as a counteeraimmter counts negative
transitions on an external pin. After a preset number of counts, the counter issues an interrupt re-
quest.

The watchdog timer provides a way to monitor system operation. It causes a system reset if a
firmware malfunction allows it to expire. The watchdog timer is covered in “Watchdog Timer”
on page 11-16.

11.1 TIMER/COUNTER OVERVIEW

The 8930 contains three general-purpose, 16-bit timer/counters. Although they are identified as
timer O, timer 1, and timer 2, you can independently configure each to operate in a variety of
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used sep-
arately or in cascade, to maintain the count. The timer registers and associated control and capture
registers are implemented as addressable special function registers f®RRej.the SFRs pro-

vide programmable control of the timers as follows:

¢ Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer O and timer 1

¢ Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 11-1 describes the external signals referred to in this chapter. Table 11-2 briefly describes
the SFRs referred to in this chapter. For a map of the SFR address space, s&& Tabfgge
3-16.

11.2 TIMER/COUNTER OPERATION

The block diagram in Figure 11-1 depicts the basic logic of the timers. Here timer registers TH
and Tlx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Settingitheontrol bit

(TRX) turns the timer on by allowing the selected input to increment When TLx overflows

it increments TH; when THk overflows it sets the timer overflow flag (XFin the TCON or

T2CON register. Setting the run control bit does not clear theartd TLx timer registers. The

timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin ¥4To facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the ddaded
system clock or external pinkBas the source for the counted signal.

For timer operation (CA# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle (once every six states). That is, at the
internal clock frequency divided by six{[k/6). Exceptons are the timer 2 clock-out and baud

11-1

8x930AXx, 8x930HXx USER’'S MANUAL

rate modes, in which the timer register is incremented at the internal clockyade $€e “Clock
and Reset Unit” on page 2-9. Table 2-4 on page 2-10 and Figures 2-7, and 2-8 on psigev2-11
the relationship between,k. Fc «, state times, and peripheral cycles. Also see xB8®Bclock

circuit block diagram in Figure 2-6 on page 2-9.

For counter operation (CX# = 1), the timer register counts the negative transitions orxtb&-T

ternal input pin. The external input is sampled during every S5P2 state. “Clock and Reset Unit”
on page 2-9 describes the notation for the states in a peripheral cycle. When the sample is high in
one cycle and low in the next, the counter is incremented. Theoemt value appears in the
register during the next S3P1 state after the transition was detected. Since it takes two peripheral
cycles to recognize a negative transition, the maximum count ratg /4 E There are no restric-

tions on the duty cycle of the external input signal, but to ensure that a given level is sampled at

NOTE

intel.

The timing calculatins in this chapter are based on the valueg.gf,Rvhich is
a function of PLLSEL2:0. See Table 2-4 on page 2-10.

least once before it changes, it should be held for at least one full peripheral cycle.

Table 11-1. External Signals

Signal
Name

Type

Description

Alternate
Function

T2

110

Timer 2 Clock Input/Output . This signal is the external clock input
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

P10

T2EX

Timer 2 External Input . In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

P11

INT1:0#

External Interrupts 1:0 . These inputs set the IE1:0 interrupt flags in
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = 0 selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

P3.3:2

T1:0

Timer 1:0 External Clock Inputs . When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4

11-2

TIMER/COUNTERS AND WATCHDOG TIMER

Felk ————{ =<6

Interrupt
! Request
THx | TLx Overflow
> (8 Bits) | (8 Bits) TFx >
l
Tx D
ClTx#
x=0,1,0r2 TRx
A5197-01
Figure 11-1. Basic Logic of the Timer/Counters
Table 11-2. Timer/ Counter and Watchdog Timer SFRs
Mnemonic Description Address
TLO Timer O Timer Registers. Used separately as 8-bit counters or in cascade S:8AH
THO as a 16-bit counter. Counts an internal clock signal with frequency F, /6 S:8CH
(timer operation) or an external input (event counter operation).
TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade S:8BH
TH1 as a 16-bit counter. Counts an internal clock signal with frequency F, /6 S:8DH
(timer operation) or an external input (event counter operation).
TL2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a S:CCH
TH2 16-bit counter. Counts an internal clock signal with frequency F¢, /6 (timer S:CDH
operation) or an external input (event counter operation).
TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, S:88H
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.
TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.
T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and S:C8H
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.
T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.
RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values S:CAH
RCAP2H to and receive values from the timer registers (TL2,TH2). S:CBH
WDTRST | Watchdog Timer Reset Register (WDTRST). Used to reset and enable S:A6H
the WDT.

11-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

11.3 TIMERO

Timer O functions as either a timer or event counter in four modes of operation. Figures 11-2,
11-3, and 11-4 show the logical configuration of each mode.

Timer O is controlled by the four low-order bits of the TMOD register (Figure 11-5) and bits 5, 4,
1, and O of the TCON register (Figure 11-6). The TMOD register selects the method of timer gat-
ing (GATEDO), timer or counter operation (T/C0#), and mode of operation (M10 and M0O0). The
TCON register provides timer 0 control functions: overflow flag (TFO0), run control (TRO), inter-
rupt flag (IEQ), and interrupt type control (ITO).

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by the se-
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See “Pulse Width Measurements” on page
11-10.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TFO flag generating an interrupt
request.

11.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer O as a 13-bit timer which is set up as an 8-bit timer (THO register) with
amodulo 32 prescalar implemented with the lower five bits of the TLO register (Figure 11-2). The
upper three bits of the TLO register are indeterminate and should be ignored. Prescalar overflow
increments the THO register.

11.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with THO and TLO connected in cascade (Figure
11-2). The selected input increments TLO.

Felk ———1 =<6

Interrupt
> THx : TLx |overflow Request
(8 Bits) | (8 Bits) TFx
l
Tx D
ClTx#
TRx Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
GATEX x=0orl
INTX#

A5198-01

Figure 11-2. Timer 0/1 in Mode 0 and Mode 1

11-4

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

11.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer O as an 8-bit timer (TLO register) that automatically reloads from the
THO register (Figure 11-3). TLO overflow sets the timer overflow flag (TFO) in the TCON register
and reloads TLO with the contents of THO, which is preset by firmware. When the interrupt re-
quest is serviced, hardware clears TFO. The reload leaves THO unchanged. See “Auto-reload Set-
up Example” on page 11-9.

Fook —>» =<6

Interrupt
TLx Overflow Request
> (8 Bits) TFx >
™ AN
CITx# /\
Reload
TRx
THx
GATEXx (@ Bitt)
INTx# x=0orl

A5199-01

Figure 11-3. Timer 0/1 in Mode 2, Auto-reload

11.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TLO and THO operate as separate 8-bit timers (Fig-
ure 11-4). This mode is provided for applications requiring an additional 8-bit timer or counter.
TLO uses the timer O control bits C/TO# and GATEO in TMOD, and TRO and TFO in TCON in
the normal manner. THO is locked into a timer function (counting) and takes over use of

the timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timerektiicted

when timer 0 is in mode 3. See the last paragraph of “Timer 1” on page 11-6 and “Mode 3 (Halt)”
on page 11-9.

11-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Interrupt
. . N THo | Overflow Request
CLK — > <6) TF1 ——>»
j (8 Bits)
TR1
Interrupt
0 Request
TLO Overflow
> (8 Bits) TFO >
i v
C/TO#
TRO
GATEO
INTO#
A5200-01

Figure 11-4. Timer 0 in Mode 3, Two 8-bit Timers

11.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 11-2 and
11-3 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold-count mode.

Timer 1 is controlled by theotir high-order bits of the TMOD register (Figure 11-5) and bits 7,

6, 3, and 2 of the TCON register (Figure 11-6). The TMOD register selects the method of timer
gating (GATEL), timer or counter operation (T/C1#), and mode of operation (M11 and M01). The
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), inter-
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATE1 = 0), setting TR1 allows timer register TL1 to be increment-
ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control timer op-
eration. This setup can be used to make pulse width measurements. See “Pulse Width
Measurements” on page 11-10.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag, generating an interrupt
request.

When timer 0 is in mode 3, it uses timer 1's overflow flag (TF1) and run control bit (TR1). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

11-6

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

! 0
GATE1 CIT1# M11 MO1 ‘ ‘ GATEO CITO# M10 MOO
Bit Bit)
Number Mnemonic Function
7 GATE1 Timer 1 Gate:

When GATEL1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL =1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CIT1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:
M11 MO1
0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)

0
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO =1 and TRO = 1, external signal INTO gates the
timer input.

2 C/TOo# Timer 0 Counter/Timer Select:

C/TO# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 M10, MO0 Timer 0 Mode Select:

M10 MOO
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit
timer using timer 1's TR1 and TF1 bits.

Figure 11-5. TMOD: Timer/Counter Mode Control Register

11-7

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control

and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TFO TRO || IEI IT1 IEO ITO
Bit Bit)
Number Mnemonic Function

7 TF1 Timer 1 Overflow Flag:
Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by firmware to turn timer 1 on/off.

5 TFO Timer O Overflow Flag:
Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 0 Run Control Bit:
Set/cleared by firmwatre to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:
Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:
Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 0 Flag:
Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:
Set this bit to select edge-triggered (high-to-low) for external interrupt O.
Clear this bit to select level-triggered (active low).

11-8

Figure 11-6. TCON: Timer/Counter Control Register

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

11.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register) with
a modulo-32 prescalar implemented with the lower five bits of the TL1 register (Figure 11-2). The
upper three bits of the TL1 register are ignored. Prescalar overflow increments the TH1 register.

11.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (Figure
11-2). The selected input increments TL1.

11.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the TH1
register on overflow (Figure 11-3). Overflow from TL1 sets overflow flag TF1 in the TCON reg-
ister and reloads TL1 with the contents of TH1, which is preset by firmware. The reload leaves
TH1 unchanged. See “Auto-reload Setup Example” on page 11-9.

11.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TR1 run control bit is not available (i.e., when timer 0 is in mode 3). See the final para-
graph of “Timer 1” on page 11-6.

11.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purposestis that can be used in a variety of ways. The timer
applications presented in this section are intended to deratmimer setup, and do not repre-

sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer O, but timer 1 can be set up in the same manner using the appropriate registers.

11.5.1 Auto-reload Setup Example
Timer 0 can be configured as an eight-bit timer (TLO) with automatic reload as follows:

1. Program the four low-order bits thfe TMOD register (Figure 11-5) to specify: moderR
timer 0, C/TO# = 0O to selectF/6 as the timer input, and GATEO = O to select TRO as the
timer run control.

2. Enter an eight-bit initial value ghin timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

3. Enter an eight-bit reload valuesjrin register THO. This can be the same gem
different, depending on the application.

4. Setthe TRO bit in the TCON register (Figure 11-6) to start the timer. Timer overflow
occurs after FFH + 1 -gperipheral cycles, setting the TFO flag and loadipmto TLO
from THO. When the interrupt is serviced, hardware clears TFO.

11-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

5. The timer continues to overflow and generate interrupt requests every FFH;+ 1 - n
peripheral cycles.

6. To halt the timer, clear the TRO bit.

11.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GAXEnd TR allows an external waveform at pin IN# to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin IN¥#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits thfe TMOD register (Figure 11-5) to specify: moder
timer 0, C/TO# = 0 to selectf/6 as the timer input, and GATEO = 1 to select INTO as
timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

Set the TRO bit in the TCON register (Figure 11-6) to enable INTO.

E

Apply the pulse to be measured to pin INTO. The timer runs when the pulse waveform is
high.

Clear the TRO bit to disable INTO.
Read timer register THO/TLO to obtain the new value.
Calculate pulse width = g[T, x (new value - initial value).

Example 1, PLLSEL2:0 = 100 (low speed)sF= 12 MHz, F, « = 6 MHz,
Tok = 0.16667us. If the new value = 10,099counts and the initial value = 0, the pulse
width = 6(0.16667) x (10,000 — 0) =1 ps x 10,000 = 10 ms.

® N o o

Example 2, PLLSEL2:0 = 110 (full speed),5=12 MHz, F, = 12 MHz,
Tok = 0.08333us. If the new value = 10,099counts and the initial value = 0, the pulse
width = 6(0.08333) x (10,000 — 0) = 0.5 ps x 10,000 = 5 ms.

11.6 TIMER 2

Timer 2 is a 16-bit timecbunter. The count is maintained by two 8-bit timer registers, TH2 and
TL2, connected in cascade. The timer/counter 2 mode control registeODP&s shown in Fig-

ure 11-11 on page 11-16) and the timer/counter 2 control register (T2CQNdwn in Figure
11-12 on page 11-17) control the operation of timer 2.

Timer 2 provides the following operating modes: capture modesraload mode, baud rate gen-
erator mode, angrogramnable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 11-3 on page 11-15. Auto-reload is the default mode. Set-
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the didioled system clock
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting TF2
allows TL2 to be incremented by the selected input.

11-10

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

The operating modes are described in the following paragraphs. Block diagrams in Figures 11-7
through 11-10 show the timer 2 configuration for each mode.

11.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 11-7). An overflow
condition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

1 Overflow
TH2 ! TL2
@Bits) | (8Bits) [| TF2
1
M M
Capture Interrupt
V v i : Request
RCAP2H|RCAP2L
T2EX []—)\
> EXF2 [~
EXEN2

A5201-01

Figure 11-7. Timer 2: Capture Mode

11-11

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

11.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as deterntireatbiwn
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

11.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 11-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 11-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RB2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by firmware.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to-low tran-
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

Folk —>= *6 0 N TH2 | TL2 | Overflow
1 l/l (8 Bits) | (8 Bits)

T2 D TR2
CIT2#
Reload

|
RCAPZH: RCAP2L

L TF2

EXF2

Interrupt
Request

T2EX D—)\

EXEN2
A5202-01

Figure 11-8. Timer 2: Auto-reload Mode (DCEN = 0)

11-12

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

11.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 11-9). External pin T2EX con-
trols the direction of the count (Table 11-1 on page 11-2). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load-
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored inARCH and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

(Down Counting Reload Value)
I
FFH | FFH
l
Toggle
Fclk — +6 \/QA\/ ><:_ EXE2
N/ ' L Interrupt
— 0 TH2 | TL2 [Overflow TE2 Request
; X —————
— 11 (8 Bits) 1 (8 Bits)
l
T2 [] TR2
CIT2# - Count
\ N Direction
1=Up
0 = Down
I
RCAPZH:RCAPZL []
I T2EX
(Up Counting Reload Value)
A5203-01

Figure 11-9. Timer 2: Auto-reload Mode (DCEN = 1)

11-13

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

11.6.4 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 11-3. For details regarding this
mode of operation, refer to “Baud Rates” on page 13-10.

11.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
11-10). The generated clock signal appears on pin T2. The input clock increments TLO at the in-
ternal clock frequency (). The timer repeatedly counts to overflow from a preloaded value.

At overflow, the contents of the R®2H and RCAP2L registers are loaded into TH2/TL2. In
this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequen-
cy as a function of §, (Table 2-4 on page 2-10) and the value in the RCAR2tHRCAP2L
registers:

I:CLK

Clock-out Frequency = 5 (eses5—RCAPZH, RCAPZL)

For PLLSELZ2:0 = 100 (low speedgk = 6 MHZz), timer 2 has a programmable frequency range
of 45.8 Hz to 3 MHz. For PLLSEL2:0 = 110 (full speed, /~ 12 MHz), timer 2 has a program-
mable frequency range of 91.6 Hz to 6 MHz.

Timer 2 is programmed for the clock-out mode as follows:
1. Setthe T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clear the C/T2# bit in T2CON to selegt f as the timer input signal. This also gates the
output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the reload
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates
and clock frequencies are not independent since both functions use the values iIABRHRC

and RCAP2L registers.

11-14

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

Ferk 0 N TH2
1) (8 Bits)

TL2
(8 Bits)

2[—e

|
RCAP2H : RCAP2L

C/TZ#T !
. d

<+ 2
- T

T20E
Interrupt
Request
T2EX [\ I’II\ EXF2 -
EXEN2
A5204-01
Figure 11-10. Timer 2: Clock Out Mode
Table 11-3. Timer 2 Modes of Operation
Mode RCLK OR TCLK CP/RL2# T20E
(in T2CON) (in T2CON) | (in T2MOD)
Auto-reload Mode 0 0 0
Capture Mode 0 1 0
Baud Rate Generator Mode 1 X X
Programmable Clock-Out X 0 1

11-15

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

T2MOD Address: S:C9H
Reset State: XXXX xx00B
Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .
7 0
— — — - || = — T20E DCEN
Nulr?r;lt:\er Mne?rgt)nic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.
1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

Figure 11-11. T2MOD: Timer 2 Mode Control Register

11.7 WATCHDOG TIMER

The peripheral section of the®30 contains a dedicated, hardwareclkidbg timer (WDT) that
automatically resets the chip if it is allowed to time out. The WDT provides a means of recovering
from routines that do not complete successfully due to firmware malfunctions. The WDT de-
scribed in this section is not associated with the PCA watchdog timer, which is implemented in
firmware.

11.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.g./@ The WDTRST special
function register at address S:A6H provides control access to the WDT. Two operations control
the WDT:

* Device reset clears and disables the WDT (see “Reset” on page 14-5).
¢ Writing a specific two-byte sequence to tIMDTRST register clears and enables the WDT.

If it is not cleared, the WDT overflows on count 3FFFH + 1. For PLLSEL2:0 = 1QQ &6

MHZ, a peripheral cycle is 1 ps), the WDT overflows in 1 ps x 16384 = 16.384 ms. For
PLLSEL2:0 = 110 (E « = 12 MHZ, a peripheral cycle is 0.5 ps), the WDT overflows in 0.5 ps
x 16384 = 8.192 ms.

The WDTRST is a write-only register. Attempts to read it return FFH. The WDT itself is not read
or write accessible. The WDT doest drive the external RESET pin.

11-16

intel.

TIMER/COUNTERS AND WATCHDOG TIMER

T2CON

Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0
TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function
Number Mnemonic

7 TF2 Timer 2 Overflow Flag:
Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK=1o0r TCLK = 1.

6 EXF2 Timer 2 External Flag:
If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1).

5 RCLK Receive Clock Bit:
Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:
Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:
Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.

1 CIT2# Timer 2 Counter/Timer Select:
C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:
When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

Figure 11-12. T2CON: Timer 2 Control Register

11-17

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

11.7.2 Using the WDT

To use the WDT to recover from system malfunctions, thepregram shouldontrol the WDT
as follows:

1. Following device reset, write the two-byte sequence 1EH-E1H to the WDTRST register to
enable the WDT. The WDT begins counting from O.

2. Repeatedly for the duration of program execution, write the two-byte sequence 1EH-E1H
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at 0.

If the WDT overflows, it initiates a device reset (see “Reset” on pdefe). Device reset clears
the WDT and disables it.

11.7.3 WODT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The WDT

continues to count while the microcontroller is in idle mode. This means the user must service the
WDT during idle. One approach is to use a peripheral timer to generate an interrupt request when
the timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral

timer for the next service period, and puts the microcontroller back into idle.

11.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and to hold
its count. The WDT resumes counting from where it left off if the powerdown mode is terminated
by INTO/INT1. To ensure that the WDT does not overflow shortly &xé@ing thepowerdown

mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled if the
powerdown mode is terminated by a reset.

11-18

intel.

12

Programmable
Counter Array

intel.

CHAPTER 12
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripherat@8the 8
that performs a variety of timing and counting operations, including pulse width modulation
(PWM). The PCA provides the capability for a firmware watchdog timer (WDT).

12.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com-
pare/capture modules. The timer/counter serves as a common time base and event counter for the
compare/capture modules, distributing the current count to the modules by means of a 16-bit bus.
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCARH/CCAPXL, store values for the modules (see Figli2el). Additonal

SFRs provide control and mode select functions as follows:

* The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figure 12-7 on gab@dnd
Figure 12-8 on page 12-14.

* Five PCAmodulemode registers (CCAPN) specify the operating modes of the
compare/capture modules. See Figure 12-9 on page 12-16.

For a list of SFRs associated with the PCA, see Table 12-1. For an SFR address map, see Table
3-5 on page 3-16. Port 1 provides external /O for the PCA on a shared basis with other functions.
Table 12-2identifies theport pins associated with the timer/counter and compare/captude

ules. When not used for PCA I/O, these pins can be used for standard 1/O functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com-
pare, or pulse width modulation. Module 4 only also has ahvdaty-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vector. The
EC bit in the IENO special function register is a global interrupt enable for the PCA. Capture
events, compare events in some modes, and PCA timer/counter overflows all set flags in the
CCON register. Setting the overflow flag (CF) generates a PCA interrupt request if the PCA tim-
er/counter interrupt enable bit (ECF) in the CMOD register is set (Fig#. Seing a com-
pare/capture flag (CG§f generates a PCA interrupt request if the E€{@Eerrupt enable bit in

the corresponding CCAPMegister is set (Figurd®-2and12-3). For alescription of the @30
interrupt system see Chapter 6, “Interrupt System”.

12-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

12.1.1 Alternate Port Usage

PCA modules 3 and 4 share port pins with the real-time wait state and address functions as fol-
lows:

e PCA module 3 — P1.6/CEX3/WAIT#
¢ PCA module 4 — P1.7/CEX4/A17/WCLK

When the real-time wait state functions are enabled (using the WCON register), theotatresp
ing PCA modules are automatically disabled. Configuring %888 to use address line A17
(specified by UCONFIGO, bits RD1:0) overrides the PCA module 3 and WCLK functions. When
a real-time wait state function is enabled, do not use the corrésiy PCA module.

NOTE
It is not advisable to alternate between PCA operations and real-time wait state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK). See
“External Bus Cycles with Real-time Wait States” on page 16-11.

12.2 PCA TIMER/COUNTER

Figure 12-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL special
function register pair operates as a 16-bit timer/counter. The selected input increments the CL
(low byte) register. When CL overflows, the CH (high byte) register increments after two oscilla-
tor periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) gener-
ating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPS1 and CPSO bits in the CMOD register select one of four signals as the input to the
timer/counter (Figure 12-7 on page 12-13):

* F..«/6. Provides a clock pulse at S5P2 of every peripheral cycle. With PLLSEL2:0 = 100
and Rsc = 12 MHz, the timer/counter increments every 1000 nanoseconds. With
PLLSEL2:0 = 110 and k.= 12 MHz, the timer/counter increments every 500
nanoseconds.

* F..«/2. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With
PLLSEL2:0 = 100 and .= 12 MHz, the timer/counter increments every 333 1/3
nanoseconds. With PLLSEL2:0 = 110 angl /= 12 MHz, the timer/counter increments
every 166 2/3 nanoseconds.

¢ Timer 0 overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer 0 overflows. This selection provides the PCA with a programmable frequency input.

¢ External signal on P1.2/ECI. The CPU samples the ECI pin at S1P2, S3P2, and S5P2 of
every peripheral cycle. The first clock pulse (S1P2, S3P2, or S5P2) that occurs following a
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection ig /8.

For a description of peripheral cycle timing, see “Clock and Reset Unit” on page 2-9.

12-2

Int9|® PROGRAMMABLE COUNTER ARRAY

Setting theun control bit (CR in the CCON gister) turns the PCA timer/counter on, if the output

of the NAND gate (Figuré2-1)equals logic 1. The PCA timer/counter continues to opeate

ing idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the contents of
the CH and CL registers at any time. However, writing to them is inhibited while they are counting
(i.e., when the CR bit is set).

Compare/Capture
Modules

Module 0 [] P1.3/CEX0
Module 1 [] P14aicEX1
“Goa | [odie |
Bus Module 2 [] P15/ICEX2
Module 3 [] P1.6/CEX3/WAIT#
® P1.7/CEX4/
) Al7/WCLK
Its
FcLk /6 ¢\
o1 Interrupt
FcLk 12 ———— CH : cL Request
. : CF
Timer 0 Overflow —10_| (8 Bits) : (8 Bits) I:> >
p1.2/ECI [—21— PCA CCON.7
Timer/Counter Overflow

CMOD.2 CMOD.1 CMOD.7 CMOD.0

= Enable

PCON.0 CCON.6
Idle Mode Run Control

[cps1 | cpso [cioL | ECF
CR

A4162-04

Figure 12-1. Programmable Counter Array T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequencies at inputs 00 and 01 of the &Sector are twice that for PLLSEL2:0 = 100 (PLL off). Sabl@
2-4 on page 2-10.

12-3

8x930AXx, 8x930HXx USER’'S MANUAL

Table 12-1. PCA Special Function Registers (SFRs)

intel.

Mnemonic Description Address
CL PCA Timer/Counter. These registers serve as a common 16-bit timer or S:E9H
CH event counter for the five compare/capture modules. Counts Fo¢-/12, S:FOH
Fosc/4, timer 0 overflow, or the external signal on P1.2/ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

CCON PCA Timer/Counter Control Register. Contains the run control bit and S:D8H
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA S:D9H
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

CCAPOH PCA Module 0 Compare/Capture Registers . This register pair stores the S:FAH

CCAPOL comparison value or the captured value. In the PWM mode, the low-byte S:EAH
register controls the duty cycle of the output waveform.

CCAP1H PCA Module 1 Compare/Capture Registers . This register pair stores the S:FBH

CCAPILL comparison value or the captured value. In the PWM mode, the low-byte S:EBH
register controls the duty cycle of the output waveform.

CCAP2H PCA Module 2 Compare/Capture Registers . This register pair stores the S:FCH

CCAP2L comparison value or the captured value. In the PWM mode, the low-byte S:ECH
register controls the duty cycle of the output waveform.

CCAP3H PCA Module 3 Compare/Capture Registers . This register pair stores the S:FDH

CCAP3L comparison value or the captured value. In the PWM mode, the low-byte S:EDH
register controls the duty cycle of the output waveform.

CCAP4H PCA Module 4 Compare/Capture Registers . This register pair stores the S:FEH

CCAPA4L comparison value or the captured value. In the PWM mode, the low-byte S:EEH
register controls the duty cycle of the output waveform.

CCAPMO PCA Compare/Capture Module Mode Registers. Contain bits for S:DAH

CCAPM1 | selecting the operating mode of the compare/capture modules and S:DBH

CCAPM2 | enabling the compare/capture flag. See Table 12-3 on page 12-15 for mode S:DCH

CCAPM3 | select bit combinations. S:DDH

CCAPM4 S:DEH

Table 12-2. External Signals

Signal - Alternate

Name Type Description Function
ECI PCA Timer/counter External Input . This signal is the external P1.2

clock input for the PCA timer/counter.

CEXO0 I/O | Compare/Capture Module External I/O. Each compare/capture P1.3
CEX1 module connects to a Port 1 pin for external I/O. When not used by P14
CEX2 the PCA, these pins can handle standard 1/O. P1.5
CEX3 P1.6/WAIT#
CEX4 P1.7/A17/WCLK

12-4

Int9|® PROGRAMMABLE COUNTER ARRAY

12.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPXH/CCAPXxL), a 16-bit comparator, and various logic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, dhebyteregister controls the duty cy-

cle of the output waveform.

The logical configuration of a compare/captoredule depends on its mode of operation (Figures
12-2 through 12-5). Each module can be independently programmed for operation in any of the
following modes:

¢ 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

¢ Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module 4
only), or 8-bit pulse width modulation.

* No operation.

Bit combinations programmed into a compare/capture module’s mgid¢er(CCAPMK) deter-

mine the operating mode. Figure 12-9 on pb2el 6 provides bit daitions and Table 12-3 lists

the bit combinations of the available modes. Other bit combinations are invalid and produce un-
defined results.

The compare/capture modules perform their programmed functions when their common time
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit in the
CCON register. To disable any given module, program itfemo operation mode. Theaoe-

rence of a capture, firmware timer, or high-speed output event in a compare/capture module sets
the module’'s compare/capture flag (G the CCON register and generates a PCA interrupt
request if the corresponding enable bit in the CCARjister is set.

The CPU can read or write the COA&Pand CCARL registers at any time.

12.3.1 16-bit Capture Mode

The capture mode (Figure 12-2) provides the PCA with the ability to measure periods, pulse

widths, duty cycles, and phase differences at up to five separate inputs. External I/O pins CEX0
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a
compare/capture module programmed for the capture mode detects the specified transition, it
captures the PCA timer/counter value. This records the time at which an external event is detect-
ed, with a resolution equal to the timer/counter clock period.

To program a compare/capture module for the 16-bit capture mode, program the @#PP
CAPNXx bits in the module’s CCAPKIregister as follows:

¢ To trigger the capture on a positive transition, set CA&HR clear CAPX.
¢ To trigger the capture on a negative transition, set CA&Hd clear CAPR

* To trigger the capture on a positive or negative transition, set both CAPP>A&idixC

12-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 12-3 on page 12-15 lists the bit combradifor selecting module modes. For modules in
the capture mode, detection of a valid signal transition at the 1/0 pinXGaXises hardware to
load the current PCA timer/counter value into the compare/capture registersXGCAAPXL)

and to set the module’s compare/capture flag (@Fthe CCON register. If the corresponding
interrupt enable bit (ECG{ in the CCAPM register is set (Figure 12-9 on pa@:16), the PCA
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user must clear
the flag in firmware. A subsequent capture by the same module overwrites the existing captured
value. To preserve a captured value, save it in RAM with the interrupt service routine before the
next capture event occurs.

PCA Timer/Counter

Count CH : CL
(8 Bits) | (8 Bits)
l

Capture -\ \

e
~

CEXx
External I/0 \/ \/
17
1
I
CCAPxH : CCAPxL

l

x=0,1,230r4

X = Don't Care Y g;%rl;gg

CCFx N >
CCON Register l/I Enable
X (0] CAPPx | CAPNx (0] (0] (0] ECCFx
CCAPMx Mode Register 0

A4163-02

Figure 12-2. PCA 16-bit Capture Mode

12-6

Int9|® PROGRAMMABLE COUNTER ARRAY

12.3.2 Compare Modes

The compare functioprovides the apability for operatinghe five modules as timers, event
counters, or pulse width modulators. Four modes employ the compare function: 16-bit firmware
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of these, the
compare/capture module continuously compares the 16-bit PCA timer/counter value with the 16-
bit value pre-loaded into the module’s CCAPxH/CCAPXL register pair. In the PWM mode, the
module continuously compares the value in the low-byte PCA timer/counter register (CL) with
an 8-bit value in the CCAPxL module register. Comparisons are made three times per peripheral
cycle to match the fastest PCA timer/counter clocking raje/#). For a description of periph-

eral cycle timing, see “Clock and Reset Unit” on page 2-9.

Setting the ECOM bit in a module’s mode register (CCAPMX) selects the compare function for
that module (Figure 12-9 on pag2-16). To use the modules in tbempare modes, observe the
following general procedure:

1. Select the module’s mode of operation.

Select the input signal for the PCA timer/counter.

Load the comparison value into the module’s compare/capture register pair.
Set the PCA timer/counter run control bit.

o > 0N

After a match causes an interrupt, clear the module’s compare/capture flag.

12.3.3 16-bit Software Timer Mode

To program a compare/capture module for1Bebit software timer mde (Figurel2-3), set the
ECOMx and MATXx bits in the module’s CCAPMKregister. Table 12-3 lists the bit combinations
for selecting module modes.

A match between the PCA timer/counter and the compare/capture registers¢@CERPxL)

sets the module’s compare/capture flag (€ @Rhe CCON register). This generates an interrupt
request if the corresponding interrupt enable bit (ECiBRhe CCAPM register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the user must
clear the flag in firmware. During the interrupt routine, a new 16-bit compare value can be written

to the compare/capture registers (CGAFCCAPXL).

NOTE
To prevent an invalid match while updating these registers, user firmware
should write to CCAPXL first, then CCAPxH. A write to CCAPclears the
ECOMKX bit disabling the compare function, while a write to CQARets the
ECOMKX bit re-enabling the compare function.

12-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Compare/Capture
PCA Timer/Counter Module
Count T .
Input CH ! cCL CCAPxH ! CCAPXL
— > 8Bits) | (8Bits) | | (8Bits) | (8 Bits)
l l
{} Toggle
16-Bit Match N
_——> Comparator % —{Jcexx
Interrupt
Enable Request
CCFx
CCON
X ECOMx 0 0 MATx | TOGx 0 ECCFx
A CCAPMx Mode Register 0
Reset
Write to
CCAPxL X = Don't Care
o x=0,1,2,3,4
For software timer mode, set ECOMx and MATX.
Write to CCAPxH For high speed output mode, set ECOMx, MATx, and TOGx.
A4164-01

Figure 12-3. PCA Software Timer and Hi gh-speed Output Modes

12.3.4 High-speed Output Mode

The high-speed output mode (Figur2-3) generates an output signaltbggling the module’s

I/0 pin (CEXX) when a match occurs. This provides greater accuracy than toggling pins in firm-
ware because the toggle occheforethe interupt request isesviced. Thus, inteupt response

time does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the, NCAIM,

TOGx bits in the module’'s CCAPKIregister. Table 12-3 on page 12-15 lists the bit combinations

for selecting module modes. A match between the PCA timer/counter and the compare/capture
registers (CCARH/CCAPXxL) toggles the CEX pin and sets the module’s compare/capture flag
(CCFxin the CCON register). By setting or clearing the G} in firmware, the user selects
whether the match toggles the pin from low to high or vice versa.

The user also has the option of generating an interrupt request when the match occurs by setting
the corresponding interrupt enable bit (EGQ@the CCAPM register). Since hardware does not

clear the compare/capture flag when the interrupt is processed, the user must clear the flag in
firmware.

12-8

Int9|® PROGRAMMABLE COUNTER ARRAY

If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCARH/CCAPXL).

NOTE
To prevent an invalid match while updating these registers, user firmware
should write to CCAPXL first, then CCAPxH. A write to CCAPclears the
ECOMKX bit disabling the compare function, while a write to CQARets the
ECOMKX bit re-enabling the compare function.

12.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) prowdes the means to recover from routines that do not complete suc-
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec-
trostatic discharges, etc., or where high reliability is required.

In addition to the 8930’s 14-bit hadware WDT, the PCA provides a programmable-frequency
16-bit WDT as a mode option on compare/capture module 4. This mode generates a device reset
when the count in the PCA timer/counter matches the value stored in the module 4 compare/cap-
ture registers. A PCA WDT reset has the same effect as an external reset. Module 4 is the only
PCA module that has the WDT mode. When not programmed as a WDT, it can be used in the
other modes.

To program module 4 for the PCA WDT mode (Figure 12-4), set the ECOM4 and MAT4 bits in
the CCAPMA4 register and the WDTE bit in the CMOD register. Table 12-3 lists the bit combina-
tions for selecting module modes. Also select the desired input for the PCA timer/coymier by
gramming the CPS0 and CPS1 bits in the CMOD register (see Figure 12-7 on page 12-13). Enter
a 16-bit comparison value in the compare/capture registers (CCAPARAL]. Enter a 16-bit

initial value in the PCA timer/counter (CH/CL) or use the reset value (0000H). The difference
between these values multiplied by the PCA input pulse rate determines the running time to “ex-
piration.” Set the timer/counter run control bit (CR in the CCON register) to start the PCA WDT.

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset,
the user has three options:

¢ periodically change the comparison value in CCAP4H/CCAPA4L so a match never occurs
¢ periodically change the PCA timer/counter value so a match never occurs

¢ disable the module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.

12-9

8x930AXx, 8x930HXx USER’'S MANUAL

Compare/Capture

-

Write to CCAP4H

PCA Timer/Counter Module
Count T .
Input CH ! cCL CCAP4H! CCAPAL
— > 8Bits) | (8Bits) | | (8Bits) | (8 Bits)
l l
:> 16-Bit Match N
Comparator I/I > PCA WDT Reset
Enable| WDTE
CMOD.6
X ECOM4 0 0 1 X 0 X
CCAPM4 Mode Register
Reset
Write to
CCAPAL " X =Don't Care

A4165-01

12.3.6 Pulse Width

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 12-5). The modulated output, which has a pulse width resolution
of eight bits, is available at the CkX}in. The PWM output can be used to convert digital data to

an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously compared

Figure 12-4. PCA Watchdog Timer Mode

Modulation Mode

with the value in the low byte of the compare/capture register (QCARVhen CL < CCARL,
the output waveform (Figure 12-6) is low. When a match occurs (CL = QQAfhe output

waveform goes high and remains high until CL rolls over from FFH to O0H, ending the period.

At roll over the output returns to a low, the value in CQARs loaded into CCAR, and a new

period begins.

12-10

Int9|® PROGRAMMABLE COUNTER ARRAY

CCAPxH
CL rollover from FFH to O0H loads
CCAPxH contents into CCAPxL
X = Don't Care CCAPxL
x=0,1,2,3,4.
8
ngr
8 <
CF 8-Bit CL < CCAPxL cEx
(8 Bits) Comparator X
CL = CCAPxL
Enable | "
[[
X ECOMx 0 0 0 0 PWMx 0
CCAPMx Mode Register 0

A4166-01

Figure 12-5. PCA 8-bit PWM Mode

The value in CCARL determines the duty cycle of the current period. The value in GBAlE-
termines the duty cycle of the following period. Changing the value in GCAfPer time mod-
ulates the pulse width. As depicted in Figure 12-6, the 8-bit value in €ICédh vary from O
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE
To change the value in CCAP without glitches, write the new value to the
high byte register (CCA®). This value is shifted by hardware into CCAP
when CL rolls over from FFH to O0H.

The frequency of the PWM output equals the frequency of the PCA timer/counter input signal
divided by 256. The highest frequency occurs when tag&input is selected for the PCA tim-
er/counter. For PLLSEL2:0 = 100 angsg = 12 MHz, this is 11.7 KHz. For PLLSEL2:0 = 110
and Rysc = 12 MHz, this is 23.4 KHz.

12-11

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

To program a comparefgre module for the PWM mode, set the ECOiid PWNM bits in the
module’s CCAPM register. Table 12-3 on pad@-15 lists the bitombinations for selecting
module modes. Also select the desired input for the PCA timer/counter by programming the
CPSO0 and CPS1 bits in the CMOD register (see Fib2+&). Enter an 8-bit value in CCAPXL to
specify the duty cycle of the first period of the PWM output waveform. Enter an 8-bit value in
CCAPxH to specify the duty cycle of the second period. Set the timer/counter run control bit (CR
in the CCON register) to start the PCA timer/counter.

Duty
CCAPxL Cycle Output Waveform
1
255 04% | | | |
1
230 10%] 1 1 I
1
2 s ML L1
1
25 90% 0'|_|]] |
0 100% (1)
A4161-01

Figure 12-6. PWM Variable Duty Cycle

12-12

intel.

PROGRAMMABLE COUNTER ARRAY

CMOD

7

Address: S:D9H
Reset State: 00XX X000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

CIDL

WDTE

_ _ H — CcPS1 CPS0 ECF

Bit
Number

Bit
Mnemonic

Function

7

CIDL

PCA Timer/Counter Idle Control:

CIDL =1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

WDTE

Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

2:1

CPS1:0

PCA Timer/Counter Input Select:
CPS1 CPSO

0 0 Fek /6

0 1 Fo /2

1 0 Timer O overflow

1 1 External clock at ECI pin (maximum rate = F,4. /8)

ECF

PCA Timer/Counter Interrupt Enable:

ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 12-7. CMOD: PCA Timer/Counter Mode Register

12-13

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CCON

7

Address: S:D8H
Reset State: 00X0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

CF

CR

— CCF4 H CCF3 CCF2 CCF1 CCFO

Bit
Number

Bit
Mnemonic

Function

CF

PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or firmware but can be cleared only by firmware.

CR

PCA Timer/Counter Run Control Bit:
Set and cleared by firmware to turn the PCA timer/counter on and off.

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

4:0

CCF4:0

PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMXx register is set. Must be cleared by firmware.

12-14

Figure 12-8. CCON: PCA Timer/Counter Control Register

Int9|® PROGRAMMABLE COUNTER ARRAY

Table 12-3. PCA Module Modes

ECOMx | CAPPx | CAPNx | MATx | TOGx | PWMx | ECCFx Module Mode
0 0 0 0 0 0 0 No operation
X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXX
X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXX
X 1 1 0 0 0 X 16-bit capture on positive- or

negative-edge trigger at CEXx

1 0 0 1 0 0 X Compare: firmware timer
1 0 0 1 1 0 X Compare: high-speed output
1 0 0 0 0 1 0 Compare: 8-bit PWM
1 0 0 1 X 0 X Compare: PCAWDT
(CCAPM4 only) (Note 3)
NOTES:

1. This table shows the CCAPMXx register bit combinations for selecting the operating modes of the PCA
compare/capture modules. Other bit combinations are invalid. See Figure 12-9 for bit definitions.

2. X=0-4, X=Don't care.

3. For PCAWDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

12-15

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CCAPMx (x =0-4) Address: ggﬁgmg EBQ:
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: x000 0000B
PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value

or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

! 0
— ECOMx | CAPPx | CAPNx || MATx TOGx | PWMx | ECCFx
Bit Bit _

Number Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:

ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the firmware timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MAT x Match:

Set ECOMx and MAT x to implement the firmware timer mode. When
MATXx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGXx Toggle:

Set ECOMXx, MATXx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

Figure 12-9. CCAPM x: PCA Compare/Capture Module Mode Registers

12-16

intel. 1 3

Serial I/0O Port

intel.

CHAPTER 13
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter provides instructions for programming the serial port and generating the se-
rial I/O baud rates with timer 1 and timer 2.

13.1 OVERVIEW

The serial 1/0 port provides both synchronous and asynchronous communication modes. It oper-
ates as a universalsynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error dietecinultiprocessor communi-

cation, and automatic address recognition. The serial port also operates in a singlensyrsch

mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operatdsat two
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in “Baud Rates” on page 13-10.

NOTE

The baud rate calculations in this chapter are based on the valyg efffich
is a function of PLLSEL2:0. See Table 2-4 and Figure 2-6 on page 2-9.

The serial port signals are defined in Table 13-1, and the serial port special function registers are
described in Table 13-2. Figure 13-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD
pin. For the synchronous mode (mode 0), the UART outputs a clock sigtia @ixXD pin and

sends and receives messages on the RXD pin (Figure 13-1). The SBUF register, which holds re-
ceived bytes and bytes to be transmitted, actually consists of two physically different registers. To
send, firmware writes a byte to SBUF; to receive, firmware reads SBUF. The receive shift register
allows reception of a second byte before the first byte has been read fromtEBidver, if firm-

ware has not read the first byte by the time the second byte is received, the second byte will over-
write the first. The UART sets interrupt bits Tl and RI on transmission and reception, respectively.
These two bits share a single interrupt request and interrupt vector.

The serial port control (SCON) register (Figure 13-2) configures and controls the serial port.

13-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 13-1. Serial Port Signals

Function - Multiplexed
Name Type Description With
TXD (@) Transmit Data. In mode 0, TXD transmits the clock signal. In P3.1
modes 1, 2, and 3, TXD transmits serial data.
RXD 110 Receive Data. In mode 0, RXD transmits and receives serial P3.0
data. In modes 1, 2, and 3, RXD receives serial data.
Table 13-2. Serial Port Special Function Registers
Mnemonic Description Address
SBUF Serial Buffer . Two separate registers, accessed with same address S:99H
comprise the SBUF register. Writing to SBUF loads the transmit buffer;
reading SBUF accesses the receive buffer.
SCON Serial Port Control . Selects the serial port operating mode. SCON enables S:98H
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt
bits.
SADDR Serial Address . Defines the individual address for a slave device. S:A8H
SADEN Serial Address Enable. Specifies the mask byte that is used to define the S:B8H
given address for a slave device.

13.2 MODES OF OPERATION

The serial /O port can operate in one synchronous and three asynchronous modes.

13.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSb) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which cosggonds to a baud rate of,k/6. Figure 13-3 on pagt3-6

shows the timing for transmission and reception in mode 0.

13.2.1.1 Transmission (Mode 0)
Follow these steps to begin a transmission:
1. Write to the SCON register, clearing bits SM0, SM1, and REN.
2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the LSb (D0) onto the RXD pin. At S3P1 of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the

13-2

Int9|® SERIAL I/O PORT

tenth cycle, hardware drives the RXD pin high and asserts Tl (S1P1) to indicate the end of the
transmission.

13.2.1.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1, and Rl and set
the REN bit.

Hardware executes the write to SCON in the last p(@&R2) of a peripheral cycle (Figut8-3).

In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the first
clock-signal pulse, and the L$DO0) is sampled on the RXD pin at S5P2. The DO bit is then shift-

ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSb (D7) is shift-
ed into the shift register, and hardware asserts Rl (S1P1) to indicate a completed reception.
Firmware can then read the received byte from SBUF.

IB Bus
Write SBUF Read SBUF l: :l
™ [SBUF SBUF
(Transmit) (Receive)
Mode 0
Y Transmit Load SBUF
Receive
RxD D |V Shift Register
AN -« Interrupt
" Request
RI Tl
Serial I/0 SCON
Control
A4123-01

Figure 13-1. Serial Port Block Diagram

13-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

SCON Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SMm1 sMm2 REN ‘ ‘ TBS RB8 TI RI
Bit Bit .
Number Mnemonic Function
7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

SMO0 Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Firmware writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rat ef

0 0 0 Shift register Fok/6

0 1 1 8-bit UART Variable

1 0 2 9-bit UART Fed16tor Fe /3211
1 1 3 9-bit UART Variable

TThe baud rate calculations in this chapter are based on the value of F,
which is a function of PLLSEL2:0. See Table 2-4 and Figure 2-6 on page
2-9.

ftSelect by programming the SMOD bit in the PCON register (see
section “Baud Rates” on page 13-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

Figure 13-2. SCON: Serial Port Control Register

13-4

Int9|® SERIAL I/O PORT

SCON (Continued) Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN ‘ ‘ TB8 RB8 TI RI
Bit Bit Function
Number Mnemonic
2 RB8 Receiver Bit 8:

Mode 0: Not used.
Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

Figure 13-2. SCON: Serial Port Control Register (Continued)

13-5

8x930AXx, 8x930HXx USER’'S MANUAL

Transmit
D L[[L
S3P1 S6P1 I_”J I_
Write to
SBUF Jl_l G
S6P2
Shift I I | I
S6P2 S6P2 S6P2 S6P2
RXD | N_po X b1 Xp2 "peX b7/
S6P2 S6P2 ’
Tl » |
|
Receive S1P1
XD L[[L
S3P1 S6P1 I_”J I_
Write t
S”C%s |I | Set REN, Clear RI 3
S6P2
Shift I |] |
S6P2 S6P2 S6P2 S6P2
M n M A
RXD | L L (]
S6P2 S6P2 85|F>2 ‘
RI | »
S1P1
A4124-02
Figure 13-3. Mode 0 Timing
\ /DO><D1><D2><D3><D4><D5><D6><D7XD8>/
}(—E(Data Byte
Start Bit Ninth Data Bit (Modes 2 and 3 only)
Stop Bit
A2261-01

13-6

Figure 13-4. Data Frame (Modes 1, 2, and 3)

Int9|® SERIAL I/O PORT

13.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation:

* Mode 1.Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 13-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted
on the TXD pin and received on the RXD pin. When a message is received, the stop bit is
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1
or timer 2 (see “Baud Rates” on page 13-10).

* Modes 2 and 3Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 13-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSb
first), oneprogramnable ninth data bit, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— Inmode 2, the baud rate is programmable to 1/16 or 1/32 internal frequgncy, F

— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

13.2.2.1 Transmission (Modes 1, 2, 3)
Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SM0O and SM1 bits, and clear the
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

13.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, sbe REN bit in the SCON register. The actual reception is then ini-
tiated by a detected high-to-low transition on the RXD pin.

13.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the framing
bit error detection feature, set the SMODO bit in the PCON register (see Figure 15-1 on page
15-3). When this feature is enabled, the receiver checks each incoming data frame for a valid stop
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission
by two CPUs. If a valid stop bit is not found, the firmware sets the FE bit in the SCON register
(see Figure 13-2).

Firmware may examine the FE bit after each reception to check for data errors. Once set, only
firmware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot
clear the FE bit.

13-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

13.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable

this feature, set the SM2 bit in the SCON register (see Figure 13-2). When the multiprocessor
communication feature is enabled, the serial port can differentiate between data frames (ninth bit
clear) and address frames (ninth bit set). This allows the microcontroller to function as a slave
processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the
received address matches the slave’s address, the receiver hardware sets the RB8 bit and the R
bit in the SCON register, generating an interrupt.

NOTE
The ES bit must be set in the IENO register to allow the RI bit to generate an
interrupt. The IENO register is described in Chapter 8, Interrupts.

The addressed slave’s firmware then clears the SM2 bit in the SCON register and prepares to re-
ceive the data bytes. The other slaves are unaffected by these data bytes because they are waitin
to respond taheir own addresses.

13.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (i.e., the SM2 bit is set in the SCON register).

Implemented in hardware, automatic address recognition enhances the multiprocessor communi-
cation feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configu-
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received
command frame address matches the device’s address and is terminated by a valid stop bit.

NOTE
The multiprocessor communication and automatic address recognition features
cannot be enabled in mode O (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identifiedjlweaaddress and laroad-
castaddress.

13-8

Int9|® SERIAL I/O PORT

13.5.1 Given Address

Each device has andividual address that is specified in the SADDR registerIABDEN reg-

ister is a mask byte that contains don't-care bits (defined by zeros) to form the dgveres-

dress. These don't-care bits provide the flexibility to address one or more slaves at a time. To
address a device by its individual address, the SADEN mask byte miktbé&111 Théollow-

ing example illustrates how a given address is formed:

SADDR = 0101 0110
SADEN = 1111 1100
Given = 0101 01XX

The following is an example of how to use given addresses to address different slaves:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 11111010 SADEN = 1111 1101
Given = 1111 0X0X Given = 1111 00X1

Slave B: SADDR = 11110011

SADEN = 11111001

Given = 1111 0XX1

The SADEN byte is selected #uat each slave may be addressed separately. For Slave A, bit O
(the LSb) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A only,
the master must send an address where bit 0 is clearl(el§§Q000).

For Slave A, bit 1 is a 0; for Slaves B and C, bit 1de@’t-care bit. Tacommunicate with Slaves
B and C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g.,
1111 0011).

For Slaves A and B, bit 2 isdon’t-care bit; for Slave C, bit 2 is a 0. To communicate with Slaves
A and B, but not Slave C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 set
(e.g.,11110101).

To communicate with Slaves A, B, and C, the master must send an address with bit 0 set, bit 1
clear, and bit 2 clear (e.d.1110001).

13.5.2 Broadcast Address

A broadcastaddress is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-care bits, e.g.:

SADDR 0101 0110
SADEN 1111 1100
(SADDR) OR (SADEN) = 1111 111X

The use of don't-care bitsovides flibility in defining the broadcast address, however, in most
applications, a broadcast address is OFFH.

13-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

The following is an example of using broadcast addresses:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 11111010 SADEN = 1111 1101
Broadcast = 1111 1X11 Broadcast = 1111 1111

Slave B: SADDR = 1111 0011

SADEN = 1111 1001

Broadcast = 1111 1X11
For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH.

13.5.3 Reset Addresses

On reset, the SADDR and SADEN registars initialized to 00H, that is, the given and broadcast
addresses arexxx xxxx (all don't-care bits). This ensures that the serial port is backwards-com-
patible with MC® 51 microcontrollers that do not support automatic address recognition.

13.6 BAUD RATES

You must select the baud rate for the serial port transmitter and receiver when operating in modes
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 13-3 summarizes the baud rates that can be used for the
four serial I/0O modes.

NOTE
The baud rate calculations in this chapter are based on the valyg eftich

is a function of PLLSEL2:0. See Table 2-4 and Figure 2-6 on page 2-9.
13.6.1 Baud Rate for Mode 0

The baud rate for mode O is fixed g} F6.
Table 13-3. Summary of Baud Rates

Mode No. of Send and Receive Senq and Receive
Baud Rates | atthe Same Rate | at Different Rates

0 1 N/A N/A

1 Many 1t Yes Yes

2 2 Yes No

3 Many 1t Yes Yes

Tt Baud rates are determined byedlow of timer 1 and/or timer 2.

13-10

Int9|® SERIAL I/O PORT

13.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by tHe[EMbit in the PCON register (Figure
15-1 on page 15-3). The following expression defines the baud rate:

SMOD1 % FCLK

Serial /0 Mode 2 Baud Rate = 2 =5

13.6.3 Baud Rates for Modes 1 and 3

In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

SMoD1 Timer 1 Overflow Rate

Serial /0 Modes 1 and 3 Baud Rate = 2 3

13.6.3.2 Selecting Timer 1 as the Baud Rate Generator
To select timer 1 as the baud rate generator:

¢ Disable the timer interrupt by clearing the ET1 bit in the IENO register (Figure 6-12 on page
6-25).

* Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 11-5 on page 11-7).

* Select timer mode 0-3 by programming the M1 and MO bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD
= 0010B). The resulting baud rate is defined by the following expression:

SMOD1 % FCLK
16 x12x[256 — (TH1)]

Serial I/0 Modes 1 and 3 Baud Rate = 2

Timer 1 can generate very low baud rates with the following setup:
¢ Enable the timer 1 interrupt by setting the ET1 bit in the IENO register.
* Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).
* Use the timer 1 interrupt to initiate a 16-bit firmware reload.

Table 13-4 lists commonly used baud rates and shows how they are generated by timer 1.

13-11

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 13-4. Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3

. Timer 1

Baud lg:;ﬂ:gy sMob1

Rate (Few) CIT# | Mode | Re0ad
125.0 Kbaud (max) t 12.0 MHz 1 0 2 FFH
62.5 Kbaud t 6.0 MHz 1 0 2 FFH
110.0 Baud 3.0 MHz 0 0 2 72H
110.0 Baud * 6.0 MHz 0 0 1 FEEBH

T The baud rate calculations in tisisapterare based on the value of g which is a function of

PLLSEL2:0. See Table 2-4 and Figure 2-6 agg2-9.

13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure
13-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by firmware.

The timer 2 baud rate is expressed by the following formula:

Timer 2 Overflow Rate

Serial /0 Modes 1 and 3 Baud Rate = 16

13.6.3.4 Selecting Timer 2 as the Baud Rate Generator

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bits in the T2CON register as shown in Table 13-5. (You may select differ-
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 into its
baud rate generator mode (Figure 13-5). In this mode, a rollover in the TH2 register does not set
the TF2 bit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the EXF2
bit in the T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2).
You can use the T2EX pin as an additional external interrupt by setting the EXENZ2 bit in T2CON.

NOTE
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

13-12

Int9|® SERIAL I/O PORT

Table 13-5. Selecting the Baud Rate Generator(s)

RCLCK | TCLCK Receiver Transmitter
Bit Bit Baud Rate Generator | Baud Rate Generator
0 0 Timer 1 Timer 1
0 1 Timer 1 Timer 2
1 0 Timer 2 Timer 1
1 1 Timer 2 Timer 2

Note that timer 2 increments every state time.(dFwhen it is in the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L" denotes the contents APRC
and RCAP2L taken as a 16-bit unsigned integer:

FCLK

16 x[65536 — (RCAP2H, RCAP2L)]

NOTE
When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Serial I/0 Modes 1 and 3 Baud Rate =

Table 13-6 lists commonly used baud rates and shows how they are generated by timer 2.

13-13

8x930AXx, 8x930HXx USER’'S MANUAL

Timer 1 Overflow

=

13-14

T See note on page page 13-1.

SMOD1
T
Feik 0 TH2 | TL2 \
D 1 (8 Bits) | (8 Bits) - > RX
T2 L P 0 16 Clock
CIT2#
TR2 RCLCK
1
. X
+16 P>
0 0 Clock
RCAP2H : RCAP2L
I TCLCK
N Interrupt
T2EX |]—)\ LD ExF2 [—— gl
EXEN2
Note availability of additional external interrupt.
A5205-01
Figure 13-5. Timer 2 in Baud Rate Generator Mode
Table 13-6. Timer 2 Generated Baud Rates
Internal
Baud Rate Frequency RCAP2H | RCAP2L
(FCLK)
750.0 Kbaud t1 12 MHz FF FF
375.0 Kbaud ft 6 MHz FFH FFH
9.6 Kbaud 1t 6 MHz FFH D9H
4.8 Kbaud 11 6 MHz FFH B2H
2.4 Kbaud 1t 6 MHz FFH 64H
1.2 Kbaud *t 6 MHz FEH C8H
300.0 baud t* 6 MHz FBH 1EH
110.0 baud tt 6 MHz F2H AFH
300.0 baud 3 MHz FDH 8FH
110.0 baud 3 MHz F9H 57H

intel.

14

Minimum Hardware
Setup

intel.

CHAPTER 14
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements ofaB@ &nd describes a minimum
hardware setup. Topics covered include pogrexind, clock source, and devieset. For param-
eter values, refer to the device data sheet.

14.1 MINIMUM HARDWARE SETUP

Figure 14-1 shows a minimum hardware setup that employs the on-chip oscillator for the system
clock and provides power-on reset. Control signals, Ports 0—3, and the USBepoat shown.

See “Clock Sources” on page 14-2 and “Power-on Reset” on page 14-7. PLLSEL.2:0 selects the
USB operating rate. Refer to Table 2-4 on page 2-10.

V,
8X930 —_
Microcontroller
VCC
AV
.
—— 1uF
XTAL1 RST _—I_
C1l
 —| I— PLLSELO }—
| T Cc2 PLLSEL1 p—o USB Rate Select
* XTAL2 PLLSEL2 }—
VSS
EA# 1

A4291-03

Figure 14-1. Minimum Setup

14.2 ELECTRICAL ENVIRONMENT

The &930 is a high-speed CHMOS device. To achieve satisfactory performance, its operating en-
vironment should accommodate the device signal waveforms without introducing distortion or
noise. Design considerations relating to device performance are discussed in this section. See the
device data sheet for voltage and current requirements, operating frequency, and waveform tim-

ing.

14-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

14.2.1 Power and Ground Pins

Power the 830 from a well-regulated power supply designed for high-speed digital loads. Use
short, low impedance connections to the poweyJ¥nd ground (¥g) pins.

14.2.2 Unused Pins

To provide stable, predictable performance, connect unused input piRg @ V.. Untermi-
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

14.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion, fodod lgoard

layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.01 uF bypass capacitors betwgamlf each Y4 pin. Place

the capacitors close to the device to minimize path lengths.

Multi-layer printed circuit boards with separatgMand ground planes help minimize noise. For
additional information on noise reduction, see Application Md?el25, “Designing Microcon-
troller Systems for Electrically Noisy Environments.”

14.3 CLOCK SOURCES

The &930 can use an external clock (Figure 14-3), an on-chip oscillator with crystal or ceramic
resonator (Figure 14-2), or an on-chip phase-locked oscillator (locked to the external clock or the
on-chip oscillator) as its clock source. For USB operating rates, see Table 2-4 on page 2-10.

14.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTAL1 to XTAL2 as the fre-
quency-determining element (Figure 14-2). The crystal operates in its fundamental mode as an
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de-
sign considerations include crystal specifications, operating temperature range, and parasitic
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. With high
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTALZ2 are protected by on-chip electrostatic discharge (ESD) devices, D1 and
D2, which are diodes parasitic to the RETS. They serve as clamps tg\and V4 Feedback
resistor R in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the PD
bit in the PCON register (Figure 15-1 on page 15-3) to disable the clock during powerdown.

Noise spikes at XTAL1 and XTAL?2 can disrupt microcontroller timing. To minimize coupling be-
tween other digital circuits and the oscillator, locate the crystal and the capacitors near the chip
and connect to XTAL1, XTAL2, and) with short, direct traces. To further reduce the effects of
noise, place guard rings around the oscillator circuitry aodrgl the metal crystal case.

14-2

Int9|® MINIMUM HARDWARE SETUP

For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Applications Note AP-155, “Oscillators for Microcontrollers,” in the Embedded
Applications handbook.

14.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic
resonator applications may require slightly different capacitor values and circuit configuration.
Consult the manufacturer’s data sheet for specific information.

To Internal
Timing Circuit

External
Internal

Quartz Crystal

- PD# —]
or Ceramic Resonator 'XTALL D1 :)O_
o r]
\J_ = i s
i b
— Re

c2 | XTAL2
Bl

A4143-03

Figure 14-2. CHMOS On-chip Oscillator

14.3.3 External Clock

To operate theX®30 from an external clock, connect the clock source to the XTAL1 pin as shown
in Figure 14-3. Leave the XTAL2 pin floating. The external clock driver can be a CMOS gate. If
the clock driver is a TTL device, its output must be connected.tadhfough a 4.7 ® pullup
resistor.

For external clock drive requirements, see the device data sheet. Flglishows the otk drive
waveform. The external clock source must meet the minimum high and low times énhd

TeLex) and the maximum rise and fall timeg,(J,, and T,,c,) to minimize the effect of external

noise on the clock generator circuit. Long rise and fall times increase the chance that external
noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 when power is
applied, due to the interaction between the internal amplifier and its feedback capacitance (i.e.,
the Miller effect). Once the input waveform requirements are met, the input capacitance remains
under 20 pF.

14-3

8x930AXx, 8x930HXx USER’'S MANUAL

External |> o
Clock

XTAL1

CMOS
Clock Driver

N/C ——] XTAL2

| VSS

Note: If TTL clock driver is used, connect a 4.7kQ pullup resistor from driver output to Ve

A4142-03
Figure 14-3. External Clock Connection for the 8 x930
TeLen TeHex
Vee—05--—-
ce 0.7 Ve
<<— Terex —>
045V 0.2Vec-0.1 \
T <
CHCL 4 TCLCL ;l
A4119-01

14-4

Figure 14-4. External Clock Drive Waveforms

Int9|® MINIMUM HARDWARE SETUP

14.4 RESET

A device reset initializes thex830 and vectors the CPU to address FF:0000H. A reset is a means
of exiting the idle and powerdown modes or recovering from firmware malfunctions, and could
be a USB reset initiated by the host or upstream hub.

NOTE
A reset is required after applying power.

To achieve a valid reset,.¥ must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for 64 clock cycleg{g4irter the oscillator has sta-
bilized.

Device reset is initiated in three ways:
¢ externally, by asserting the RST pin
¢ internally, if the hardware WDT or the PCA WDT expires
¢ over the bus, by a USB-initiated reset
These three reset mechanisms are ORed to create a single reset signakiigGhe 8

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold
start. A cold start reset (POF = 1) is a reset that occurs after power has been-gfhas Yallen

below 3V, so the contents of volatile memory are indeterminate. POF is set by hardware when
Vcrises from less than 3 V to its normal operating level. See “Power Off Flag” ol pe&ged

warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for exam-
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or power-
down modes.

14.4.1 Externally-Initiated Resets

To reset the 30, hold the RST pin at a logic high for at least 64 clock cycles,(e/While the
oscillator is running. Reset can be accomplished automatically at the time power is applied by ca-
pacitively coupling RST to ¥ (see Figure 14-1 and “Power-on Reset” on page 14-7). The RST
pin has a Schmitt trigger input and a plolivnresistor.

14.4.2 WDT-initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) generates a
reset signal. WDT initiated resets have the same effect as an external reset. See “Watchdog Tim-
er” on page 11-16 and section “PCA Watchdog Timer Mode” on page 12-9.

14-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

14.4.3 USB-initiated Resets

The &930 can be reset by the host or upstream hub if a reset signal is detected by the SIE. This
reset signal is defined as an SEO held longer than 2.5 ps. A USB-initiated reset will reset all of
the &930 hardware, even if the device is suspended (in which case it would first wake-up, then
reset). See “USB Power Control” on pdde8 for additbnal information about USB-related sus-

pend and resume.

A peripheral that is reset must be re-enumerated. This procedure is given in “Unenumerated
State” on page 9-2.

NOTE

You must ensure that the time from connection of this USB device to the bus
until the entire reset process is complete (including firmware initialization of
the 8930) is less than 10 ms. After 10 ms, the host may attempt to
communicate with thex®30 to set its device address. If th®30 firmware
cannot respond to the host at this time, the host may disable the device after
three attempts to communicate.

14.4.3.1 8x930Ax USB Reset Separation

The &930Ax features an optional USB reset that functiomdependently from the chip reset.
When the PCON1 SFR's URDIS bit is set, the MCS 251 core and peripherals will not reset when
a USB reset signal is detected. After a@3)Ax with URDIS set detects a USB reset signal, it
resets all the USB blocks (including the USB SFRs), sets the URST bitin PCON1, and generates
a USB reset interrupt. For a completeschiption of the optional USB reset for the980Ax, see
“8x930Ax USB Reset Separation” on page 6-18.

14.4.4 Reset Operation

When a reset is initiated, whether externally, over the bus, or by a WDT, the port pins are imme-
diately forced to their reset condition as a fail-safe precaution, whether the clackiisy or not.

The external reset signal and the WDT- and USB- initiated reset signals are combined internally.
For an external reset the voltage on the RST pin must be held high for 32 internal clock cycles
(Tck) after the oscillator and on-chip PLL stabilize (approximately 5 ms). For WDT and USB-
initiated resets, a 5-bit counter in the reset logic maintains the signal for the required 32 clock cy-
cles (T, x)- Refer to Table 2-4 on pagel0.

The CPU checks for the presence of the combined reset signal eygry\@hen a reset is de-
tected, the CPU responds by triggering the internal reset routine. The reset routine loads the SFRs,
including the ACC, B, stack pointer, and data pointer registers, with their reset values (see Table
3-5 on page 3-16). Resdbes not affect on-chip data RAM or the register file. (However, follow-

ing a cold start reset, these are indeterminate becayde¥ fallen too low or has been off.) Fol-
lowing a synchronizing operation and the configuration fetch, the CPU vectors to address
FF:0000. Figure 14-5 shows the reset timing sequence.

14-6

Int9|® MINIMUM HARDWARE SETUP

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first ALE
occurs 16 internal clock cycles{T) after the reset signal goes low. For this reason, other devices
can not be synchronized tioe internal timings of thex®30.

NOTE

Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the ®30 without a reset may improperly initialize the program
counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

14.4.5 Power-on Reset

To automatically generate a reset when power is applied, connect the RST pin {Q thie V
through a 1-pF capacitor as shown in Figure 14-1 on page 14-1.

When V. is applied, the RST pin rises tqg.\/ then decays exponentially as the capacitor charg-
es. The time constant must be such that RST remains high (abaventtwéf threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plug,648t power up,

V¢ should rise within approximately 10 ms. Oscillator start-up time is a function of the crystal
frequency.

During power up, the port pins are in a random state until forced to their reset state by the asyn-
chronous logic.

Reducing .. quickly to O causes the RST pin voltage to momentarily fall below 0 V. This voltage
is internally limited and does not harm the device.

RST f a\
s LT LT LI LT L LT LI LTL
Internal Reset
" emaRouetisnee —l |_59—
PSEN# |

ALE | | ’ | |
First ALE j

A4103-01

Figure 14-5. Reset Timing Sequence

14-7

intel.

15

Special Operating
Modes

intel.

CHAPTER 15
SPECIAL OPERATING MODES

This chapter describes the idle, powerdown, low-clock, and on-circuit emulation (ONCE) device
operating modes and the USB function suspend and resume operations. The SFRs associated with
these operations (PCON and PCONL1) are also described.

15.1 GENERAL

The idle, low clock, and powerdown moda® power reduction modes for use in applications
where power consumption is a concern. User instructions activate these modes by setting bits in
the PCON register. Program execution halts, but resumes when the mode is exited by an interrupt.
While in idle or powerdown modes, the. Mpin is the input for backup power.

Following chip reset, thex830 operates in low-clock mode, wherein the CPU and on-chip pe-
ripherals are clocked at a reduced rate until bus enumeration is accomplished. This ggdaces |
meet the 100 mA USB requirement.

Suspend and resume are low current modes used when the USB bus is idk9.3Dhenders sus-

pend when there is a continuous idle state on the bus lines for more than 3.0 msec. When a device
is in suspend state, it draws lelsart 500 pA from the bus. Once a device is in the suspend state,

its operation can be resumed by receiving resume signaling on the bus.

ONCE is a test mode that electrically isolates tk&38 from the system in which it operates.

Table 15-1 on page 15-6 lists the condition of the out pins for the various operating modes.

15.2 POWER CONTROL REGISTERS

The PCON special function register (Figure-1) provides twaontrol bits for the serial I/O
function; bits for selecting: the idle, low-clock, and powerdown modes, the power off flag, and
two general purpose flags.

The PCON1 SFR (Figurg5-2) proviles USB power control, including the USB global sus-
pend/resume and USB function suspend. The PCON1 SFR is discussed further in “USB Power
Control” on page 15-8.

15.2.1 Serial /O Control Bits

The SMODL1 bit in the PCON register is a factor in determining the serial /0O baud rate. See Fig-
ure 15-1 and “Baud Rates” on page 13-10.

The SMODO bit in the PCON register determines whether bit 7 of the SCON register provides
read/write access to the framing error (FE) bit (SMODO = 1) or to SMO, a serial I/O mode select
bit (SMODO = 0). See Figure 15-1 and Figure 13-2 on page 13-4 (SCON).

15-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

15.2.2 Power Off Flag

Hardware sets the Power Off Flag (POF) in PCON whgiriges from <3 V to > 3 V to indicate

that on-chip volatile memory is indeterminate (e.g., at power-on). The POF can be set or cleared
by firmware. After a reset, check the status of this bit to determine whether a cold start reset or a
warm start reset occurred (see “Reset” on pey®). After a cold start, uséirmware should

clear the POF. If POF = 1 is detected at other times, do a reset to re-initialize the chip, since for
V¢ < 3 V data may have been lost or some logic may have malfunctioned.

15.2.3 8x930Ax USB Reset Separation

The &930Ax features an optional USB reset that functiordependently from the chip reset.
When the PCON1 SFR's URDIS bit is set, the MCS 251 core and peripherals will not reset when
a USB reset signal is detected. After a@3)Ax with URDIS set detects a USB reset signal, it
resets all the USB blocks (including the USB SFRs), sets the URST bitin PCON1, and generates
a USB reset interrupt. For a completeschiption of the optional USB reset for the980Ax, see
“8x930Ax USB Reset Separation” on page 6-18.

15-2

Int9|® SPECIAL OPERATING MODES

PCON Address: S:87H
Reset State: 00xx 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial 1/O
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7 0
SMOD1 SMODO LC POF ‘ ‘ GF1 GFO PD IDL
Bit Bit .
Number Mnemonic Function
7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 13-10.

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See the SCON register (Figure 13-2 on page 13-4).

5 LC Low-clock Mode Enable:

Setting this bit forces the internal clock (F,) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns F to the
clock frequency determined by pins PLLSEL2:0.

4 POF Power Off Flag:

Set by hardware as V. rises above 3 V to indicate that power has been
off or V. had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by firmware.

3 GF1 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

Figure 15-1. PCON: Power Control Register

15-3

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

PCON1 Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and resume,
USB reset separation, and remote wake-up of the 8x930.

7 0
— — — URDIS ‘ ‘ URST RWU GRSM GSUS
Bit Bit Function
Number Mnemonic

75 — Reserved:
The value read from these bits are indeterminate. Write zeroes to these
bits.

4 URDIS USB Reset Disable:

(8x930Ax)

When clear by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 251 core, USB blocks and all
peripherals.

When set by firmware, the MCS 251 core and peripherals will not reset
when a USB reset signal is detected. Upon detecting a USB reset signal,
the 8x930Ax resets all the USB blocks (FIFOs, FIU, SIE, and
transceiver), sets the URST bhit and generates a USB reset interrupt
(refer to the description of URST).

URDIS Reserved:
(8X930Hx) The value read from these bits are indeterminate. Write zeroes to these
bits.
3 URST USB Reset Flag:
(8x930Ax) This flag will be set by hardware when a USB reset occurs, regardless of

whether the ESR bit in the IEN1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

URST Reserved:
(8x930Hx) The value read from these bits are indeterminate. Write zeroes to these
bits.
2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote

wake-up. Set by firmware to drive resume signaling on the USB lines to

the host or upstream hub. Cleared by hardware when resume signaling

is done.

NOTE: Do not set this bit unless the USB function is suspended
(GSUS =1 and GRSM = 0). See Figure 15-3 on page 15-11.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 15-2. PCON1: USB Power Control Register

15-4

intel.

SPECIAL OPERATING MODES

PCON1 (Continued)

7

Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and resume,
USB reset separation, and remote wake-up of the 8x930.

URDIS ‘ ‘ URST RWU GRSM GSUS

1 GRSM

Global Resume Bit:

1 =resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt’
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 15-3
on page 15-11.

0 GSUSs

Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.t During the global suspend ISR, firmware should
set the PD bit to enter the suspend mode. Cleared by firmware when a
resume occurs. See Figure 15-3 on page 15-11.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 15-2. PCON1: USB Power Control Register (Continued)

15-5

8x930AXx, 8x930HXx USER’'S MANUAL

Table 15-1. Pin Conditions in Various Modes
Reset Idle Mode Powerdown Mode Once
Mode
— Internal External | External | Internal External | External —
Program | Memory | Memory | Program | Memory | Memory
. Memory | (page (nonpage | Memory | (page (nonpage
Pin
mode) mode) mode) mode)
ALE Weak |1 1 1 0 0 0 Float
High
PSEN# Weak |1 1 1 0 0 0 Float
High
Port 0 Float Data Float Float Data Float Float Float
Pins
Port 1 Weak | Data Data Data Data Data Data Weak
Pins High High
Port 2 Weak | Data Float Weak Data Float Weak Weak
Pins High High High High
Port 3 Weak | Data Data Data Data Data Data Weak
Pins High High
SOF# Weak | Data Data Data Data Data Data Weak
High High
Dpo Float | Data Data Data Float Float Float Weak
High
Duvo Float | Data Data Data Float Float Float Float
Dp31 Float | Data Data Data Data J Data J Data J Float
Dys:1 Float | Data Data Data Data J Data J Data J Float
UPWEN# | Weak | Data Data Data Data Data Data Float
High

15-6

Int9|® SPECIAL OPERATING MODES

15.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to approximately 40% of
normal. In this mode, program execution halts. Idle mode freezes the clocks to thekBBWrat

states while the peripherals continue to be clocked (Figure 2-6 on page 2-9). The CPU status be-
fore entering idle mode is preserve. That is, the program counter, programwsiedusgister,

and register file retain their data for the duration of idle mode. The contents of the SFRs and RAM
are also retained. The status of the port pins depends upon the location of the program memory:

¢ Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are driving the port SFR value (Table 15-1).

¢ External program memoryhe ALE and PSEN# pins are pulled high; the port O pins are
floating; and the pins of ports 1, 2, and 3 are driving the port SFR value (Table 15-1).

NOTE

If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bit in the CMOD register (Figure 12-7 on page 12-13).

15.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. Tx@38 enters idle mode upon execution
of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last instruction
executed.

CAUTION

If the IDL bit and the PD bit are set simultaneously, tk@3® enters
powerdown mode.

15.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

* Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes wittsthestion
immediately following the instruction that activated idle mode. The general purpose flags
(GF1 and GFO in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GFO.

* Resetthe chip. See “Reset” on page 14-5. A logic high on the RST ain the IDL bit in
the PCON register directly and asynchronously. This restores the clocks to the CPU.
Programexecution momentarily resumes with the instruction immediately following the
instruction that activated the idle mode and may continue for a number of clock cycles
before the internal reset algorithm takes control. Reset initializes®#3® &nd vectors the
CPU to address FF:0000H.

15-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

15.4 USB POWER CONTROL

The &930 supports USB power control through firmeaincluding global suspend/resume and
remote wake-up. For flow charts of these operations, see Fi§tBeon page 15-11.

15.4.1 Global Suspend Mode

When a global suspend is detected by %838, the global suspend bit (GSUS in PCONL1) is set

and the global suspend/resume interrupt is generated. Global suspend is defined as bus inactivity
for more than 3 ms on the USB lines. A device that is already in suspend mode will not change
state. Hardware does not invoke any particular power-saving mode on detection of a global sus-
pend. You must implement power conttbtough firmware within the global suspend/resume

ISR.

NOTE
Firmware must set the PD bit (PCON.1 in Figure 15-1 on page 15-3).

For global suspend on a bus powered device, firmware must puae idito powerdown mode
to meet the USB limit of 500 pA. For consistency, it is recommended that you put self-powered
devices into powerdown mode as well.

15.4.1.1 Powerdown (Suspend) Mode

The powerdown mode places the980 in a very low power state. Powerdown mode stops the
oscillator and freezes all clocks at known states (Figure 2-6 on page 2-9). The @BUbrita

to entering powerdown mode is preserved, i.e., the program counter, progresmveia rejister,

and register file retain their data for the duration of powerdown mode. In addition, the SFRs and
RAM contents are preserved. The status of the port pins depends on the location of the program
memory:

* Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1, 2,
and 3 pins are reading data (Table 15-1 on page 15-6).

¢ External program memoryhe ALE and PSEN# pins are pulled low; the port 0 pins are
floating; and the pins of ports 1, 2, and 3 are reading data (T&8kl.

NOTE

V. may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, thagt M not reduced until power-
down is invoked.

15-8

Int9|® SPECIAL OPERATING MODES

15.4.1.2 Entering Powerdown (Suspend) Mode

To enter powerdown mode, sbe PCON register PD bit. The®0 enters powerdown mode
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is the
last instruction executed.

CAUTION
Do not put the #8930 into powerdown mode unless the USB suspend signal is
detected on the USB lines (GSUS = 1). Otherwise, the device will not be able
to wake up from powerdown mode by a resume signal sent through the USB
lines. See “USB Power Control” on page 15-8.

15.4.1.3 Exiting Powerdown (Suspend) Mode

CAUTION

If V .. was reduced during the powerdown mode, do not exit powerdown until
V¢ is restored to the normal operating level.

There are two ways (other than USB signaling) to exit the powerdown mode:

1. Generate an enabled external interrupt. The interrupt signal must be held active long
enough for the osciltar to restart and stabilize (normally less than 10 ms). Hardware
clears the PD bit in the PCON register which starts the oscillator and restores the clocks to
the CPU and peripherals. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the
instruction immediately following the instruction that activated pmown mode.

To enable an external interrupt, set the IEN§ister EXO0 and/or EX1 bit[s]. The external
interrupt used to exit powerdown mode must be configured as level-sensitive and must be
assigned the highest priority. Holding theeimtpt pin (INTO# or INT1#) low restarts the
oscillator and bringing the pin high completes the exit. The duration of the interrupt signal
must be long enough to allow the oscillator to stabilize (normally less than 10 ms).

2. Generate a reset. See “Reset” on page 14-5. A logic high on the RST pin clears the PD bit
in the PCON register directly and asyrmiously. This stds the oscillator and restores
the clocks to the CPU and peripher&sogramexecution momentarily resumes with the
instruction immediately following the instruction that activated pmown and may
continue for a number of clock cycles before the internal reset algorithm takes control.
Reset initializes theX®30 and vectors the CPU to address FF:0000H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powesdn mode should not write to a port pin or to the
external RAM.

15-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

15.4.2 Global Resume Mode

When a global resume is detected by tk@3®, the global resume bit (GRSM of PCON1) is set,

the global suspend bit (GSUS of PCONL1) is cleared, and the global suspend/restnng iste
generated. As soon as resume signaling is detected on the USB lines, the oscillator is restarted. A
resume condition is defined as a “J to anything” transition. This could be a K transition, or reset
signaling on the root port. For theB0Hx, a resume condition could be an enabled downstream
port or connect/disconnect of a downstream port in the disconnected, disabled, or suspended
states.

Upon detection of a resume condition, tx®30 applies power to the USB transcesye¢he crys-

tal oscillator, and the PLL (although the PLL output is still gated-off). The device begins timing
two different time points, T1 and T2, as described in Chapter 11 bfitiversal Serial Bus Spec-
ification.

After the clocks are restarted, the CPU program continues execution from where it was when the
device was put into powerdown mode. The device then services the resume interrupt®ervice
tine. After executing the resume ISR, thé®80 continues operation from the point where it was
interrupted by the suspend interrupt.

15.4.3 USB Remote Wake-up

The 8030 can initiate resume signaling to the USB lines through remote wake-up of the USB
function while it is in powerdown/idle mode. Whilepowerdown moderemote wake-up has to

be initiated througlassertion of an enabled external interrupt. The exterretinit has to be en-
abled and it must be configured with level trigger and with higher priority than a Suspend/Resume
interrupt. A function resume restarts the clocks to %838 and program exedan branches to

an external interrupt service routine.

Within this external interrupt service routine, you must ensure GRSM = 0. If GRSM is clear, set
the remote wake-up bit (RWU in PCON1 — Figure 15-2) to drive resume signaling on the USB
lines to the host or upstream hub (as well as to the enabled downstream ports X8B€Héx)3

After executing the external ISR, tpeogramcontinues execution from where it was put into
powerdown mode and the®30 resumes normal operation.

The procedure is similar for remote wake-up initiated from idle mode. For idle mode, enabled
interrupts from the USB function should also initiate wake-up.

NOTE

Do not initiate a remote wake-up (by setting the RWU bit in PCON1) prior to
5ms after the last bus activity is detected (2ms afterx88@®-x is
suspended).

15-10

SPECIAL OPERATING MODES

Suspend Command

Y

Host sends Suspend
down USB

Remote Wake-up using
an external interrupt

Y

Hold external interrupt pin
(INTO# or INT1#) low until
oscillator stabilizes.
Normally 10ms or less

Suspend is detected by
8X930 setting GSUS
and causes interrupt

!

Y

External ISR entered |

Suspend ISR should
shut down all
external peripherals

Y

External ISR serviced |

Y

!

RETI (from external ISR) |

Suspend ISR sets PD bit
T (GSUS must not
be cleared)

!

Y

Setting PD bits causes
8X930 to enter
powerdown mode.
Entire function must draw

less than 500 pA from USB.

Program returns to
command immediately
following the 'setb PD*
command in the original

Suspend ISR

Suspend Mode Entered

!

Resume Command
from Host

Host sends Resume
down bus

!

8X930 detects resume,
hardware sets GRSM,
clears GSUS and
starts oscillator

Y

When oscillator stabilizes,
program begins execution
at location immediately
following the
‘'setb PD' command.

T If GSUS is cleared, the 8X930 will not be able to detect resume signaling from the host.

A5089-02

Figure 15-3. Suspend/Resume Program with/without Remote Wake-up

15-11

8x930AXx, 8x930HXx USER’'S MANUAL In

(continued) (continued)

GRSM =1

GRSM bit = 0?
t

GRSM =0
Y

| Software sets RWU bit | Global Resume already Y

GSUS cleared by

applied by host. —)l Software clears GRSM |

Y hardware. No need to send
Remote Wake-up to host.

Hardware clears GSUS bit |

Y v
au?o\:vnl;tiv(\:,glllysviren > Software enables
- !
RESUME signaling is done external peripherals

!

RETI
(from suspend ISR)

T Check to see if host has driven a resume onto the bus before function drives resume onto bus.

A5090-01

Suspend/Resume Program with/without Remote Wake-up (Continued)

15-12

Int9|® SPECIAL OPERATING MODES

15.5 LOW-CLOCK MODE

Low-clock mode is the default operation modetfar 8930 upon reset. After reset, the CPU and
peripherals (excluding the USB module) default to a 3 MHz clock rate. The USB module always
operates at the clock rate selected by pins PLLSEL2:0. Low-clock mode ensures that the |
drawn by the #8930, while in the unenumerated state following chip reset, is less than one unit
load (100 mA).

After USB enumeration (and given that the request for more than one unit lgadsafdanted),
firmware can clear the LC bit in PCON to clock the CPU and on-chip peripherals at the rate se-
lected by pin PLLSEL2:0.

15.5.1 Entering Low-clock Mode
Low-clock mode can be invoked through firmwagytime the device is unconfigured by the
host PC. To invoke low-clock mode, set the LC bit in the PCON register (Figure 15-1).

NOTE
The device reset routine sets the LC bit placing #®3@8 in low-clock mode.

15.5.2 Exiting Low-clock Mode

To switch the clock of the CPU and the peripherals to the hardware-selected clock rate, clear the
LC bit in the PCON register (Figulés-1). The hardware clock rate selection determines the high-
est operating clock rate for theg30.

15.6 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and dé&l3@gttased
systems without removing the chip from the circuit board. A clamp-on emulator or test CPU is
used in place of thex930 which is electrically isolated from the system.

15.6.1 Entering ONCE Mode
To enter the ONCE mode:

1. Assert RST to initiate a device reset. See “Externally-Initiated Resets” on page 14-5 and
the reset waveforms in Figure 14-5 on page 14-7.

2. While holding RST asserted, apply and hold logic levels to I/0 pins as follows: PSEN# =
low, P0.7:5 = low, P0.4 = high, P0.3:0 = low (i.e., port 0 = 10H).
3. Deassert RST, then remove the logic levels from PSEN# and port 0.

These actions cause thed80 to enter the ONCE mode. Port 1, 2, and 3 pins are weakly pulled
high and port 0, ALE, and PSEN# pins are floating (Table 15-1 on page 15-6). Thus the device is
electrically isolated from the remainder of the system which can then be tested by an emulator or
test CPU. Note that in the ONCE mode the device oscillator remains active.

15-13

8x930AXx, 8x930HXx USER’'S MANUAL

15.6.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

15-14

intel.

16

External Memory
Interface

intel.

CHAPTER 16
EXTERNAL MEMORY INTERFACE

This chapter covers various aspects of the external memory interface. It describes the signals as-
sociated with external meory operations, page mode/nonpage mode dparatnd external bus

cycle timing (for normal aesses, accesses with configurable wait states, accesses with real-time
wait states, and configuration byte accesses). This chapter also describes the real-time wait state
register (WCON), gives the status of the pins for ports PO and P2 during bus cycles and bus idle,
and includes several external memory design examples.

16.1 OVERVIEW

The &930 interfaces with a variety of external memory devices. It can be configured to have a
16-bit, 17-bit, or 18-bit external address bus. Data transfer operations (8 bits) are multiplexed on
the address bus.

The external memory interface comprises the external bus (ports 0 and 2, and when so configured,
address bits A17 and A16) and the bus control signaisrited in Table 16-1. Chip configura-

tion bytes (see Chapter 4, “Device Configuration”) provide several interface options: page mode
or nonpage mode for external code fetches; the number of external address bits (16, 17, or 18);
the address ranges for RD#, WR#, and PSEN#; and the number of preprogrammed external wait
states to extend RD#, WR#, PSEN#, or ALE. Real-time wait states can be enabled with special
function register WCON.1:0. You can use these options to tailor the interface to your application.
For additional information refer to “Configuring the External Memory Interface” on page 4-7.

The external memory interface operates in either page mode or nonpage modd.g-gshews

the structure of the external address bus for page mode and nonpage mode operation. Page mode
provides increased performance by reducing the time for external code fetches. Page mode does
not apply to code fetches from on-chip memory.

8X930 RAM/ 8X930 RAM/
Micro- EPROM/ Micro- EPROM/
controller Flash controller Flash
AL5:8 . D7:0
P2 M A15:8
| 4
ADT:0 AT:0 P2 - A15:8
PO - AT7:0 A15:8/D7:0 A15.38
N
PO)l A70
D7:
0 A7:0 4
Nonpage Mode Page Mode
A4273-02

Figure 16-1. Bus Structure in Nonpage Mode and Page Mode

16-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table 16-1. External Memory Interface Signals

Signal - Alternate
Name Type Description Function
Al7 O | Address Line 17. P1.7/CEX4/WCLK
Al6 O | Address Line 16. See RD#. P3.7/RD#

A15:8t O | Address Lines. Upper address for external bus (non-page mode). | P2.7:0

AD7:0t | I/O | Address/Data Lines. Multiplexed lower address and data for the | P0.7:0
external bus (non-page mode).

ALE O | Address Latch Enable. ALE signals the start of an external bus PROG#
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0.

EA# | External Access . Directs program memory accesses to on-chip Vep
or off-chip code memory. For EA# strapped to ground, all program
memory accesses are off-chip. For EA# = strapped to V., an
access is to on-chip ROM if the address is within the range of the
on-chip ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For devices without on-chip ROM, EA# must be
strapped to ground.

PSEN# O Program Store Enable . Read signal output. This output is —
asserted for a memory address range that depends on bits RDO
and RD1 in the configuration byte (see also RD#):

RD1 RDO Address Range for Assertion
0 0 All addresses
0 1 All addresses
1 0 All addresses
1 1 All addresses = 80:0000H

RD# (@) Read or 17th Address Bit (A16). Read signal output to external | P3.7/A16
data memory or 17th external address bit (A16), depending on the
values of bits RDO and RD1 in configuration byte. (See PSEN#):

RD1 RDO Function

The pin functions as A16 only.

The pin functions as A16 only.

The pin functions as P3.7 only.

RD# asserted for reads at all addresses <7F:FFFFH.

PP OO
P ORrO

WAIT# | Real-time Wait State Input. The real-time WAIT# input is enabled | P1.6/CEX3
by writing a logical ‘1’ to the WCON.0 (RTWE) bit at S:A7H. During
bus cycles, the external memory system can signal ‘system ready’
to the microcontroller in real time by controlling the WAIT# input
signal on the port 1.6 input.

WCLK O | Wait Clock Output. The real-time WCLK output is driven at port A17/P1.7/CEX4
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit at
S:A7H. When enabled, the WCLK output produces a square wave
signal with a period of one-half the oscillator frequency.

WR# O | Write . Write signal output to external memory. WR# is asserted for | P3.6
writes to all valid memory locations.

T If the chip is configured for page-mode ogtéon, port O carries the lower address bits (A7:0), and port 2 carries the
upper address bits (A15:8) and the data (D7:0).

16-2

Int9|® EXTERNAL MEMORY INTERFACE

The reset routine configures the980 for operation in page mode or nonpage mode according to
bit 1 of configuration byte UCONFIGO. PO carries address A7:0 while P2 carries address A15:8.
Data D7:0 is multiplexed with A7:0 on PO in nonpage mode and with A15:8 on P2 in page mode.

Table 16-1 dexibes the external memory interface signals. The address and data signals (AD7:0
on port 0 and A15:8 on port 2) are defined for nonpage mode.

16.2 EXTERNAL BUS CYCLES

This section describes the bus cycles tk&38 executes to fetch code, read data, and write data

in external memory. Both page mode aywhpage modare described and illustrated. This sec-

tion does not cover wait states (see “External Bus Cycles With Configurable Wait States” on page
16-8) or configuration byte bus cycles (see “Configuration Byte Bus Cycles” on page 16-15).

NOTE

For simplicity, the accompanying figures depict the bus cycle waveforms in
idealized form and do not provide precise timing information. For bus cycle
timing parameters refer to the@0Ax and &930Hx datasheets.

An “inactive external bus” exists when th€980 is not executing external bus cycles. This occurs
under any of the three following conditions:

* Bus Idle (The chip is in normal operating mode but no external bus cycles are executing.)
* The chipisinidle mode

* The chip is in powerdown mode

16.2.1 Bus Cycle Definitions

Table 16-2 lists the types of external bus cycles. It also shows the activity lmustfer nonpage

mode and page mode bus cycles with no wait states. There are three types of nonpage mode bus
cycles: code fetch, data read, and data write. There are four types of page mode bus cycles: code
fetch (page miss), code fetch (page hit), data read, and data write. The data read and data write
cycles are the same for page mode and nonpage mode (except the multiplexing of D7:0 on ports

0 and 2).

16.2.2 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. The up-
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the
data (D7:0) on port 0. External code read bus cycles execute in approximately two state times.
See Table 16-2nd Figure 16-2. External data read bus cycles (Figure 16-3) and external write
bus cycles (Figure 16-4) execute in approximately three state timetheRarite cycle (Figure

16-4), a third state is appended to provide recovery time for the bus. Note that the write signal
WR# is asserted for all memory regions, except for the case of RD1:0 = 11, where WR# is assert-
ed for regions 00:-01: bubt for regions FE:—FF:.

16-3

8x930AXx, 8x930HXx USER’'S MANUAL

Table 16-2. Bus Cycle Definitions (No Wait States)

Bus Activity
Mode Bus Cycle
State 1 State 2 State 3
Code Read ALE RD#/PSEN#, code in
N‘Kﬂr‘g’gfe Data Read (2) ALE RD#/PSEN# data in
Data Write (2) ALE WR# WR# high, data out
Code Read, Page Miss ALE RD#/PSEN#, code in
Page Code Read, Page Hit (3) | PSEN#, code in
Mode Data Read (2) ALE RD#/PSEN# data in
Data Write (2) ALE WR# WR# high, data out
NOTES:

1. Signal timing implied by this table is approximate (idealized).

2. Dataread (page mode) = data read (nonpage mode) and write (page mode) = write (nonpage mode)
except that in page mode data appears on P2 (multiplexed with A15:0), whereas in nonpage mode
data appears on PO (multiplexed with A7:0).

3. The initial code read page hit bus cycle can execute only following a code read page miss cycle.

ALE

RD#/PSEN#

PO

Al7/A16/P2

State 1 State 2
——{ A70 b0 —
—(I Al7/A16/AlE;:8)—

A4282-02

16-4

Figure 16-2. External Code Fetch (Nonpage Mode)

EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3

ALE /] \

' '
! I

' '

' '

.\ ' T
' '

T '

' '

'

RD#/PSEN# ‘
Po —— A70) D70)}
AL7/A16P2 A17/A16/A15:8 X
| | |
A4283-02
Figure 16-3. External Data Read (Nonpage Mode)
State 1 State 2 State 3
ALE /! \ ; ; [
— 1 1
WR# ‘ ‘ ‘
po —— A0)— opbro) ‘ {
AL7/AI6P2 AL7/A16/A15:8 X
| | |
A4284-02

Figure 16-4. External Data Write (Nonpage Mode)

16-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

16.2.3 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under certain
conditions the controller fetches an instruction from external memory in one state time instead of
two (Table 16-2). Page mode does not affect internal code fetches.

The first code fetch to a 256-byte “page” of memory always uses a two-state bus cycle. Subse-
qguent successive code fetches to the same page hit$ require only a one-state bus cycle.
When a subsequent fetch is to a different pagm@e mis} it again requires a two-state bus cy-

cle. The following external code fetches are always page-miss cycles:

* the first external code fetch after a page rolléver

¢ the first external code fetch after an external data bus cycle

¢ the first external code fetch after powewnh or idle mode

¢ the first external code fetch after a branch, return, interrupt, etc.

In page mode, thex830 bus structure differs from the bus structure in MCS 51 controllers (Fig-
ure 16-1). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2, and the
lower address bits (A7:0) are on port 0.

Figure 16-5 shows the two types of external bus cycles for code fetches in page m@dgerhe
misscycle is the same as a code fetch cycle in nonpage mode (except D7:0 is multiplexed with
A15:8 on P2.). For thpage-hitcycle, the upper eight address bits are the same as for the preced-
ing cycle. Therefore, ALE is not asserted, and the values of A15:8 are retained in the address
latches. In a single state, the new values of A7:0 are placed on port 0, and memory places the in-
struction byte on port 2. Notice that a page hit reduces the available address access time by one
state. Therefore, faster memories may be required to support page mode.

Figure 16-6 and kgure 16-7 show the bus cycles for data reads and data writes in page mode.
These cycles are identical to those for nonpage mode, excépe fdifferent signals on ports 0
and 2.

T A page rollover occurs when the address increments from the top d5@+i®/2 page tthe bottom of the next (e.g.,
from FF:FAFFH to FF:FBOOH).

16-6

EXTERNAL MEMORY INTERFACE

ALE

PSEN#

Al17/A16/PO

P2

Cycle 1, Page-Miss

Cycle 2, Page-Hit

State 1

State 2

State 1

-

[t

—

A17/A16/A7:0

X

A17/A16/AT7:0

A

] |
—{ _AL5®)l)—(D70)|)_(D70

)l)—

T During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

A4274-02
Figure 16-5. External Code Fetch (Page Mode)
le— StaFe 1 Sta‘te 2 Sta}e 3
el TN s a
PSEN# : : :
AL7IAL6/PO —(‘ AL7/A16/AT:0 ‘ X
P2 —— “ALss)|)—(570 |)) (
T T ‘
A4275-02

Figure 16-6. External Data Read (Page Mode)

16-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

le—— Sta‘te 1 Sta:[e 2 State 3
WR# ‘
AL7IAL6/PO —{ A17/A16/A7:0 X
P2 — : Al5:8):)—(:D7:O !)) (

A4276-02

Figure 16-7. External Data Write (Page Mode)

16.3 WAIT STATES

The 8930 provides three types of wait state solutions to external memory problems: real-time,
RD#WR#/PSEN#, and ALE wait states. Thé®80 supports traddnal real-time wait state op-
erations for dynamic bus control. Real-time wait state operations are controlled by means of the
WCON special function register. See “External Bus Cycles with Real-time Wait States” on page
16-11.

In addition, the 830 device can be configured at reset to add wait states to external bus cycles
by extending the ALE or RD#/WR#/PSEN# pulses. See “Wait State Configuration Bits” on page
4-11.

You can configure the chip to use multiple types of wait states. Accesses to on-chip code and data
memory always use zero wait states. The following sections demonstrate wait state usage.

16.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES

This section describes the code fetch, read data, and write data external bus cycles with config-
urable wait states. Both page mode anodpage mode operan are described and illustrated. For
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not
provide precise timing information.

16.4.1 Extending RD#/WR#/PSEN#

You can use bits WSA1:0# in configuration byte UCONFIGO (Figure 4-3 on page 4-5) and
WSB1:0# in UCONFIG1 (Figure 4-4 on page 4-6) to add 0, 1, 2, or 3 wait states to the
RD#/WR#/PSEN pulses. Figure 16-8 shows the nonpage mode code fetch bus cycle with one
RD#/PSEN# wait state. The wait state extends the bus cycle to three statesl1&igskows

the nonpage mode data write bus cycle with one WR# wait state. The wait state extends the bus
cycle to four states. The waveforms in Figure 16-9 also apply to the nonpage mode data read ex-
ternal bus cycle if RD#/PSEN# is substituted for WR#.

16-8

EXTERNAL MEMORY INTERFACE

ALE

RD#/PSEN#

PO

Al17/A16/P2

State 1

State 2 State 3

[\

'
'
e
'
'
'

—

A7:0

D

D7:0

—{

Al17/A16/A15:8

A4277-02

Figure 16-8. External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)

State 1

State 2 State 3

State 4

ALE

B

—

WR#

PO |——

D7:0

_ATO)|)—(

—
| W

A17/A16/P2

—

Al7/A16/A15:8

X

A4278-02

Figure 16-9. External Data Write (Nonpage Mode, One WR# Wait State)

16-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

16.4.2 Extending ALE

Use the XALE# bit of configuration byte UCONFIGO to extend the ALE pulse 1 wait state. Fig-
ure 16-10 showthe ronpage mode code fetch external bus cycle with ALE extended. The wait
state extends the bus cycle from two states to three. For read and write external bus cycles, the
extended ALE extends the bus cycle from three states to four.

State 1 State 2 State 3

wel S N |

RD#/PSEN#
‘ :]

Po —— A7:0)»— b0

A17/A16/P2 — ALTIALBIALS S ‘ X

A4279-02

Figure 16-10. External Code Fetch (Nonpage Mode, One ALE Wait State)

16-10

Int9|® EXTERNAL MEMORY INTERFACE

16.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES

There are two ways of using real-time wait states: the WAIT# pin used as an input bus control and
the WAIT# signal used in conjunction with the WCLK output signal. These two signals are en-
abled with the WCON special function register in the SFR space at S:0A7H. Refer to Figure
16-11.

NOTE
The WCLK and WAIT# signals are alternate functions for the port 1.7:6 input
and output buffers. Use of the alternate functions may conflict with wait state
operation.

When WAIT# is enabled, PCA module 3 is disabled on port 1.6 (CEX3) and
resumes operation only when the WAIT# function is disabled. The same
relationship exists between WCLK on port 1.7 (CEX4) and PCA module 4. It
is not advisable to alternate between PCA operations and real-time wait-state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK).

Port 1.7 can also be configured to serve as address signal A17 (See
UNCONFIGO on page 4-5). The A17 address signal always takes priority over
the alternate functions (CEX4 and WCLK). Even if RTWCE is enabled in
WCON.1, the WCLK output does not appear during bus cycles enabled to
drive address A17. The use of WAIT# as an input on port 1.6 is unaffected by
address signals.

WCON Address: S:A7H
Reset: XXxX xx00B

Wait State Control Register. Use this register to enable the real-time wait state input signal and/or
the wait state output clock.

7 0
_ ‘ _ ‘ _ _ H — — RTWCE RTWE

Bit Bit

Number | Mnemonic Function

7:2 — Reserved:
The values read from these bits are indeterminate. Write “0” to these
bits.

1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT

CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait
state input on port 1.6 (WAIT#).

Figure 16-11. WCON: Real-time Wait State Control Register

16-11

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

16.5.1 Real-time WAIT# Enable (RTWE)

The real-time WAIT# input is enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit at
S:A7H. During bus cycles, the external memory system can signal “system ready” to the micro-
controller in real time by controlling the WAIT# input signal on the port 1.6 input. Sampling of
WAIT# is coincident with the activation of RD#/PSEN# or WR# signals driven low during a bus
cycle. A “not-ready” condition is recognized by the WAIT# signal held athy the external
memory system. Use of PCA module 3 may conflict with your design. Do not use the PCA mod-
ule 3 I/O (CEX3) interchangeably with the WAIT# signal on the port 1.3 input. Setup and hold
times are illustrated in the current datasheet.

16.5.2 Real-time WAIT CLOCK Enable (RTWCE)

The real-time WAIT CLOCK output is driven at port 1.7 (WCLK) by writing a logical ‘1’ to the
WCON.1 (RTWCE) bit at S:A7H. When enabled, the WCLK output produces a square wave sig-
nal with a period of one-half the oscillator frequency. Use of PCA module 4 may conflict with
your design. Do not use the PCA module 4 I/O (CEX4) interchangeably with the WCLK output.
Use of address signal A17 inhibits both WCLK and PCA module 4 usage of port 1.7.

16.5.3 Real-time Wait State Bus Cycle Diagrams

Figure 16-12 shows the code fetch/data read bus cycle in nonpage mode. Figure 16-14 depicts the
data read cycle in page mode.

CAUTION

The real-time wait function has critical external timing for code fetch. For this
reason, it is not advisable to use the real-time wait feature for code fetch in
page mode.

The data write bus cycle in nonpage mode is shown in Figure 16-13. E&ylfesiows the data
write bus cycle in page mode.

16-12

Int€|® EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3 State 1 (next cycle)

S N N

RD#/PSEN# \ /. RD#/PSEN# /Estretched
T ——
PO —(AT7:0)—(D7:0): stretched A7:0 }—
P2-E-(A1:5:8): stretched).—(A15:8

A5007-02

Figure 16-12. External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)

State 1 State 2 State 3 State 4

WR# \ / WR# stretched /

WAIT# \ \ / / \
PO —(A7:0)—(570) stretched *
P2 I A) stretched)}

A5009-02

Figure 16-13. External Data Write (Nonpage Mode, Real-time Wait State)

16-13

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

State 1 State 2 State 3 State 1 (next cycle)

[\

ALE E/ \ E E

RD#/PSEN# \ /. RD#/PSEN# /:stretched
WAIT# : & \ } / ;
P2 —(A15:8)—(D7:0): stretched A15:8 }—
PO ,(A:7:0): stretched).—(AT7:0
A5008-02
Figure 16-14. External Data Read (Page Mode, Real-time Wait State)
. State 1 . State 2 . State 3 . State 4
wew \ /N [\ [\ [
ALE _/_\
WR# \ / WR# stretched /
WAIT# ; \ \ } / ;
P2 —(A15:8)—(D7:0) stretched »
PO -(I A7:0 I) stretched)
I I | | A5010-02

Figure 16-15. External Data Write (Page Mode, Real-time W ait State)

16-14

Int9|® EXTERNAL MEMORY INTERFACE

16.6 CONFIGURATION BYTE BUS CYCLES

If EA# = 0, devices obtain configuration information from a configuration array in external mem-
ory. This section describes the bus cycles executed by theaetia to fetch user configuration
bytes from external memory. Configuration bytes areutised in Chapter 4, “Device Configu-
ration.”

To determine whether the external memory is set up for page mode or nonpage mode operation,
the 8930 accesses external memory using internal address FF:FFF8H (UCONFIGO). See states
1-4 in Figure 16-16. If the eattnal memory is set up for page mode, it places UCONFIGO on P2

as D7:0, overwriting A15:8 (FFH). If external memory is set up for nonpage mode, A15:8 is not
overwritten. The £930 examines P2 bit 1. Subsequent configuration byte fetches are in page
mode if P2.1 = 0 and in nonpage mode if P2.1 = 1. 98B fetches UCONFIGO again (states

5-8 in Figure 6-16)and then UCONFIG1 via internal address FF:FFF9H.

The configuration byte bus cycles always execute with ALE extended and one PSEN# wait state.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

PO F< AT0=FeH »—(A7:0=F8H X 70 = Fon
P2 ,—< AL5e = Fr >—< 570)-(AT5 = FFH >_< b7:0

Page Mode

PO §—< A7:OI= F8H >—E< D7:0 }—

P2 < A15:8 = FFH).

Nonpage Mode

A4228-01

Figure 16-16. Configuration Byte Bus Cycles

16.7 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 10,
“Input/Output Ports.”

16-15

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig-
inate from three sources:

¢ the &930 CPU (address bits, data bits)
¢ the port SFRs: PO and P2 (logic levels)
* an external device (data bits)

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance staté63able
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the
external bus is idle or executing a bus cycle.

Table 16-3. Port 0 and Port 2 Pin Status In Normal Operating Mode

port :&Z':élsilgg Nonpage Mode Page Mode
Bus Cycle Bus Idle Bus Cycle Bus Idle
Port 0 8 or 16 AD7:0 (1) High Impedance A7:0 (1) High Impedance
Port 2 8 P2 (2) P2 P2/D7:0 (2) High Impedance
16 A15:8 P2 A15:8/D7:0 High Impedance
NOTES:

1. During external memory accesses, the CPU writes FFH to the PO register and the register
contents are lost.
2. The P2 register can be used to select 256-byte pages in external memory.

16.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode, the port pins have the same signals as those on the 8XC51FX. For an external
memory instruction using ¥6-bit address, the port pins carry addees$ data bits during the bus

cycle. However, if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are
driven onto the pins. These pin signals can be used to select 256-bit pages in external memory.

During a bus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A
bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held at high
impedance, and the contents of P2 are driven onto the port 2 pins.

16.7.2 Port 0 and Port 2 Pin Status in Page Mode

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. However,
if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven onto the
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in external
memory. During bus idle, the port 0 and port 2 giresheld at high impedance. For port pin status
when the chip in is idle mode, powerdown mode, or reset, see Chapter 15, “Special Operating
Modes.”

16-16

Int9|® EXTERNAL MEMORY INTERFACE

16.8 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents several external memory designg380&ystems. These examples illus-

trate the design flexibility provided by the configuration options, especially for the PSEN# and
RD# signals. Many designs are possible. The examples empl8Q930AD and 83930AE but

also apply to the othex830Hx devices if the differences in on-chip memory are allowed for. For

a general discussion on external memory see “Configuring the External Memory Interface” on
page 4-7. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9 depict the mapping of internal mem-
ory space into external memory.

16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM

In this example, an@®30AD operates in page mode with E8ibit externabddress bus inter-
faced to 128 Kbytes of external flash memory and 128 Kbytes of external RAM (Figure 16-17).
Figure16-18 shows how the extinal flash and RAM are addressed in the internal memory space.
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:.

? i

Microcontroller CE# CE#
(without on-chip RAM Flash
code memory) (128 Kbytes) (128 Kbytes)
Al7 > D7:0 D7:0
r2K :: ::) Latch :: MAis:8 :> A15:8
PO DIAT:0 DAT:0
Al6 Al6 Al6
Tl
WR# PSEN#| = OE# WE# OE# WE#

A4285-02

Figure 16-17. Bus Diagram for Example 1: 80930AD in Page Mode

16-17

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Address Space
(256 Kbytes)
FFFFH
FF:
0000H 128 Kbytes External Flash
FE:
01:
128 Kbytes —1056 Bytes
FFFFH | External RAM
00:
0420H
00:0000H 1056 Bytes On-chip RAM
A4220-02

Figure 16-18. Address Space for Example 1

16-18

Int9|® EXTERNAL MEMORY INTERFACE

16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM

In this example, an 8B0AD operates in page mode with a 17-bieexal address bus interfaced

to 64 Kbytes of flash memory for code storage and 32 Kbytes of external RAM (Rignir@).

The 80930AD is configured so that PSEN# isesed for all reads, and RD# functions as A16
(RD1:0 = 01). Figure 16-20 shows how the external flash and RAM are addressed in the internal
memory space. Addresses 0420H-7FFFH in external RAM are addressed in region 00:. On-chip
data RAM (1056 bytes) occupies the lowest addresses in region 00:.

1
T
|
Microcontroller CE# CE#
(without on-chip RAM ELASH
code memory) (32 Kbytes) (64 Kbytes)
Al6 D7:0 D7:0
P2 <:> Latch :} A15:8 :} A15:8
A15:8/D7:0 A15:8 Data Code
N
PO M A70 :> A7,0
4
A7:0
L
WR# PSEN# OE# WE# OE# WE#
[[

A4286-02

Figure 16-19. Bus Diagram for Example 2: 80930AD in Page Mode

16-19

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Address Space
(256 Kbytes)
FFFFH
FF: 64 Kbytes External Flash
0000H
FE:
01:
00:
0420H 7FFFH | 32 Kbytes —1056 Bytes External RAM
00:0000H 1056 Bytes On-chip RAM
A4168-03

Figure 16-20. Address Space for Example 2

16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM

In this example, an3®30AE operates in nonpage mode with a 1&ki¢rnal address bus inter-
faced to 128 Kbytes of external RAM (Figut6-21). The 83930AE is configured so that RD#
functions as A16, and PSEN# is asserted for all reads. Fige2@ shows how the exteal RAM

is addressed in the internal memory space.

16-20

EXTERNAL MEMORY INTERFACE

Microcontroller
(with on-chip
code memory)

EA#

Al6

P2

PO

WR# PSEN#

VCC
A16
A15:8 R
)i
L4
AD7:0 AT:0

Latch

RAM
(128 Kbytes)

CE#

Al6

Data
A15:8

A7:0

D7:0

OE# WE#

A5004-01

Figure 16-21. Bus Diagram for Example 3:

83930AE in Nonpage Mode

16-21

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Address Space
(256 Kbytes)
FFFFH
FF:
0000H 3FFFH | 16 Kbytes On-chip Code Memory
FE:
01: 128 Kbytes —1056 Bytes External RAM
FFFFH
00:
0420H
00:0000H 1056 Bytes On-chip RAM
A4169-03

Figure 16-22. Memory Space for Example 3

16-22

intel.

EXTERNAL MEMORY INTERFACE

16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM

In this example, an3®30AE operates in nonpage mode with a 1&xki¢rnal address bus inter-
faced to 64 Kbytes of RAM (Figure6-23). This configuration leaves P3.7/RD#/A16 available
for general 1/0 (RD1:0 = 10). A maximum of 64 Kbytes of external memory can be used and all
regions of internal memory map into the single 64-Kbyte region in external memory (see Figure

4-6 on page 4-9). Figuts-24 shows how thexternal RAM is addressed in the internahnosy
space. User code is stored in on-chip ROM.

Microcontroller
(with on-chip
code memory)

EA#

P2

PO

WR# PSEN#

Vee

RAM
(64 Kbytes)

CE#

Al15:8

Latch

AV 4

M A7:0

> D7:0

OE# WE#

i

A5005-01

Figure 16-23. Bus Diagram for Example 4:

83930AE in Nonpage Mode

16-23

8x930AXx, 8x930HXx USER’'S MANUAL

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

16 Kbytes On-chip Code Memory

FFFFH
0000H 3FFEH

FFFFH
0420H

External RAM 64 Kbytes — 1056 Bytes

1056 Bytes On-chip RAM

A4224-02

16-24

Figure 16-24. Address Space for Example 4

Int9|® EXTERNAL MEMORY INTERFACE

16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, aB0930AD operates in nonpagede with a 16-bit external address bus inter-
faced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 16-25).8D0880AD is config-

ured so that RD# is asserted for address#s:FFFFH and PSEN# is asserted for addresses

> 80:0000H. Figure 16-26 shows two ways to address the external memory in the internal mem-
ory space.

Addressing external RAM locations in either region 00: or region 01: produces the same address
at the external bus pindowever, ifthe external EPROM and the external RAM require different
numbers of wait states, the external RAM must be addressed entirely in region 01:. Recall that
the number of wait states for region 01: is independent of the remaining regions and always have
the same number of wait states (see TdbBeon page 4-11) unless the real-time wait states are
selected (see Figure 16-11 on page 16-11).

The examples that follow illustrate two possibilities for addressing the external RAM.

16.8.5.1 An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-chip data
RAM (00:0020H-00:041FH) and, when necessayout into the slower external RAM. See the

left side of Figure 16-26. In this case, theeemtl RAM can have wait states only if the EPROM

has wait states. Otherwise, if the stack rolls out above locatiod) the external RAM

would be accessed with no wait state.

16.8.5.2 An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data can be
stored in the on-chip data RAM, and the stack can be located entirely in external memory. If the
external RAM requires a different number of wait states than the EPROM, address the external
RAM entirely in region 01:. See the right side of Figlie26. Addreses above 00:041FH roll

out to external memory beginning at 0420H.

16-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Microcontroller EPROM RAM
(without on-chip (64 Kbytes) (64 Kbytes)

code memory)
EA# CE# _E CE#

A15:8

P2 Al15:8 Al15:8

Code Data

7
> U H

A/D7:0 A7

PO K) Latch [__ A A7:0

D7:0 D7:0
WR# RD# PSEN# OE# OE# WE#

A7:0

A4287-02

Figure 16-25. Bus Diagram for Example 5: 80930AD in Nonpage Mode

16-26

Int9|® EXTERNAL MEMORY INTERFACE

Address Space Address Space
(256 Kbytes) (256 Kbytes)
FFFFH | 64 Kbytes FFFFH | 64 Kbytes
FF: External EPROM FF: External
EPROM
0000H 0000H
FE: FE:
FFFFH | 64 Kbytes
01: 01: External
RAM
External RAM 0000H
FFFFH 64 Kbytes —
00: 1056 Bytes 00:
0420H 0420H
1056 Bytes) 1056 Bytes
On-chip RAM ~ 00:0000H On-chip RAM
4175-03

Figure 16-26. Address Space for Examples 5 and 6

16-27

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 8B0AD operates in page mode with a 16-bieexal address bus interfaced
to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 16-27). The88A® is configured so
that RD# is asserted for addressé&d~:FFFFH, and PSEN# is asserted for addres88s0000.

This system is the same as Example 5 (Fid6-25) except that it operates in page mode. Ac-
cordingly, the two systems have the same memory map (Figure 16-26), and the comments on ad-
dressing external RAM apply here also.

. EPROM
Microcontroller RAM
(without on-chip (64 Kbytes) (64 Kbytes)
code memory)
D7:0 D7:0

P2 K M Latch [) A15:8 Al5:8
A15:8/D7:0 A15:8 Code Data
N
PO M A7:0 AT:0
AT7:0 4

CE#

"hUUU

EA# CE#
L L]

WR# RD# PSEN# OE# OE# WE#

A4288-02

Figure 16-27. Bus Diagram for Example 6: 80930AD in Page Mode

16-28

Int9|® EXTERNAL MEMORY INTERFACE

16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash

In this example, an 8B0AD operates in page mode with a 17-bieexal address bus interfaced

to 128 Kbytes of flash memory (Figuré-28). Port 2 carries both the upper address bits (A15:0)
and the data (D7:0), while port O carries only the lower address bits (A7:(03B8AD is con-

figured for a single read signal (PSEN#). The 128 Kbytes of external flash are accessed via inter-
nal memory regions FE: and FF: in the internal memory space.

Microcontroller FLASH
(without on-chip (128 Kbytes)
code memory)
EA# 1 _E CE#
Al16
Al6 Al6
Code
D7:0
P2 Laich [Atsis
A15:8/D7:0 A15:8
N
PO M A7:0
L4
A7:0
WR# PSEN# OE# WE#
A4289-02

Figure 16-28. Bus Diagram for Example 7: 80930AD in Page Mode

16-29

intel.

17

Verifying Nonvolatile
Memory

intel.

CHAPTER 17
VERIFYING NONVOLATILE MEMORY

This chapter provides instructions for verifying on-chgnvolatile memory on thex830. The
verify instructions permit reading memory locations to verify their contents. Features covered in
this chapter are:

¢ verifying the on-chip program code memory (8 Kbytes, 16 Kbytes)

¢ verifying the on-chip configuration bytes (8 bytes)
¢ verifying the lock bits (3 bits)

* using the encryption array (128 bytes)
¢ verifying the signature bytes (3 bytes)

17.1 GENERAL

The &930 is verified in the same manner as the 87C51FX and 87C251Sx microcontrollers. Ver-
ify operations differ from normal operation. Memory accesses are made one byte at a time, in-
put/output port assignments are different, and ALE, EA#, and PSEN# are held high or low
externally. See Tables 17-1 and 17-2 for lead usage during verify operations. For a complete list
of device signal descriptions, see Appendix B.

In some applications, it is desirable thabgram ode be secure from unauthorized access. The
8x930 offers two types of protection for program code stored in the on-chip array:

* Programcode in the on-chip code memory area is encrypted when read out for verification
if the encryption array isrpgrammed.

* Athree-level lock bit system restricts external access to the on4agpap code memory.

17.1.1 Considerations for On-chip Program Code Memory

On-chip, nonvolatile code memory is located at the lower end of the FF: region. (Example: for
devices with 16 Kbytes of ROM, code memory is located at FF:0000H-FF:3FFFH.) The first in-
struction following device reset is fetched from FF:0000H. It is recommended that user program
code start at address FF:0100H. Use a jump instruction td 8®:Dto begin execution of the
program. For information on address spaces, see Chapter 3, “ASgiarsss.”

Addresses outside the range of on-chip code memory access external memory. With EA# = 1 and
both on-chip and external code memory implemented, you can place program code at the highest
on-chip memory addresses. When the highest on-chip address is exceeded during egezution,
gram code fetches automatically rollover from on-chip memory to extermabrgeSee the dual

note on page 3-8.

The top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH) are reserved for device
configuration. Do not read or write program code at these locations. For EA# = 1, th®ueset
tine obtains configuration information from a configuration array located these add(Esses.

17-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

EA# = 0, the reset routine obtains configuration information from a configuration array in exter-
nal memory using these internal addresses.) For a detailed discussion of device configuration, see
Chapter 4, “Device Configuration”.

With EA# = 1 and only on-chip prograoode memory, multi-byte instructions and instructions

that result in call returns or prefetches should be located a few bytes below the maximum address
to avoid inadvertently exceeding the top address. Use an EJMP instruction, five or more addresses
below the top of memory, to continue execution in other areas of memory. See the dual note on
page 3-8

CAUTION
Execution ofprogram code located in the tfgw bytes of the on-chip memory
may cause prefetches from the next higher addresses (i.e., external memory).
External memory fetches make use of port 0 and port 2 and may disrupt
program execution if the program uses port O or port 2 for a different purpose.

Table 17-1. Signal Descriptions

Signal - Alternate
Name Type Description Function
P0.7:0 I/O | Port 0. Eight-bit, open-drain, bidirectional I/O port. For verify AD7:0
operations, use to specify the verify mode. See Table 17-2 and
Figures 17-1 and 17-2.
P10 I/O | Port 1. Eight-bit, bidirectional I/O port with internal pullups. For T2
P11 verify operations, use for high byte of address. See Table 17-2 and | T2EX
P1.2 Figures 17-1 and 17-2. ECI
P1.5:3 CEX2:0
P1.6 CEX3/WAIT#
P1.7 CEX4/A17\WCLK
P2.7:0 I/O | Port 2. Eight-bit, bidirectional I/O port with internal pullups. For A15:8
verify operations, use as the data port. See Table 17-2 and Figures
17-1 and 17-2.
P3.0 I/O | Port 3. Eight-bit, bidirectional I/O port with internal pullups. For RXD
P3.1 verify operations, use for low byte of address. See Table 17-2 and | TXD
P3.3:2 Figures 17-1 and 17-2. INT1:0#
P3.5:4 T1:0
P3.6 WR#
P3.7 RD#/A16
ALE — | Address Latch Enable. For verify operations, connect this pinto | —
VCC
EA# — | External Enable. For verify operations, connect this pin to V¢ —
PSEN# — | Program Store Enable . For verify operations, connect this pinto | —
Vss

17-2

Int9|® VERIFYING NONVOLATILE MEMORY

17.2 VERIFY MODES

Table 17-2 listghe verify modes and provides details about the setup. The value applied to port
0 determines the mode. The upper digit specifies verify and the lower digit selectaitbeyme
function to verify (e.g., on-chip program code memory, configuration bytes, etc.). The addresses
applied to port 1 and port 3 address locations in the selected memory function. The encryption
array, lock bits, and signature bytes reside invotatie memory outside the memory address
spaceConfiguration bytes, UCONFIGO and UCONFIG1, residadnvolatile nemory at the top

of the memory addrespace (Figure 4-1 on page 4-2) for devices with on-chip ROM, and in ex-
ternal memory as shown in (Figure 4-2 on page 4-3) for devices without on-chip ROM.

17.3 GENERAL SETUP

Figurel7-1 shows the general setup for verifying nonvolatile memory orx8808The control-

ler must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controller as
shown in Table 17-2 with the mode of operation specified on pamtiGhe address with respect

to the starting address of the memory area applied to ports 1 and 3. Data appears on port 2. Con-
nect RST, ALE, and EA# to). and PSEN# to ground.

Figurel7-2 shows the bus cycle waveforms for the verify op@rat Timing symbols are defined
in Table 17-5 on page 17-6.

Table 17-2. Verify Modes

Mode RST | PSEN# EA# ALE Port | Port Address Notes
0 2 Port 1 (high)
Port 3 (low)
Verify Mode. On-chip High Low 5V High 28H | data | 0000H-3FFFH 1
program code Memory
Verify Mode. Configuration | High Low 5V High 29H | data | FFF8H-FFFFH 1
Bytes (UCONFIGO,
UCONFIG1)
Verify Mode. Lock bits High Low 5V High 2BH | data 0000H 2
Verify Mode. Signature High Low 5V High 29H | data
Bytes 0030H, 0031H,
0060H, 0061H

NOTES:

1. Forthese modes, the internal address is FF:xxxxH.

2. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously
at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.

17-3

8x930AXx, 8x930HXx USER’'S MANUAL

Yee
VCC
A0 - A7 qP3 RST
Address —l/
(16 Bits) N EA#
A8-A15 JP1 ALE
Data
P2
Y
—I_—h XTALL
4 MHz .
o =3 p1 N Verify Modes
6 MHz —l_ _ (8 Bits)
1_ XTAL2
PSEN# __I
VSS

A4376-01
Figure 17-1. Setup for Verifying Nonvolatile Memory
Verification Cycle
PLP3 ——(Address —
}(—) TAVQV
TeLov —>| - }(* Terov
PO X Mode X
A4377-01

Figure 17-2. Verify Bus Cycles

17-4

Int9|® VERIFYING NONVOLATILE MEMORY

17.4 VERIFY ALGORITHM

Use this procedure to verify program code, signature bytes, configuration bytes, and lock bits
stored in nonvolatile memory on th&d80. To preserve the secrecy of the encryption key byte
sequence, the encryption array cannot be verified. Verification can be performed on a block of
bytes. The procedure for verifying th&#d30 is as follows:

1. Set up the microcontroller for operation in the appropriate mode according to Table 17-2.
2. Input the 16-bit address on ports P1 and P3.

3. Wait for the data on port P2 to become valig, G}y = 48 clock cycles, Figure 17-5), then
compare the data with the expected value.

4. Repeat steps 1 through 3 until all memory locations are verified.

17.5 LOCK BIT SYSTEM

The &930 provides a three-level lock system for protectinggam code stored in the on-chip
program code memory from unauthorized access. To verify that the lock bits are cpmactly
grammed, perform the procedure described in “Verify Algorithm” on d&g8 using the verify
lock bits mode (Table 17-2).

Table 17-3. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip program code
is encrypted when verified, if encryption array is programmed.

Level 2 U U P External program code is prevented from fetching program
code bytes from on-chip code memory.

Level 3 U P P Same as level 2, plus on-chip program code memory verify is
disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.

17.5.1 Encryption Array

The 8930 includes a 128-byte encryption array locatetbinvolatiie memory oside the mem-

ory address space. During verification of the on-chip program code memory, the seven low-order
address bits also address the encryption array. As the byte of the program code memory is read,
it is exclusive-NORed (XNOR) with the key byte from the encryption array. If the encryption ar-
ray is not programmed (still all 1s), the program code is placed on thbuigitaits original, un-
encrypted form. If the encryption array is programmed with key bytes, the program code is
encrypted and can not be used without knowledge of the key byte sequence.

17-5

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CAUTION
If the encryption feature is implemented, the portion of the on-chip program
code memory that does not contain program code should be filled with
“random” byte values other than FFH to prevent the encryption key sequence
from being revealed. To preserve the secrecy of the encryption key byte
sequence, the encryption array cannot be verified.

17.6 SIGNATURE BYTES

The &930 contains factory-programmed signature bytes. These bytes are loqabedadtatile

memory outside the memory address space at 30H, 31H, 60H, and 61H. To read the signature
bytes, perform the procedure described in “Verify Algorithm” on pEg® using the verify sig-

nature mode (Table 17-2). Signature byte values are listed in Table 17-4.

Table 17-4. Contents of the Signature Bytes

ADDRESS CONTENTS DEVICE TYPE
30H 89H Indicates Intel devices
31H 41H Indicates USB core product
60H TBD Indicates 8x930 device

Table 17-5. Timing Definitions

Symbol Definition
Mol Oscillator Frequency
Tavov Address to Data Valid
Tenoz Data Float after ENABLE
Terov ENABLE Low to Data Valid

NOTE: A = Address, E = Enable, H = High, L = Low,
Q = Data out, V = Valid, Z = Floating

17-6

intel.

A

Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for k@38 instruction set, which is identical to in-
struction set for the M(®5251 architecture. The appendicludes an opcode map, a detailed

description of each instruction, and the following tables that summarize notation, addressing, in-

structions types, instruction lengths and execution times:

Tables A-1 through A-4 deribe the notation used for the instruction operands. Table A-5
describes the notation used for control instruction destinations.

Table A-6 and Table A-7 on page A-5 comprise the opcode map for the instruction set.

Table A-8 on page A-6 through Table A-17 on page A-10 contain supporting material for
the opcode map.

Table A-18 on page A-11 lists execution times for a group of instructions that access the
port SFRs.

The following tables list the instructions giving length (in bytes) and execution time:
Add and Subtract Instructions, Table A-19 on page A-13
Compare Instructions, Table A-20 on page A-14
Increment and Decrement Instructions, Table A-21 on page A-14
Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-15
Logical Instructions, Tabl&-23 on page A-16
Move Instructions, Tabl&-24 onpageA-18
Exchange, Push, and Pop Instructions, TAbR5 onpageA-21
Bit Instructions, Table A-26 on page A-22
Control Instructions, Tabla-27 on page A-23

“Instruction Descriptions” on page A-25 contains a detailed description of each instruction.

NOTE
The instruction execution times given in this appendix are for an internal
BASE_TIME using data that is read from and written to on-chip RAM. These
times do not include your application’s system bus performance time
necessary to fetch and execute code from external memory, accessing
peripheral SFRs, using wait states, or extending the ALE pulse.

For some instructions, accessing the port SFRs¢ £ 0-3, increases the
execution time beyond that of the BASE_TIME. These cases are listed in
Table A-18 and are noted in the instruction summary tables and the instruction
descriptions.

A-1

8x930AXx, 8x930HXx USER’'S MANUAL

A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

.) 8x930 MCS 51
Register Notation Arch.
@RI A memory location (OOH-FFH) addressed indirectly via byte register 4
RO or R1
Rn Byte register RO—R7 of the currently selected register bank
n Byte register index: n = 0-7 4
rrr Binary representation of n
Rm Byte register RO—R15 of the currently selected register file
Rmd Destination register
Rms Source register 4
m, md, ms Byte register index: m, md, ms = 0-15
SSSs Binary representation of m or md
SSSS Binary representation of ms
WRj Word register WR0, WR2, ..., WR30 of the currently selected register
file
WRjd Destination register
WRjs Source register
@WR]j A memory location (00:0000H-00:FFFFH) addressed indirectly
through word register WR0-WR30 4
@WR]j Data RAM location (00:0000H-00:FFFFH) addressed indirectly
+dis16 through a word register (WR0-WR30) + displacement value, where
the displacement value is from O to 64 Kbytes.
j, jd, js Word register index: j, jd, js = 0-30
tttt Binary representation of j or jd
TTTT Binary representation of js
DRk Dword register DRO, DR4, ..., DR28, DR56, DR60 of the currently
selected register file
DRkd Destination Register
DRks Source Register
@DRk A memory location (00:0000H-FF:FFFFH) addressed Indirectly
through dword register DRO-DR28, DR56, DR60 4
@DRk Data RAM location (00:0000H-FF:FFFFH) addressed indirectly
+dis24 through a dword register (DRO-DR28, DR56, DR60) + displacement
value, where the displacement value is from O to 64 Kbytes
k, kd, ks Dword register index: k, kd, ks =0, 4, 8, ..., 28, 56, 60
uuuu Binary representation of k or kd
uuuu Binary representation of ks

A-2

intel.

INSTRUCTION SET REFERENCE

Table A-2. Notation for Direct Addresses

Direct Descrintion 8x930 MCS 51
Address. P Arch. Arch.
dir8 An 8-bit direct address. This can be a memory address 4 4

(00:0000H-00:007FH) or an SFR address (S:00H - S:FFH).
dirlé A 16-bit memory address (00:0000H-00:FFFFH) used in direct 4
addressing.
Table A-3. Notation for Immediate Addressing
Immediate Descrintion 8x930 MCS 51
Data P Arch. Arch.
#data An 8-bit constant that is immediately addressed in an instruction. 4 4
#datal6 A 16-bit constant that is immediately addressed in an instruction. 4
#0datal6 A 32-bit constant that is immediately addressed in an instruction. The 4
#1datal6 upper word is filled with zeros (#0datal6) or ones (#1datal6).
#short A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction. 4
\AY, Binary representation of #short.
Table A-4. Notation for Bit Addressing
Bit Description 8x930 MCS 51
Address bt Arch. Arch.
bit A directly addressed bit in memory locations 00:0020H-00:007FH or in
any defined SFR. 4
yyy A binary representation of the bit number (0-7) within a byte.
bit51 A directly addressed bit (bit number = 00H-FFH) in memory or an SFR.
Bits 00H-7FH are the 128 bits in byte locations 20H-2FH in the on-chip 4
RAM. Bits 80H-FFH are the 128 bits in the 16 SFR’s with addresses
that end in OH or 8H: S:80H, S:88H, S:90H, . . ., S:FOH, S:F8H.
Table A-5. Notation for Destinations in Control Instructions
Destination Descrintion 8x930 MCS 51

Address P Arch. Arch.

rel A signed (two's complement) 8-bit relative address. The destination is 4 4
-128 to +127 bytes relative to first byte of the next instruction.

addrll An 11-bit destination address. The destination is in the same 2-Kbyte 4 4
block of memory as the first byte of the next instruction.

addrl6 A 16-bit destination address. A destination can be anywhere within 4 4
the same 64-Kbyte region as the first byte of the next instruction.

addr24 A 24-bit destination address. A destination can be anywhere within 4

the 16-Mbyte address space.

A-3

8x930AXx, 8x930HXx USER’'S MANUAL

A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-6. Instructions for MCS ® 51 Microcontrollers

intel.

Bin 0 1 2 3 4 5 6-7 8-F
A5x8—
Src 0 1 2 3 4 5 A5 x6-A5x7 ASXE
0 | NOP AIJMP | LIMP RR INC INC INC INC
addrll | addrl6 | A A dir8 @RI Rn
1 |[JBC ACALL | LCALL | RRC DEC DEC DEC DEC
bit,rel addrll | addrl6 | A A dir8 @RI Rn
2 |JB AJMP | RET RLA ADD ADD ADD ADD
bit,rel addrll A #data A,dir8 A @RI A,Rn
3 | JNB ACALL | RETI RLCA ADDC ADDC ADDC ADDC
bit,rel addrll A #data A,dir8 A @RI A,Rn
4 |JC AJMP | ORL ORL ORL ORL ORL ORL
rel addrll | dir8,A | dir8#data A #data A,dir8 A @RI A,Rn
5 | JNC ACALL | ANL ANL ANL ANL ANL ANL
rel addrll | dir8,A | dir8#data A #data A,dir8 A @RI A,Rn
6 |JZ AIJMP | XRL XRL XRL XRL XRL XRL
rel addrll | dir8,A | dir8#data A #data A,dir8 A @RI A,Rn
7 | JINz ACALL | ORL JMP MOV MOV MOV MOV
rel addrll | CY,bit @A+DPTR A #data dir8, @Ri#data | Rn#data
#data
8 | SIMP AJMP | ANL MOVC DIV MOV MOV MOV
rel addrll | CY,bit | A, @A+PC AB dir8,dir8 | dir8, @R dir8,Rn
9 | MOV ACALL | MOV MOVC SUBB SUBB SUBB SUBB
DPTR, addrll | bit,CY | A/ @A+DPTR | A#data A,dir8 A @RI A,Rn
#datal6
A | ORL AJMP | MOV INC MUL ESC MOV MOV
CY,bit addrll | CY,bit | DPTR AB @Ri,dir8 Rn,dir8
B | ANL ACALL | CPL CPL CJINE CJINE CINE CINE
CY,bit addrll | bit CY A#data,rel | A, dir8,rel | @Ri#data, | Rn#data,
rel rel
C | PUSH AJMP | CLR CLR SWAP XCH XCH XCH
dir8 addrll | bit CY A A,dir8 A @RI A,Rn
D | POP ACALL | SETB | SETB DA DJINZ XCHD DJINZ
dir8 addrll | bit CY A dir8,rel A @RI Rn,rel
E | MOVX AIMP MOVX CLR MOV MOV MOV
A,@DPTR | addrll A @RI A A,dir8 A @RI A,Rn
F | MOV ACALL MOVX CPL MOV MOV MOV
@DPTR,A | addrll @RIi,A A dir8,A @Ri,A Rn,A

A4

Int9|® INSTRUCTION SET REFERENCE

Table A-7. Instructions for the 8x930 Architecture

Bin | A5 x8 A5x9 A5XxA A5 xB A5xC A5xD A5 XE A5 xF
Src X8 x9 XA xB xC xD xE xF
0 |JSLE | MOV MOvZ INC R, #short SRA
rel Rm,@WRj+dis | WRj,Rm 1) reg
MOV reg,ind
1 JSG MOV MOVS DEC R/#short (1) SRL
rel @WRj+dis,Rm WRj,Rm MOV ind,reg reg
2 JLE MOV ADD ADD ADD ADD
rel Rm,@DRk+dis Rm,Rm WRj,WR]j reg,0p2 (2) | DRk,DRk
3 JG MOV SLL
rel @DRk+dis,Rm reg
4 JSL MOV ORL ORL ORL
rel WRj,@WRj+dis Rm,Rm WRjWRj | reg,0p2 (2)
5 JSGE | MOV ANL ANL ANL
rel @WRj+dis,WRj Rm,Rm WRj,WR]j reg,op2 (2)
6 JE MOV XRL XRL XRL
rel WRj, @DRk+dis Rm,Rm WRj,WR] | reg,0p2 (2)
7 JNE MOV MOV MOV MOV MOV MOV
rel @DRk+dis,WRj | opl,reg (2) Rm,Rm WRj,WR]j reg,op2 (2) | DRKk,DRk
8 LIMP @WRj EJMP DIV DIV
EJMP @DRk addr24 Rm,Rm WRj,WRj
9 LCALL@WR]j ECALL SUB SuB SuB SuB
ECALL @DRk | addr24 RmMRm | WRjWR] | reg,op2(2) | DRk,DRk
A Bit ERET MUL MUL
Instructions (3) Rm,Rm WRj,WR]j
B TRAP CMP CMP CMP CMP
Rm,Rm WRj,WRj reg,op2 (2) | DRKk,DRk
C PUSH op1 (4)
MOV DRk,PC
D POP
opl(4)
E
F
NOTES:
1. R =Rm/WRj/DRk.
2. opl, op2 are defined in Table A-8.
3. See Tables A-10 and A-11.
4. See Table A-12.

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-8. Data Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

Oper Rmd,Rms x | C md ms

Oper WRjd,WRjs x | D jar2 jsi2

Oper DRkd,DRks x| F kd/4 ks/4

Oper Rm #data X | E m 0000 #data

Oper WRj,#datal6 X | E 2 0100 #data (high) #data (low)
Oper DRk, #datal6 x | E k/4 1000 #data (high) #data (low)
MOV DRk(h),#datal6 7 A k/4 1100 #data (high) #data (low)
MOV DRk,#1datal6 7| E

CMP DRk,#1datal6 B | E

Oper Rm,dir8 x | E m 0001 dir8 addr

Oper WRj,dir8 x | E 2 0101 dir8 addr

Oper DRK,dir8 x | E k/4 1101 dir8 addr

Oper Rm,dirl6 x | E m 0011 dir16 addr (high) dirl6 addr (low)
Oper WRj,dirl6 x | E jr2 0111 dirl6 addr (high) dirl6 addr (low)
Oper DRK,dirl6 (1) x | E ki4 1111 dirl6 addr (high) dirl6 addr (low)
Oper Rm,@WR]j x | E jl2 1001 m 00

Oper Rm,@DRk x | E k/4 1011 m 00

NOTE:

1. For thisinstruction, the only valid operation is MOV.

Table A-9. High Nibble, Byte 0 of Data Instructions

X Operation Notes

2 ADD reg,op2

9 SUB reg,op2

B CMP reg,op2 (1)

4 ORL reg,op2 (2) gljlp%%(::g;:sing modes are

5 ANL reg,op2 (2)

6 XRL reg,op2 (2)

7 MOV reg,op2

8 DIV reg,op2 Two modes only:

A MUL reg,op2 :gg:ggg z \F/{vr;;dvsj?s
NOTES:
1. The CMP operation does not support DRK, direct16.
2. Forthe ORL, ANL, and XRL operations, neither reg nor op2

A-6

can be DRk.

Int9|® INSTRUCTION SET REFERENCE

All of the bit instructions in thex®30 architecture (Table A-7) have opcode A9, which serves as
an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as given in
Table A-10.

Table A-10. Bit Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

1 | Bit Instr (dir8) A \9 XXXX ‘O‘bit dir8 addr rel addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

XXXX Bit Instruction
0001 JBC bit
0010 JB bit

0011 JNB bit
0111 ORL CY,bit
1000 ANL CY,bit
1001 MOV bit,CY
1010 MOV CY,bit
1011 CPL bit
1100 CLR bit
1101 SETB hit
1110 ORL CY, /bit
1111 ANL CY, /bit

Table A-12. PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

PUSH #data Cc A 0000 0010 #data

PUSH #datal6 C A 0000 | 0110 #datal6 (high) #data16 (low)
PUSH Rm C A m 1000

PUSH WRj C A 2 1001

PUSH DRk C A k/4 1011

MOV DRk,PC C A k/4 0001

POP Rm D A m 1000

POP WR] D A jl2 1001

POP DRk D A k/4 1011

A-7

8x930AXx, 8x930HXx USER’'S MANUAL

A-8

Table A-13. Control Instructions

Instruction

Byte 0(x)

Byte 1

Byte 2

Byte 3

EJMP addr24

[ee]
>

addr[23:16]

addr[15:8]

addr[7:0]

ECALL addr24

addr[23:16]

addr[15:8]

addr[7:0]

LIMP @WR]

i

0100

LCALL @WR]j

i

0100

EJMP @DRk

k/4

1000

ECALL @DRk

k/4

1000

ERET

JE rel

rel

JNE rel

rel

JLE rel

rel

JG rel

rel

JSL rel

rel

JSGE rel

rel

JSLE rel

rel

JSG rel

rel

TRAP

W |||l | M| W|N|[N|O|[>|O|0|©]| 00| ©
©O©| (||| ||(|0|>|lOW|O|O|©O| >

N

tel.

INSTRUCTION SET REFERENCE

Table A-14. Displacement/Extended MOVs

Instruction Byte 0 Byte 1 Byte 2 Byte 3
MOV Rm,@WRj+dis 0|9 m jr2 dis[15:8] dis[7:0]
MOV WRk,@WRj+dis 4|9 i2 | k2 dis[15:8] dis[7:0]
MOV Rm,@DRk+dis 2|9 m | ki4 dis[15:8] dis[7:0]
MOV WRj, @DRk+dis 6|9 i2 | ka dis[15:8] dis[7:0]
MOV @WRj+dis,Rm 119 m | j2 dis[15:8] dis[7:0]
MOV @WRj+dis,WRk 519 iz | k2 dis[15:8] dis[7:0]
MOV @DRk+dis,Rm 3|9 m | ki4 dis[15:8] dis[7:0]
MOV @DRKk+dis,WR] 7109 i2 | ka dis[15:8] dis[7:0]
MOVS WRj,Rm 1]A 2] m
MOVZ WRj,Rm 0| A 21 m
MOV WRj, @WR; 0| B jl2 | 1000 jl2 0000
MOV WRj,@DRk 0| B k/4 | 1010 2 0000
MOV @WRj,WRj 1|8 ji2 | 1000 jl2 0000
MOV @DRk,WRj 1|B k/4 | 1010 2 0000
MOV dir8,Rm 7| A m | 0001 dir8 addr
MOV dir8,WRj 7| A j/2 | 0101 dir8 addr
MOV dir8,DRk 71 A k/4 | 1101 dir8 addr
MOV dirl6,Rm 71 A m | 0011 dirl6 addr (high) dirl6 addr (low)
MOV dirl6,WRj 7| A 2 | 0111 dirl6 addr (high) dirl6 addr (low)
MOV dir16,DRk 7 1A k/i4 | 1111 dirl6 addr (high) dirl6 addr (low)
MOV @WRj,Rm 7| A i/2 | 1001 m 0000
MOV @DRk,Rm 7| A k/4 | 1011 m 0000

A-9

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-15. INC/DEC

Instruction Byte 0 Byte 1
1 | INC Rm,#short 0| B m | 00 | ss
2 | INC WRji#short 0| B jl2 101 ss
3 | INC DRKk,#short 0| B k/id | 11 | ss
4 | DEC Rm#short 1| B m | 00 | ss
5 | DEC WRj#short 1| B 2 {01] ss
6 | DEC DRK,#short 1| B k/id | 11 | ss

Table A-16. Encoding for INC/DEC

ss #short
00 1
01 2
10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1
1| SRARmM 0| E m | 0000
2 | SRAWR]j 0| E j/2 | 0100
3 | SRLRm 1| E m | 0000
4 | SRL WRj 1| E j/2 | 0100
5 | SLL Rm 3| E m | 0000
6 | SLL WRj 3| E j/2 | 0100

Int9|® INSTRUCTION SET REFERENCE

A.3 INSTRUCTION SET SUMMARY
This section contains tables that summarize the instruction set. For each instruction there is a
short decription, its length in bytes, and its execution time in states.

NOTE

Execution times are increased by executing code from extermabrge
accessing peripheral SFRs, accessing data in externabimeusng a wait
state, or extending the ALE pulse.

For some instructions, accessing the port SFRs¢ £ 0-3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions Accessing the Port SFRs
Table A-18 lists these instructions and the execution times.

* Case 1. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

* Case 2. Code executes from external memory with one wait state and a short ALE (not
extended) and accesses a port SFR.

* Case 3. Code executes from external memory with one wait state and an extended ALE, and
accesses a port SFR.

Times for each case are expressed as the number of state times to be added to the BASE_TIME.
Table A-18. State Times to Access the Port SFRs

Instruction BASE_TIME (Add ﬁ)dglgogzlssEtf'trTl\;lrllzmceoslumn)

Binary Source Case 1 Case 2 Case 3
ADD A,dir8 1 1 2 3 4
ADD Rm,dir8 3 2 2 3 4
ADDC A,dir8 1 1 2 3 4
ANL A,dir8 1 1 2 3 4
ANL CY,bit 3 2 2 3 4
ANL CY,bit51 1 1 2 3 4
ANL CY,/bit 3 2 2 3 4
ANL CY,/bit51 1 1 2 3 4
ANL dir8,#data 3 3 4 6 8
ANL dir8,A 2 2 4 6 8
ANL Rm,dir8 3 2 2 3 4
CLR bit 4 3 4 6 8
CLR bit51 2 2 4 6 8

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-18. State Times to Access the Port

SFRs (Continued)

N

Instruction

BASE_TIME

(Add to the BASE_TIME column)

Additional State Times

Binary Source

Case

1 Case 2

Case 3

CMP Rm,dir8

w
N

N

w

I

CPL bit

CPL bit51

DEC dir8

INC dir8

MOV A,dir8

MOV bit,CY

MOV bit51,CY

MOV CY,bit

MOV CY,bit51

MOV dir8,#data

MOV dir8,A

MOV dir8,Rm

MOV dir8,Rn

MOV Rm,dir8

MOV Rn,dir8

ORL A,dir8

ORL CY,bit

ORL CY,bit51

ORL CY,/bit

ORL CY,/bit51

ORL dir8 #data

ORL dir8,A

ORL Rm,dir8

SETB bit

SETB bit51

SUB Rm,dir8

SUBB A,dir8

XCH A,dir8

XRL A,dir8

XRL dir8,#data

XRL dir8,A

XRL Rm,dir8

WIN| WP WIRP|WIN|R|WINWIRP|WRP|WIRP|PIWIN|BDINW|RPIWIN|BDIPRPININIDN|>
NINIW[IRP|WIFRL[NINW[INDNINW[RP|INIPINIFPI[NINOW[W[NDN|W[RL|ND|IN[W[RL|N[N|DN]|®

N|BA[IARINIBAININ|IBAIBAIN]IBDININDINININININININININDINININDABAMIDNAADD>

WO |O|W|O|W| W OoO|O|W| oW wWlw| w|lw|lwj| wlwlwjlw|lwlwjlwlwlojlojlw|lojo|o|o

||| O(A~A|[D|O(O|D|O([A[D]| B[D]BAI[M DDA DDA D>D|O|[| ||| 0|0

tel.

INSTRUCTION SET REFERENCE

intel.

A.3.2 Instruction Summaries
Table A-19. Summary of Add and Subtract Instructions
Add ADD <dest>,<src> destopnd ~ destopnd + src opnd
Subtract SUB <dest>,<src> destopnd ~ destopnd - src opnd
Add with Carry ADDC <dest>,<src> (A) < (A) + src opnd + carry bit

Subtract with Borrow SUBB <dest>,<src> (A) ~ (A) - src opnd - carry bit
Binary Mode | Source Mode
Mnemonic | <dest>,<src> Notes
Bytes |States |Bytes [States

ARn Reg to acc 1 1 2 2

ADD A,dir8 Dir byte to acc 2 1(2) 2 1(2)
A @RI Indir addr to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
Rmd,Rms Byte reg to/from byte reg 3 2 2 1
WRjd,WRjs Word reg to/from word reg 3 3 2 2
DRkd,DRks Dword reg to/from dword reg 3 5 2 4
Rm #data Immediate 8-bit data to/from byte reg 4 3 3 2
WRj #datal6 Immediate 16-bit data to/from word reg 5 4 4 3

ADD: DRk,#0datal6 16-bit unsigned immediate data to/from 5 6 4 5

' dword reg

SuB Rm,dir8 Dir addr to/from byte reg 4 3(2 3 2(2)
WRj,dir8 Dir addr to/from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to/from byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to/from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to/from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to/from byte reg 4 4 3 3
A,Rn Reg to/from acc with carry 1 1 2 2

ADDC; A,dir8 Dir byte to/from acc with carry 2 1(2) 2 1(2)

SUBB A @RI Indir RAM to/from acc with carry 1 2 2 3
A #data Immediate data to/from acc with carry 2 1 2 1

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 3:0), add 1 to the number of states.

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-20. Summary of Compare Instructions

intel.

Compare CMP <dest>,<src> dest opnd — src opnd
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [States
Rmd,Rms Reg with reg 3 2 2 1
WRjd,WRjs Word reg with word reg 3 3 2 2
DRkd,DRks Dword reg with dword reg 3 5 2 4
Rm #data Reg with immediate data 4 3 3 2
WRj,#datal6 Word reg with immediate 16-bit data 5 4 4 3
DRk,#0datal6 Dword reg with zero-extended 16-bit 5 6 4 5
immediate data
CMP DRk, #1datal6 Dword reg with one-extended 16-bit 5 6 4 5
immediate data
Rm,dir8 Dir addr from byte reg 4 3t 3 2t
WRj,dir8 Dir addr from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) from byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) from byte reg 4 4 3 3

T If this instruction addresses an 1/0O pork(R= 3:0), add 1 to the number sthtes.

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ~ (DPTR) +1
Increment INC byte byte ~ byte+1
Increment INC <dest>,<src> destopnd ~ dest opnd + src opnd
Decrement DEC byte byte ~ byte-1
Decrement DEC <dest>,<src> destopnd ~ destopnd - src opnd
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes pBtates
A acc 1 1 1 1
Rn Reg 1 1 2 2
dir8 Dir byte 2 2(2) 2 2(2)
INC; - -
@RI Indir RAM 1 3 2 4
DEC
Rm,#short Byte regby 1, 2, or 4 3 2 2 1
WRj,#short Wordregby 1,2, 0r4 3 2 2 1
DRK,#short Double wordreg by 1, 2, or 4 3 4 2 3
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

intel.

INSTRUCTION SET REFERENCE

Table A-21. Summary of Increment and Decrement Instructions (Continued)

Increment INC DPTR (DPTR) ~ (DPTR) +1
Increment INC byte byte ~ byte+1
Increment INC <dest>,<src> destopnd ~ dest opnd + src opnd
Decrement DEC byte byte ~ byte-1
Decrement DEC <dest>,<src> destopnd ~ destopnd - src opnd
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes pBtates
INC DPTR Data pointer 1 1 1 1
NOTES:
1. Ashaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.
Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instruct ions
Multiply MUL <regl,reg2> 2)
MUL AB (B:A) =Ax B
Divide DIV <regl>,<reg2> 2
DIV AB (A) =Quotient; (B) =Remainder
Decimal-adjust ACC DA A 2)
for Addition (BCD)
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [Ptates
AB Multiply A and B 1 5 1 5
MUL Rmd,Rms Multiply byte reg and byte reg 3 6 2 5
WRjd,WRjs Multiply word reg and word reg 3 12 2 1
AB Divide A by B 1 10 1 10
DIV Rmd,Rms Divide byte reg by byte reg 3 11 2 10
WRjd,WRjs Divide word reg by word reg 3 21 2 20
DA A Decimal adjust acc 1 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. see “Instruction Descriptions” on page A-25

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-23. Summary of Logical Instructions

intel.

Logical AND ANL <dest>,<src> destopnd ~destopnd A src opnd

Logical OR ORL <dest>,<src> destopnd ~ destopndV src opnd

Logical Exclusive OR XRL <dest>,<src> dest opnd ~ destopnd 0O src opnd

Clear CLR A A) <0

Complement CPLA (A)) « D(A)

Rotate RXX A 1)

Shift SXX Rm or Wj 1)

SWAP A A3:0 -~ A7:4

Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [States

ARn Regto acc 1 1 2 2
A,dir8 Dir byte to acc 2 1(3) 2 1(3)
A @RI Indir addr to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
dir8,A Acc to dir byte 2 24 2 2 (4)
dir8 #data Immediate data to dir byte 3 34 3 34
Rmd,Rms Byte reg to byte reg 3 2 2 1

gﬁt WRjd,WRjs Word reg to word reg 3 3 2 2

XRL" Rm #data 8-bit data to byte reg 4 3 3 2
WRj,#datal6 16-bit data to word reg 5 4 4 3
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WRj,dir8 Dir addr to word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

CLR A Clear acc 1 1 1 1

CPL A Complement acc 1 1 1 1

RL A Rotate acc left 1 1 1 1

RLC A Rotate acc left through the carry 1 1 1 1

RR A Rotate acc right 1 1 1 1

RRC A Rotate acc right through the carry 1 1 1 1

SLL Rm Shift byte reg left 3 2 2 1
WRj Shift word reg left 3 2 2 1

NOTES:

1. See “Instruction Descriptions” on page A-25
2. A shaded cell denotes an instruction in the MCS® 51 architecture.

3. If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.
4. |If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

intel.

INSTRUCTION SET REFERENCE

Table A-23. Summary of Logical Instructions (Continued)

Logical AND ANL <dest>,<src> destopnd ~destopnd A src opnd
Logical OR ORL <dest>,<src> destopnd ~ destopndV src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ destopnd 0O src opnd
Clear CLR A A) <0
Complement CPLA (A)) « D(A)
Rotate RXX A 1)
Shift SXX Rm or Wj 1)
SWAP A A3:0 -~ A7:4
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [States

SRA Rm Shift byte reg right through the MSB 3 2 2 1

WRj Shift word reg right through the MSB 3 2 2 1

Rm Shift byte reg right 3 2 2 1
SRL - - y 9 g

WRj Shift word reg right 3 2 2 1
SWAP A Swap nibbles within the acc 1 2 1 2
NOTES:) o
1. See “Instruction Descriptions” on page A-25
2. A shaded cell denotes an instruction in the MCS® 51 architecture.
3. If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.
4. |If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table A-24. Summary of Move Instructions

Move (2) MOV <dest>,<src> destination ~ src opnd

Move with Sign Extension MOVS <dest>,<src> destination ~ src opnd with sign extend

Move with Zero Extension MOVZ <dest>,<src> destination ~ src opnd with zero extend

Move Code Byte MOVC <dest>,<src> A < code byte

Move to External Mem MOVX <dest>,<src> external mem ~ (A)

Move from External Mem MOVX <dest>,<src> A~ source opnd in external mem

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |[States |[Bytes [States

A,Rn Reg to acc 1 1 2 2
A,dir8 Dir byte to acc 2 1(3) 2 1(3)
A @RI Indir RAM to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
Rn,A Acc to reg 1 1 2 2
Rn,dir8 Dir byte to reg 2 1(3) 3 2(3)
Rn,#data Immediate data to reg 2 1 3 2
dir8,A Acc to dir byte 2 2(3) 2 2(3)
dir8,Rn Reg to dir byte 2 2(3) 3 3(3)
dir8,dir8 Dir byte to dir byte 3 3 3 3
dir8, @Ri Indir RAM to dir byte 2 3 3 4
dir8,#data Immediate data to dir byte 3 3(3) 3 3(3)

MOV @Ri,A Acc to indir RAM 1 3 2 4
@Ri,dir8 Dir byte to indir RAM 2 3 3 4
@RI #data Immediate data to indir RAM 2 3 3 4
DPTR, #datal6 Load Data Pointer with a 16-bit const 3 2 3 2
Rmd,Rms Byte reg to byte reg 3 2 2 1
WRjd,WRjs Word reg to word reg 3 2 2 1
DRkd,DRks Dword reg to dword reg 3 3 2 2
Rm #data 8-bit immediate data to byte reg 4 3 3 2
WRj #datal6 16-bit immediate data to word reg 5 3 4 2
DRk,#0data16 zero-extended 16-bit immediate data 5 5 4 4

to dword reg
DRk, #1datal6 one-extended 16-bit immediate data 5 5 4 4
to dword reg
NOTES:

A shaded cell denotes an instruction in the MCS® 51 architecture.

Instructions that move bits are in Table A-26.

If this instruction addresses an 1/0 port (Px, x = 0-3), add 1 to the number of states.

External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

rPONE

intel.

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

Move to External Mem
Move from External Mem

MOV <dest>,<src> destination ~ src opnd
MOVS <dest>,<src> destination ~ src opnd with sign extend
MOQOVZ <dest>,<src> destination ~ src opnd with zero extend
MOVC <dest>,<src> A < code byte
MOVX <dest>,<src> external mem ~ (A)
MOVX <dest>,<src> A~ source opnd in external mem

Binary Mode | Source Mode

Mnemonic <dest>,<src> Notes
Bytes |States [Bytes [States

DRK,dir8 Dir addr to dword reg 4 6 3 5
DRk,dir16 Dir addr (64K) to dword reg 5 6 4 5
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WRj,dir8 Dir addr to word reg 4 4 3 3
Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3
WRjd, @WRjs Indir addr(64K) to word reg 4 4 3 3
WRj,@DRk Indir addr(16M) to word reg 4 5 3 4
dir8,Rm Byte reg to dir addr 4 4 (3) 3 3(3)
dir8,WR}j Word reg to dir addr 4 5 3 4

MOV dirl6,Rm Byte reg to dir addr (64K) 5 4 4 3
dirl6,WRj Word reg to dir addr (64K) 5 5 4 4
@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3
@DRkK,Rm Byte reg to indir addr (16M) 4 5 3 4
@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4
@DRK,WRj Word reg to indir addr (16M) 4 6 3 5
dir8,DRk Dword reg to dir addr 4 7 3 6
dirl6,DRk Dword reg to dir addr (64K) 5 7 4 6
Rm,@WRj+dis16 | Indir addr with disp (64K) to byte reg 5 6 4 5
WRj,@WRj+dis16 | Indir addr with disp (64K) to word reg 5 7 4 6
Rm,@DRk+dis16 | Indir addr with disp (16M) to byte reg 5 7 4 6
WRj,@DRk+dis16 | Indir addr with disp (16M) to word reg 5 8 4 7
@WRj+dis16,Rm | Byte reg to Indir addr with disp (64K) 5 6 4 5

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26.

3. Ifthis instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination ~ src opnd
Move with Sign Extension MOVS <dest>,<src> destination ~ src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ~ src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A < code byte
Move to External Mem MOVX <dest>,<src> external mem ~ (A)
Move from External Mem MOVX <dest>,<src> A~ source opnd in external mem
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |[States |[Bytes [States
@WRj+dis16,WRj | Word reg to Indir addr with disp (64K) 5 7 4 6
MOV @DRk+dis16,Rm | Byte reg to Indir addr with disp (16M) 5 7 4 6
@DRk+dis16,WRj | Word reg to Indir addr with disp 5 8 4 7
(16M)
DRKk(hi), #datal6 16-bit immediate data into upper 5 3 4 2
MOVH
word of dword reg
MOVS WRj,Rm Byte reg to word reg with sign 3 2 2 1
extension
WRj,Rm Byte reg to word reg with zeros 3 2 2 1
MOvZ extension
MOVC A@A+DPTR Code byte relative to DPTR to acc 1 6 1 6
A@A+PC Code byte relative to PC to acc 1 6 1 6
A @RI External mem (8-bit addr) to acc (4) 1 4 2 5
MOVX A,@DPTR External mem (16-bit addr) to acc (4) 1 5 1 5
@Ri,A Acc to external mem (8-bit addr) (4) 1 4 1 4
@DPTR,A Acc to external mem (16-bit addr) (4) 1 5 1 5
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26.

3. Ifthis instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-20

Int9|® INSTRUCTION SET REFERENCE

Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<src> A o srcopnd
Exchange Digit XCHD <dest>,<src> A3:0 « on-chip RAM bits 3:0
Push PUSH <src> SP - SP+1;(SP) « src
Pop POP <dest> dest —~ (SP); SP - SP-1
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [tates
A,Rn Acc and reg 1 3 2 4
XCH A,dir8 Acc and dir addr 2 3(2 2 3(2)
A,@Ri Acc and on-chip RAM (8-bit addr) 1 4 2 5
XCHD A @RI Acc and low nibble in on-chip RAM 1 4 2 5
(8-bit addr)
dir8 Push dir byte onto stack 2 2 2
#data Push immediate data onto stack
#datal6 Push 16-bit immediate data onto 5 5 4
PUSH stack
Rm Push byte reg onto stack 3 4 2
WRj Push word reg onto stack 3 2
DRk Push double word reg onto stack 3 10 2
Dir Pop dir byte from stack 2 3/3 2 3/3
Rm Pop byte reg from stack 3 2
POP - Py g
WRj Pop word reg from stack 3 2
DRk Pop double word reg from stack 3 2
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

A-21

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit -0

Set Bit SETB bit bit ~ 1

Complement Bit CPL bit bit ~ @bit

AND Carry with Bit ANL CY,bit CY « CYAhbit

AND Carry with Complement of Bit ~ ANL CY,/bit CY ~ CYA@bit

OR Carry with Bit ORL CY,bit CY «~ CY Vhbit

ORL Carry with Complement of Bit ~ ORL CY,/bit CY <~ CYVdbit

Move Bit to Carry MOV CY,bit CY < bit

Move Bit from Carry MOV bit,CY bit ~ CY

Binary Mode | Source Mode
Mnemonic |<src>,<dest> Notes
Bytes |States |Bytes [Ptates

CY Clear carry 1 1 1 1

CLR bit51 Clear dir bit 2 2(2) 2 2(2)
bit Clear dir bit 4 4 3 3
CY Set carry 1 1 1 1

SETB bit51 Set dir bit 2 2(2) 2 2(2)
bit Set dir bit 4 4(2) 3 3(2)
CY Complement carry 1 1 1 1

CPL bit51 Complement dir bit 2 2(2) 2 2(2)
bit Complement dir bit 4 4(2) 3 3(2)

ANL CY,bit51 AND dir bit to carry 2 1(3) 2 1(3)
CY,bit AND dir bit to carry 4 3(3) 3 2(3)

ANL/ CY,/bit51 AND complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit AND complemented dir bit to carry 4 3(3) 3 2(3)

ORL CY,bit51 OR dir bit to carry 2 1(3) 2 1(3)
CY,bit OR dir bit to carry 4 3(3) 3 2(3)

ORL/ CY,/bit51 OR complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit OR complemented dir bit to carry 4 3(3) 3 2(3)
CY,bit51 Move dir bit to carry 2 1(3) 2 1(3)

MOV CY,bit Move dir bit to carry 4 3(3) 3 2(3)
bit51,CY Move carry to dir bit 2 2(2) 2 2(2)
bit,CY Move carry to dir bit 4 4(2) 3 3(2)

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.
3. If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

A-22

Int9|® INSTRUCTION SET REFERENCE

Table A-27. Summary of Control Instructions

Binary Mode Source Mode
Mnemonic |<dest>,<src> Notes
Bytes | States (2) |Bytes pBtates (2)
ACALL addrll Absolute subroutine call 2 9 2 9
@DRk Extended subroutine call, indirect 3 12 2 11
ECALL
addr24 Extended subroutine call 5 14 4 13
@WR]j Long subroutine call, indirect 3 2 8
LCALL -
addrl6 Long subroutine call 3 3 9
RET Return from subroutine 1 6 1 6
ERET Extended subroutine return 3 10 2 9
RETI Return from interrupt 1 6 1 6
AIMP addrll Absolute jump 2 3 2 3
addr24 Extended jump 5 6 4 5
EJMP - —
@DRk Extended jump, indirect 3 7 2 6
@WR]j Long jump, indirect 3 6 2 5
LIMP -
addrl6 Long jump 3 4 3 4
SIMP rel Short jump (relative addr) 2 3 2 3
JMP @A+DPTR Jump indir relative to the DPTR 1 5 1 5
JC rel Jump if carry is set 2 1/4 2 1/4
JNC rel Jump if carry not set 2 1/4 2 1/4
bit51,rel Jump if dir bit is set 3 2/5 3 2/5
JB bit,rel Jump if dir bit of 8-bit addr location | 5 47 4 3/6
is set
bit51,rel Jump if dir bit is not set 3 2/5 3 2/5
JINB bit,rel Jump if dir bit of 8-bit addr location 5 47 4 3/6
is not set
bit51,rel Jump if dir bit is set & clear bit 3 a7 3 417
JBC bit,rel Jump if dir bit of 8-bit addr location | 5 7/10 4 6/9
is set and clear bit
Jz rel Jump if acc is zero 2 2/5 2 2/5
JINZ rel Jump if acc is not zero 2 2/5 2 2/5
JE rel Jump if equal 3 2/5 2 1/4
JINE rel Jump if not equal 3 2/5 2 1/4
JG rel Jump if greater than 3 2/5 2 1/4
JLE rel Jump if less than or equal 3 2/5 2 1/4
JSL rel Jump if less than (signed) 3 2/5 2 1/4
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-23

8x930AXx, 8x930HXx USER’'S MANUAL

Table A-27. Summary of Control Instructions (Continued)

intel.

Binary Mode Source Mode
Mnemonic |<dest>,<src> Notes
Bytes | States (2) |Bytes States (2)
JSLE rel Jump if less than or equal (signed) 3 2/5 2 1/4
JSG rel Jump if greater than (signed) 3 2/5 2 1/4
JSGE rel Jump if greater than or equal 3 2/5 2 1/4
(signed)
A.,dir8,rel Compare dir byte to acc and jump 3 2/5 3 2/5
if not equal
A#data,rel Compare immediate to acc and 3 2/5 3 2/5
jump if not equal
CJINE - -
Rn,#data,rel Compare immediate to reg and 3 2/5 4 3/6
jump if not equal
@Ri,#data,rel | Compare immediate to indir and 3 3/6 4 a/7
jump if not equal
Rn,rel Decrement reg and jump if not 2 2/5 3 3/6
zero
DJINZ - - - -
dir8,rel Decrement dir byte and jump if not 3 3/6 3 3/6
zero
TRAP — Jump to the trap interrupt vector 2 10 1 9
NOP — No operation 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-24

Int9|® INSTRUCTION SET REFERENCE

A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in tk@3® architecture. See the note on page A-11 re-
garding execution times.

Table A-28 defines the symbols-(0, 1, 0,?) used to indicate the effect of the instruction on the
flags in the PSW and PSW1 registers. For a conditional jump instruction, “!” indicates that a flag
influences the decision to jump.

Table A-28. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

3 The instruction sets or clears the flag, as appropriate.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the

instruction executes influences the decision to jump or not jump.

ACALL <addr11>
Function: Absolute call
Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-

byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:
CY AC oV N z
Example: The stack pointer (SP) contains 07H and the label "'SUBRTN" is at program memory location
0345H. After executing the instruction
ACALL SUBRTN
at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.
Binary Mode Source Mode
Bytes: 2 2
States: 9 9

A-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

[Encoding] al0 a9 a8 1 0001 ‘ ‘ a7a6a5a4 | a3a2ala0 ‘

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ACALL
(PC) « (PC) +2
(SP) « (SP) +1
((SP)) ~ (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC.10:0) ~ page address

ADD <dest>,<src>
Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu-
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32

bit).
Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.
Flags:
CY AC oV N z
3 3 3 3 3
Example: Register 1 contains 0C3H (11000011B) and register O contains 0AAH (10101010B). After
executing the instruction
ADD R1,R0
register 1 contains 6DH (01101101B), the AC flag is clear, and the CY and OV flags are set.
Variations
ADD A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1

[Encoding] 0010 0100 ‘ ‘ immed. data

A-26

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) « (A) + #data
ADD A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) « (A) + (dir8)
ADD A @RI
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0010 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADD
(A) « (A) + ((RD)
ADD ARn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0010 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADD
(A) - (A)+ (Rn)
ADD Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1

A-27

8x930AXx, 8x930HXx USER’'S MANUAL

[Encoding] 0010 1100 ‘ ‘ ssss ssss ‘
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rmd) ~ (Rmd) + (Rms)
ADD WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 0010 1101 ‘ ‘ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WRjd) ~ (WRjd) + (WRjs)
ADD DRkd,DRks
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 0010 1111 ‘ ‘ uuuu uuuu
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(DRkd) — (DRkd) + (DRks)
ADD Rm #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0010 1110 | [ssss 0000 | | #da

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) — (Rm) + #data

A-28

intel.

INSTRUCTION SET REFERENCE

ADD WRj,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 | [tett 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WRj) « (WR)) + #datal6
ADD DRK,#0datal16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0010 1110 | | uuuu 1000 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(DRK) ~ (DRK) + #datal6
ADD Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
Encodin 0010 1110 SSss 0001 direct addr
[g
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rm) « (Rm) + (dir8)
ADD WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0010 1110 | | tttt 0101 | | directaddr

A-29

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding

Operation: ADD
(WRj) « (WRj) + (dir8)
ADD Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0010 1110 ‘ ‘ SSSs 0011 ‘ ‘ direct addr ‘ ‘ direct add
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rm) — (Rm) + (dirl6)
ADD WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 | [ttt 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WRj) « (WR)j) + (dirl6)
ADD Rm,@WR]
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0010 1110 | | et 1001 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ~ (Rm) + (WRJ))

A-30

N

tel.

INSTRUCTION SET REFERENCE

ADD Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0010 1110 | [wuuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]

Operation:

Source Mode = [Encoding]

ADD
(Rm) — (Rm) + ((DRK))

ADDC A, <src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.
If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.
Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit)
Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

CY AC ov N z
3 3 3

Example: The accumulator contains 0C3H (11000011B), register 0 contains OAAH (10101010B), and
the CY flag is set. After executing the instruction
ADDC A,RO
the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

Variations

ADDC A #data

Binary Mode Source Mode
Bytes: 2 2
States: 1 1

A-31

8x930AXx, 8x930HXx USER’'S MANUAL

[Encoding] 0011 0100 ‘ ‘ immed. data ‘
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADDC
(A) < (A) + (CY) + #data
ADDC A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0011 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADDC
(A) < (A) + (CY) + (dir8)
ADDC A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0011 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADDC
(A) — (A) + (CY) + ((RD)
ADDC A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0011 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADDC

A-32

(A) ~ (A) +(CY) +(Rn)

intel.

INSTRUCTION SET REFERENCE

AJMP addrll

Function: Absolute jump
Description: Transfers program execution to the specified address, which is formed at run time by concat-
enating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7-5, and
the second byte of the instruction. The destination must therefore be within the same 2-
Kbyte “page” of program memory as the first byte of the instruction following AJMP.
Flags:
cY AC ov N z
Example: The label "JIMPADR" is at program memory location 0123H. After executing the instruction
AIMP JMPADR
at location 0345H, the PC contains 0123H.
Binary Mode Source Mode
Bytes: 2 2
States: 3 3
[Encoding] al0 a9 a8 0 0001 | | a7a6a5a4 | a3a2ala0
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: AIMP

(PC) —~ (PC) +2
(PC.10:0) ~ page address

ANL <dest>,<src>

Function:

Description:

Flags:

Logical-AND

Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC ov N 4

A-33

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Example: Register 1 contains 0C3H (11000011B) and register 0 contains 55H (01010101B). After
executing the instruction
ANL R1,RO
register 1 contains 41H (01000001B).
When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction
ANL P1,#01110011B
clears hits 7, 3, and 2 of output port 1.
Variations
ANL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0101 0010 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL

(dir8) — (dir8) A (A)

ANL dir8,#data

Binary Mode Source Mode

Bytes: 3 3
States: 3t 3f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 0011 ‘ ‘ direct addr ‘ ‘ immed. data
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL
(dir8) ~ (dir8) A #data
ANL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0101 0100 ‘ ‘ immed. data

A-34

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL
(A) « (A) A\ #data
ANL A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL
(A) < (A) A (dir8)
ANL A, @RI
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0101 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ANL
(A) — (A)A((Ri)
ANL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0101 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ANL
(A) (A)A(Rn)
ANL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0101 1100 | | ssss ssss

A-35

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rmd) « (Rmd) A (Rms)

ANL WRjd,WRjs
Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0101 1101 ‘ ‘ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRjd) « (WRjd) A (WRjs)
ANL Rm #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0101 1110 ‘ ‘ ssss 0000 #data
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) —~ (Rm) A #data
ANL WRj #datal6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [tett 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRj) « (WRj) A #datal6
ANL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 1110 ‘ ‘ SSSS 0001 direct addr

A-36

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) « (Rm) A (dir8)
ANL WR,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0101 1110 | | e 0101 direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) « (WRj) A (dir8)
ANL Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0101 1110 | | ssss 0011 | | direct | | direct

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) « (Rm) A (dir16)
ANL WR)j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [ttt 0111 | | direct | | direct

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) « (WRj) A (dirl6)

A-37

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

ANL Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0101 1110 | | tttt 1001 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A ((WRj))
ANL Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0101 1110 | [wuuu 1011 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A ((DRK))

ANL CY,<src—bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical O, clear the CY flag; otherwise leave the CY
flag in its current state. A slash (/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

Flags:
CcY AC ov N z
3 — — — —
Example: Set the CY flag if, and only if, P1.0=1, ACC.7 =1, and OV = 0:

MOV CY,P1.0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag

A-38

Int9|® INSTRUCTION SET REFERENCE

ANL CY,bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1000 0010 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A (bit51)

ANL CY,/bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1011 0000 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A D (bit51)
ANL CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1000 0 yyy ‘ ‘ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) < (CY) A (bit)
ANL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2f

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

A-39

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

[Encoding]

1010 1001 | [1111 0 yyy | | diraddr |

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A @ (bit)

CJINE <dest>,<src>,rel
Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not
equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

Flags:

CY AC oV N 4

Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CJINE R7,#60H,NOT_EQ
; - - ‘R7 = 60H
NOT_EQ: JC REQ_LOW ; IF R7 < 60H
; :R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,
WAIT: CINE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

Variations

A-40

intel.

INSTRUCTION SET REFERENCE

CJINE A #data,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 1011 0100 ‘ ‘ immed. data rel. addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

Operation: (PC) - (PC)+3
IF (A) # #data
THEN
(PC) ~ (PC) + relative offset

IF (A) < #data

THEN
(CY) -1
ELSE
(CY) -0
CJINE A, dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1011 0101 ‘ ‘ direct addr rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: (PC) - (PC)+3
IF (A) #dir8
THEN
(PC) ~ (PC) + relative offset
IF (A) < dir8
THEN
(CY) -1
ELSE
(CY) -0

A-41

8x930AXx, 8x930HXx USER’'S MANUAL

CJINE @Ri,#data,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 3 6 4 7
[Encoding] 1011 011i ‘ ‘ immed. data rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: (PC) - (PC)+3
IF ((Ri)) # #data
THEN
(PC) ~ (PC) + relative offset
IF ((Ri)) < #data
THEN
(CY) -1
ELSE
(CY) -0
CJNE Rn,#data,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 2 5 3 6
[Encoding] 1011 lrrr ‘ ‘ immed. data rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: (PC) - (PC)+3
IF (Rn) # #data
THEN
(PC) ~ (PC) + relative offset
IF (Rn) < #data
THEN
(CY) -1
ELSE
(CY) -0
CLRA
Function: Clear accumulator
Description: Clears the accumulator (i.e., resets all bits to zero).
Flags:
CY AC oV N z

A-42

intel.

INSTRUCTION SET REFERENCE

Example: The accumulator contains 5CH (01011100B). The instruction
CLR A
clears the accumulator to 00H (00000000B).
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1110 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CLR
(A) <0
CLR bit
Function: Clear bit
Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.
Flags: Only for instructions with CY as the operand.
CcY AC oV N z
3 — — — —
Example: Port 1 contains 5DH (01011101B). After executing the instruction
CLR P1.2
port 1 contains 59H (01011001B).
Variations
CLR bit51
Binary Mode Source Mode
Bytes: 4 3
States: 2t 2f
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0010 | | Bitaddr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CLR
(bit51) ~ O

A-43

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CLR CY

Binary Mode Source Mode
Bytes: 1 1
States: 1 1

[Encoding] 1100 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) -0
CLR bit
Binary Mode Source Mode
Bytes: 4 4
States: 4t 3f
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | | 1100 0 yyy | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit) « O

CMP <dest>,<src>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.
Flags:

CY AC ov N 4

A-44

intel.

INSTRUCTION SET REFERENCE

Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). The

instruction

CMP R1,R0

clears the CY and AC flags and sets the OV flag.

Variations
CMP Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 1011 1100 ‘ ‘ ssss SSssS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rmd) — (Rms)
CMP WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 1011 1110 ‘ ‘ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRjd) - (WRjs)
CMP DRkd,DRks
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 1011 1111 ‘ ‘ uuuu uuuU

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRkd) — (DRks)

A-45

8x930AXx, 8x930HXx USER’'S MANUAL

CMP Rm #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 1011 1110 ‘ ‘ ssss 0000 ‘ ‘ # data
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — #data
CMP WRj,#datal6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | [t 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — #datal6
CMP DRk,#0datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | | uuuu 1000 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRk) — #0data16
CMP DRk #1datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | [wuuu 1100 | [#datahi | | #datahi

A-46

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRk) — #1data16
CMP Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1011 1110 | | ssss o001 | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) — (dir8)
CMP WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1011 1110 | | tttt 0101 | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) — (dir8)
CMP Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1011 1110 | | ssss 0011 | | diraddr | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) — (dir16)

A-47

8x930AXx, 8x930HXx USER’'S MANUAL

CMP WRj,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | | ettt 0111 | | diraddr | | diraddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — (dir16)
CMP Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1011 1110 | [ttet 1001 | | ssss | | o000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (WRY))
CMP Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
1011 1110 | [wuuu 1011 | | ssss | | 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — ((DRK))
CPL A
Function: Complement accumulator
Description: Logically complements (&) each bit of the accumulator (one's complement). Clear bits are

set and set bits are cleared.

A-48

intel.

INSTRUCTION SET REFERENCE

Flags:
CY AC ov N z
— — — 3 3
Example: The accumulator contains 5CH (01011100B). After executing the instruction
CPLA
the accumulator contains 0A3H (10100011B).
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1111 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(A) - 2(A)
CPL bit
Function: Complement bit
Description: Complements (&) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.
Flags: Only for instructions with CY as the operand.
CY AC ov N z
3 — — — —
Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence
CPLP1.1
CPL P1.2
port 1 contains 5BH (01011011B).
Variations
CPL bit51
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding] 1011 0010 \ \ bit addr

A-49

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(bit51) ~ D(bit51)
CPL CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1011 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(CY) « B(CY)
CPL bit
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1011 0 Vyy ‘ ‘ dir addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CPL
(bit) — A(bit)
DA A
Function: Decimal-adjust accumulator for addition
Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two

A-50

variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010—-XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX—-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.

Flags:

Example:

Bytes:
States:

Hex Code in:

Operation:

INSTRUCTION SET REFERENCE

Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

(624 AC ov N 4

3 — — 3 3

The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains 0BEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A, #99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 — 1 = 29.

Binary Mode Source Mode
1 1
1 1

[Encoding] 1101 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V[(AC) = 1]]
THEN (A.3:0) ~ (A.3:0) +6
AND
IF [[(A.7:4) > 9] V [(CY) =1]]

THEN (A.7:4) — (AT:4)+6

A-51

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

DEC byte
Function: Decrement
Description: Decrements the specified byte variable by 1. An original value of 00H underflows to OFFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
CY AC ov N z
Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain O0OH
and 40H, respectively. After executing the instruction sequence
DEC @RO
DEC RO
DEC @RO
register O contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.
Variations
DEC A
Binary Mode Source Mode
Bytes: 1 1
States: 1 1

[Encoding] 0001 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(A) - (A)-1

DEC dir8

Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding] 0001 0101 \ \ dir addr

A-52

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: DEC

(dir8) ~ (dir8) -1
DEC @Ri

Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0001 011i

Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encoding]
Operation: DEC

(RD)) « ((R))-1
DEC Rn

Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0001 lrrr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encoding]
Operation: DEC

(Rn) « (Rn)—1

DEC <dest>,<src>

Function:

Description:

Flags:

Example:

Variations

Decrement

Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of 0OH underflows to OFFH.

CY AC ov N 4

Register 0 contains 7FH (01111111B). After executing the instruction sequence
DEC RO,#1

register O contains 7EH.

A-53

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

DEC Rm,#short

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1011 ‘ ‘ ssss 01 Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(Rm) ~ (Rm) — #short

DEC WRj #short

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1011 ‘ ‘ tttt 01 Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(WR)) « (WRj) —#short

DEC DRk, #short

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 0001 1011 | [wuuu 11 Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(DRK) ~ (DRK) — #short

DIV <dest>,<src>

Function: Divide

Description: Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

A-54

Int9|® INSTRUCTION SET REFERENCE

For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is
stored in the higher byte of the word where Rmd resides; the 8-bit remainder is stored in the
lower byte of the word where Rmd resides. For example: Register 1 contains 251 (OFBH or
11111011B) and register 5 contains 18 (12H or 00010010B). After executing the instruction

DIV R1,R5

register 1 contains 13 (ODH or 00001101B); register 0 contains 17 (11H or 00010001B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

Flags: The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.
CcY AC ov N z
0 — 3

Exception: if <src> contains 00H, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.

CY AC ov N z
0 — 1 ? ?
Variations
DIV Rmd Rms
Binary Mode Source Mode
Bytes: 3 2
States: 11 10

[Encoding] 1000 1100 | | ssss ssss

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DIV (8-bit operands)
(Rmd) — remainder (Rmd) / (Rms) if <dest>md =0,2 ,4,..,14
(Rmd+1) ~ quotient (Rmd) / (Rms)

(Rmd-1) — remainder (Rmd) / (Rms) if <dest>md =1,3,5,..,15
(Rmd) ~ quotient (Rmd) / (Rms)

DIV WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 22 21
[Encoding] 1000 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-55

8x930AXx, 8x930HXx USER’'S MANUAL

Operation:

DIV (16-bit operands)
(WRjd) ~ remainder (WRjd) / (WRjs) if <dest>jd =0, 4, 8,... 28
(WRjd+2) ~ quotient (WRjd) / (WRjs)

(WRjd-2) ~ remainder (WRjd) / (WRjs) if <dest> jd = 2, 6, 10,... 30
(WRjd) ~ quotient (WRjd) / (WRjs)

For word operands (<dest>,<src> = WRjd,WRjs) the 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register
file locations:

Location 4 5 6 7
Contents 33H | 44H 11H 22H

DIV AB

Function:

Description:

Flags:

Hex Code in:

Example:

Bytes:
States:

A-56

Divide

Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

CY AC ov N 4

For division by zero:

CY AC ov N 4

0 — 1

Binary Mode = [Encoding]
Source Mode = [Encoding]

The accumulator contains 251 (OFBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIV AB

the accumulator contains 13 (ODH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Binary Mode Source Mode
1 1
10 10

[Encoding] 1000 0100

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DIV
(A) < quotient (A)/(B)
(B) ~ remainder (A)/(B)

DJINZ <byte>,<rel-addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CY AC oV N 4

Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence

DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

MOV R2 #8
TOGGLE: CPLP1.7
DJINZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DIJNZ and one to alter the pin.
Variations

A-57

8x930AXx, 8x930HXx USER’'S MANUAL

DJINZ dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1101 0101 ‘ ‘ direct addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: DJINZ

(PC) - (PC)+2

(dir8) ~ (dir8) -1

IF (dir8) >0 or (dir8) < 0

THEN
(PC) « (PC) +rel
DJINZ Rn,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 3 3
States: 2 5 3 6
[Encoding] 1101 lrrr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encoding]
Operation: DJINZ

(PC) - (PC) +2
(Rn) « (Rn)—1
IF (Rn) >0o0r(Rn)<0
THEN
(PC) ~ (PC) +rel

ECALL <dest>

Function:

Description:

Flags:

A-58

Extended call

Calls a subroutine located at the specified address. The instruction adds four to the program

counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-

Mbyte memory space.

CY AC ov

Int9|® INSTRUCTION SET REFERENCE

Example: The stack pointer contains 07H and the label “SUBRTN" is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains OAH; on-chip RAM locations 08H, 09H and OAH contain
01H, 23H and 45H, respectively; and the PC contains 123456 H.
Variations

ECALL addr24

Binary Mode Source Mode

Bytes: 5 4
States: 14 13
[Encoding] 1001 1010 addr23— addrl5- addr7-addrO
addr16 addr8
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ECALL
(PC) - (PC)+4
(SP) - (SP) +1
((SP)) ~ (PC.23:16)
(SP) - (SP) +1
((SP)) ~ (PC.15:8)
(SP) - (SP) +1
((SP)) ~ (PC.7:0)
(PC) « (addr.23:0)
ECALL @DRk
Binary Mode Source Mode
Bytes: 3 2
States: 12 1
[Encoding] 1001 1001 | [wuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ECALL

(PC) « (PC)+4
(SP) « (SP) +1
((SP)) ~ (PC.23:16)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(SP) « (SP) +1
((SP)) ~ (PC.7:0)
(PC) ~ ((DRK))

EJMP <dest>

Function: Extended jump

A-59

8x930AXx, 8x930HXx USER’'S MANUAL

Description:

Flags:

intel.

Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte

memory space.

CY AC ov

Example:

Variations

The label "JIMPADR" is assigned to the instruction at program memory location 123456H.

The instruction is

EJMP JMPADR

EJMP addr24

Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding] 1000 1010 addr23— addrl5— addr7—addrO
addr16 addr8
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: EJMP
(PC) « (addr.23:0)
EJMP @DRk
Binary Mode Source Mode
Bytes: 3 2
States: 7 6
[Encoding] 1000 1001 \ \ uuuu
Hex Code in: Binary Mode =[A5][Encoding]
Source Mode = [Encoding]
Operation: EJMP
(PC) ~ ((DRK))
ERET
Function: Extended return
Description: Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and decrements
the stack pointer by 3. Program execution continues at the resulting address, which normally
is the instruction immediately following ECALL.
Flags: No flags are affected.

A-60

intel.

INSTRUCTION SET REFERENCE

Example: The stack pointer contains 0BH. On-chip RAM locations 08H, 09H and OAH contain 01H,
23H and 49H, respectively. After executing the instruction
ERET
the stack pointer contains 08H and program execution continues at location 012349H.
Binary Mode Source Mode
Bytes: 3 2
States: 10 9
[Encoding] 1010 1010
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ERET
(PC.23:16) ~ ((SP))
(SP) ~ (SP) -1
(PC.15:8) ~ ((SP))
(SP) ~ (SP) -1
(PC.7:0) — ((SP))
(SP) ~ (SP) -1
INC <Byte>
Function: Increment
Description: Increments the specified byte variable by 1. An original value of FFH overflows to O0H.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
CcY AC ov N z
— — — 3 3
Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence
INC @RO
INC RO
INC @RO
register O contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.
Variations
INC A
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0000 0100

A-61

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: INC
(A) - (A)+1
INC dir8
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0000 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: INC
(dir8) ~ (dir8) +1
INC @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0000 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: INC
(R) « (Ri)) +1
INC Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0000 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: INC

(Rn) « (Rn) +1

INC <dest>,<src>

Function:

Description :

A-62

Increment

Increments the specified variable by 1, 2, or 4. An original value of OFFH overflows to 00H.

intel.

INSTRUCTION SET REFERENCE

Flags:
CcY AC ov N z
— — — 3 3
Example: Register 0 contains 7EH (011111110B). After executing the instruction
INC RO,#1
register 0 contains 7FH.
Variations

INC Rm,#short
Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 | ssss 00 Vv
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(Rm) ~ (Rm) + #short
INC WRj #short
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 ‘ tttt 01 Vv
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(WRj) «~ (WRj) + #short
INC DRK,#short
Binary Mode Source Mode
Bytes: 3 2
States: 4 3
[Encoding] 0000 1011 ‘ uuuu u Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(DRK) ~ (DRK) + #shortdata pointer

A-63

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

INC DPTR
Function: Increment data pointer
Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from OFFH to O0H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).
Flags:
CY AC ov N z
Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction
sequence
INC DPTR
INC DPTR
INC DPTR
DPH and DPL contain 13H and 01H, respectively.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1

[Encoding] 1010 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(DPTR) « (DPTR) +1

JB bit51,rel

JB bit,rel

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC ov N 4

A-64

intel.

INSTRUCTION SET REFERENCE

Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the

instruction sequence

JB P1.2,LABEL1

JB ACC.2,LABEL2

program execution continues at label LABEL2.
Variations
JB bit51,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0010 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: JB

(PC) - (PC) +3

IF (bit51) =1

THEN
(PC) ~ (PC) +rel
JB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 \ \ 0010 0 vy \ ‘directaddr‘ \ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: JB

(PC) - (PC) +3

IF (bit) = 1

THEN
(PC) ~ (PC) +rel

A-65

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

JBC bit51,rel
JBC bit,rel
Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.
Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.
Flags:
CcY AC ov N z
Example: The accumulator contains 56H (01010110B). After the instruction sequence
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.
Variations
JBC bit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 4 7 4 7
[Encoding] 0001 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JBC
(PC) - (PC)+3
IF (bit51) = 1
THEN
(bit51) ~ O
(PC) « (PC) +rel
JBC bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6

A-66

intel.

INSTRUCTION SET REFERENCE

[Encoding]
| 1010 | 1001 | | ooo01 0 yyy | |directaddr| | rel.addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: JBC

(PC) - (PC) +3

IF (bit51) = 1

THEN

(bit51) ~ O

(PC) ~ (PC) +rel
JC rel
Function: Jump if carry is set
Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement

in the second instruction byte to the PC, after incrementing the PC twice.
Flags:

cY AC ov N z
| — — — —

Example: The CY flag is clear. After the instruction sequence

JC LABEL1

CPL CY

JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2
States: 1 1 4
[Encoding] 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: JC

(PC) —~ (PC) +2

IF(CY)=1

THEN

(PC) « (PC) +rel

A-67

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

JE rel
Function: Jump if equal
Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CY AC ov N z
— — — — !
Example: The Z flag is set. After executing the instruction
JE LABEL1
program execution continues at label LABEL1.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0110 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JE
(PC) - (PC)+2
IF(2)=1
THEN (PC) ~ (PC) + rel
JG rel
Function: Jump if greater than
Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.
Flags:
CY AC oV N z
J— J— — | —
Example: The instruction

A-68

JG LABEL1

causes program execution to continue at label LABELL1 if the Z flag and the CY flag are both
clear.

intel.

INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0011 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JG
(PC) - (PC)+2
IF(Z)=0AND (CY)=0
THEN (PC) ~ (PC) + rel
JLE rel
Function: Jump if less than or equal
Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CcY AC oV N z
— — — | !
Example: The instruction
JLE LABEL1
causes program execution to continue at LABELL1 if the Z flag or the CY flag is set.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0010 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JLE

(PC) — (PC) +2
IF(Z)=10R(CY)=1
THEN (PC) — (PC) + rel

A-69

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

IJMP @A+DPTR
Function: Jump indirect
Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the

resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are not

affected.
Flags:
CY AC oV N z
Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JIMP_TBL:
MOV DPTR#JMP_TBL
JMP @A+DPTR
. AJMP LABELO
JMP_TBL: AJMP LABEL1
AIJMP LABEL2
AJMP LABEL3
If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.
Binary Mode Source Mode
Bytes: 1 1
States: 5 5

[Encoding] 0111 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JMP
(PC.15:0) ~ (A) + (DPTR)

JNB bit51,rel

JNB bit,rel

Function: Jump if bit not set

Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

A-70

Int9|® INSTRUCTION SET REFERENCE

Flags:
CcY AC oV N z

Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After

executing the instruction sequence

JNB P1.3,LABEL1

JNB ACC.3,LABEL2

program execution continues at label LABEL2.
Variations
JNB bit51,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0011 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNB

(PC) - (PC) +3

IF (bit51) = 0

THEN (PC) — (PC) + rel
JNB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 | | oo11 0 yy | |directaddr | | rel addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNB
(PC) - (PC) +3
IF (bit) =0
THEN
(PC) ~ (PC) +rel

A-71

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

JNC rel
Function: Jump if carry not set
Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.
Flags:
CY AC oV N z
! — — — —
Example: The CY flag is set. The instruction sequence
JNC LABEL1
CPL CY
JNC LABEL2
clears the CY flag and causes program execution to continue at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0101 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNC
(PC) - (PC) +2
IF(CY)=0
THEN (PC) — (PC) + rel
JINE rel
Function: Jump if not equal
Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CcY AC ov N z
— — — — !
Example: The instruction
JNE LABEL1

causes program execution to continue at LABEL1 if the Z flag is clear.

A-72

intel.

INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0111 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JINE
(PC) - (PC)+2
IF(Z)=0
THEN (PC) ~ (PC) + rel
JINZ rel
Function: Jump if accumulator not zero
Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.
Flags:
CcY AC oV N z
— — — — !
Example: The accumulator contains 00H. After executing the instruction sequence
JNZ LABEL1
INC A
JNZ LABEL2
the accumulator contains 01H and program execution continues at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0111 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JINZ
(PC) « (PC) + 2
IF(A)Z£0

THEN (PC) « (PC) +rel

A-73

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC ov N z
— — ! ! !

Example: The instruction
JSG LABEL1
causes program execution to continue at LABELL1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0001 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSG
(PC) - (PC)+2
IF [(N) =0 AND (N) = (OV)]

THEN (PC) ~ (PC) +rel

JSGE rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

A-74

CY AC ov N 4

intel.

INSTRUCTION SET REFERENCE

Example: The instruction
JSGE LABEL1
causes program execution to continue at LABELL if the N flag and the OV flag have the
same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0101 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSGE
(PC) - (PC)+2
IF[(N) = (OV)]

THEN (PC) (PC) + rel

JSL rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

CcY AC oV N z
— — | ! !

Example: The instruction
JSL LABEL1
causes program execution to continue at LABELL1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0100 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

A-75

8x930AXx, 8x930HXx USER’'S MANUAL

Operation: JSL
(PC) - (PC)+2
IF (N) # (OV)

THEN (PC) ~ (PC) + rel

JSLE rel

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC oV N z
— — ! ! !

Example: The instruction
JSLE LABEL1
causes program execution to continue at LABELL1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0000 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSLE
(PC) - (PC)+2
IF{(Z) =1 OR [(N) # (OV)]}

THEN (PC) ~ (PC) + rel

JZ rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

A-76

CY AC ov N 4

intel.

INSTRUCTION SET REFERENCE

Example: The accumulator contains 01H. After executing the instruction sequence
JZ LABEL1
DEC A
JZ LABEL2
the accumulator contains 00H and program execution continues at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0110 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: Jz
(PC) - (PC)+2
IF(A)=0
THEN (PC) «~ (PC) + rel
LCALL <dest>
Function: Long call
Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.
Flags:
CcY AC ov N z
Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction
LCALL SUBRTN
at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.
LCALL addrl6
Binary Mode Source Mode
Bytes: 3 3
States: 9 9
[Encoding] 0001 0010 addrl5- addr7-addrO
addr8

A-T77

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: LCALL

(PC) - (PC) +3

(SP) - (SP) +1

((SP)) ~ (PC.7:0)

(SP) - (SP) +1

((SP)) ~ (PC.15:8)

(PC) « (addr.15:0)
LCALL @WR;j

Binary Mode Source Mode
Bytes: 3 2
States: 9 8
[Encoding] 1001 1001 ‘ ‘ tttt ‘ ‘ 0100

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: LCALL

(PC) - (PC)+3
(SP) « (SP) +1
((SP)) — (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC) — ((WRY)

LIMP <dest>
Function:

Description:

Flags:

Long Jump

Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

CY AC ov N

Example:

A-78

The label "JMPADR" is assigned to the instruction at program memory location 1234H. After

executing the instruction
LIMP JMPADR

at location 0123H, the program counter contains 1234H.

Int9|® INSTRUCTION SET REFERENCE

LIMP addrl6

Binary Mode Source Mode

Bytes: 3 3
States: 5 5
[Encoding] 0000 0010 addrl5— addr7-addrO
addr8

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: LIMP

(PC) « (addr.15:0)
LIMP @WR]j

Binary Mode Source Mode
Bytes: 3 2
States: 6 5
[Encoding] 1000 1001 ‘ ‘ tttt ‘ ‘ 0100

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: LIMP

(PC) — ((WR))
MOV <dest>,<src>
Function: Move byte variable
Description: Copies the byte variable specified by the second operand into the location specified by the

first operand. The source byte is not affected.

This is by far the most flexible operation. Twenty-four combinations of source and destination
addressing modes are allowed.

Flags:

CY AC ov N 4

A-79

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (0CAH). After executing the instruction sequence
MOV RO,#30H ;RO < =30H
MOV A,@RO :A < =40H
MOV R1,A :R1<=40H
MOV B,@R1 :B<=10H
MOV @R1,P1 ;RAM (40H) < = OCAH
MOV P2,P1 ;P2 #0CAH
register O contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain 0CAH (11001010B).
Variations
MOV A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0111 0100 ‘ ‘ immed. data
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(A) ~ #data
MOV dir8,#data
Binary Mode Source Mode
Bytes: 3 3
States: 3t 3f

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0111 0101 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: MOV

(dir8) ~ #data
MOV @Ri,#data

Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 0111 011i ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encoding]

A-80

intel.

Operation: MOV
((Ri)) ~ #data

INSTRUCTION SET REFERENCE

MOV Rn,#data

Binary Mode Source Mode
Bytes: 2 3
States: 1 2
[Encoding] 0111 lrrrr ‘ ‘ immed. data
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(Rn) ~ #data
MOV dir8,dir8
Binary Mode Source Mode
Bytes: 3 3
States: 3 3
[Encoding] 1000 0101 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (dir8)
MOV dir8,@Ri
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1000 011i ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(dir8) ~ ((Ri))
MOV dir8,Rn
Binary Mode Source Mode
Bytes: 2 3
States: 2t 3t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1000 lrrr

‘ ‘ direct addr

A-81

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(dir8) ~ (Rn)
MOV @Ri,dir8
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1010 011i ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
((Ri)) ~ (dir8)
MOV Rn,dir8
Binary Mode Source Mode
Bytes: 2 3
States: 1t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 lrrr ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(Rn) ~ (dir8)
MOV A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1110 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(A) ~ (dir8)

A-82

intel.

INSTRUCTION SET REFERENCE

MOV A @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1110 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(A) - ((Ri)
MOV ARn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1110 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(A) ~ (Rn)
MOV dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1111 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (A)
MOV @Ri,A
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1111 011i

A-83

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: MOV
(R)) ~ (A)
MOV Rn,A
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1111 111r
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOV
(Rn) ~ (A)
MOV Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0111 1100 ‘ ‘ ssss SSssS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rmd) ~ (Rms)
MOV WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0111 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ~ (WRjs)

A-84

intel.

INSTRUCTION SET REFERENCE

MOV DRkd,DRks

Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 0111 1111 ‘ ‘ uuuu UuuU
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRkd) — (DRks)
MOV Rm #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0111 1110 | | ssss 0000 | | #da
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) ~ #data
MOV WRj,#datal6
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0111 1110 | [t 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) ~ #datal6
MOV DRk,#0datal6
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 | [wuuu 1000 | | #damhi | | #datalow

A-85

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ~ #0datal6

MOV DRk ,#ldatal6

Binary Mode Source Mode

Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 ‘ ‘ uuuu 1100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ~ #1ldatal6
MOV Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) — (dir8)
MOV WR;,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0111 1110 ‘ ‘ tttt 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) < (dir8)

A-86

intel.

INSTRUCTION SET REFERENCE

MOV DRKk,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 6 5
ncoding uuuu irect addr
Encodi 0111 1110 1101 di dd
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRK) ~ (dir8)
MOV Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0111 1110 ‘ ‘ SSss 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) ~ (dirl6)
MOV WR;,dirlé
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0111 1110 | |t 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) ~ (dirl6)
MOV DRKk,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0111 1110 ‘ ‘ uuuu 1111 ‘ ‘ direct addr ‘ ‘ direct addr

A-87

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRK) « (dir16)
MOV Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 2 2
[Encoding]
0111 1110 | |ttt 1001 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) — ((WRj))

MOV Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3
States: 4 3
[Encoding]
0111 1110 H uuuu 1011 H ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ~ ((DRK))

MOV WRjd, @WRjs

Binary Mode Source Mode

Bytes: 4 3
States: 4 3
[Encoding]
0000 1011 ‘ ‘ TTTT 1000 ‘ ‘ tttt 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ~ ((WRjs))

A-88

Int9|® INSTRUCTION SET REFERENCE

MOV WR],@DRk

Binary Mode Source Mode

Bytes: 4 3
States: 5 4
[Encoding]
0000 1011 ‘ ‘ uuuu 1010 ‘ ‘ tttt 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) « ((DRK))

MOV dir8,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1010 ‘ ‘ SSSS 0011 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) « (Rm)

MOV dir8,WR;j
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding] 0111 1010 ‘ ‘ tttt 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) «~ (WRj)
MOV dir8,DRk
Binary Mode Source Mode
Bytes: 4 3
States: 7 6
[Encoding] 0111 1010 ‘ ‘ uuuu 1101 ‘ ‘ direct addr

A-89

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (DRK)
MOV dirl6,Rm
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0111 1010 ‘ ‘ SSss 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) — (Rm)
MOV dirl6,WRj
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1010 | | tr 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) ~ (WRj)
MOV dir16,DRk
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0111 1010 | [wuuu 1111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

(dir16) — (DRK)

A-90

Int9|® INSTRUCTION SET REFERENCE

MOV @WR]j,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0111 1010 ‘ ‘ tttt 1001 ‘ ‘ ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) ~ (Rm)
MOV @DRk,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0111 1010 | [wuuu 1011 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRK)) — (Rm)

MOV @WRjd,WRjs

Binary Mode Source Mode

Bytes: 4 3
States: 5 4
[Encoding]
0001 1011 H tttt 1000 H TTTT 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd)) ~ (WRjs)

MOV @DRk,WRj

Binary Mode Source Mode
Bytes: 4 3
States: 6 5

A-91

8x930AXx, 8x930HXx USER’'S MANUAL

[Encoding]
0001 1011 | [wuuu 1010 | [ttt [oooo |
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((DRK)) — (WRj)
MOV Rm,@WRj + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0000 1001 | | ssss teet | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) ~ ((WRj)) + (dis)
MOV WRj,@WR;j + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0100 1001 | |ttt TTTT | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) « ((WRJ)) + (dis)
MOV Rm,@DRk + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0010 1001 ‘ ‘ Ssss uuuu ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) ~ ((DRK)) + (dis)

A-92

Int9|® INSTRUCTION SET REFERENCE

MOV WRj,@DRKk + dis16

Binary Mode Source Mode

Bytes: 5 4
States: 8 7
[Encoding]
0110 1001 ‘ ‘ tttt uuuu ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) « ((DRK)) + (dis)

MOV @WR]j + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
0001 1001 ‘ ‘ tttt SSsSs ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) — (Rm)

MOV @WR; + dis16,WRj
Binary Mode Source Mode

Bytes: 5 4
States: 7 6
[Encoding]
0101 1001 ‘ ‘ tttt TTTT ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) — (WR))
MOV @DRk + dis16,Rm
Binary Mode Source Mode

Bytes: 5 4
States: 7 6
[Encoding]
0011 1001 ‘ ‘ uuuu SSSSs ‘ ‘ dis hi ‘ ‘ dis low

A-93

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRK)) + (dis) « (Rm)

MOV @DRK + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4
States: 8 7
[Encoding]
0111 1001 | | wuuuu teee | | dishi | | dislow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRK)) + (dis) « (WRj)

MOV <dest-bit>,<src—bit>

Function: Move bit data

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:
cY AC ov N z
3 — — — —
Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence
MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY
the CY flag is clear and Port 1 contains 39H (00111001B).
Variations
MOV bit51,CY
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding] 1001 0010 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

A-94

Int9|® INSTRUCTION SET REFERENCE

Operation: MOV
(bit51) — (CY)

MOV CY,bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1010 0010 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) ~ (bit51)
MOV bit,CY
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3f
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | [1001 0 yyy | | directaddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit) — (CY)
MOV CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1010 0 yyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) « (bit)

A-95

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

MOV DPTR, #datal6

Function: Load data pointer with a 16-bit constant
Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).
Flags:
CY AC ov N z
Example: After executing the instruction
MOV DPTR,#1234H
DPTR contains 1234H (DPH contains 12H and DPL contains 34H).
Binary Mode Source Mode
Bytes: 3 3
States: 2 2
[Encoding] 1001 0000 ‘ ‘ data hi ‘ ‘ data low
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV

(DPTR) - #datal6

MOVC A @A+<base-reg>

Function:

Description:

Flags:

A-96

Move code byte

Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

CY AC ov N 4

intel.

INSTRUCTION SET REFERENCE

The accumulator contains a number between 0 and 3. The following instruction sequence

translates the value in the accumulator to one of four values defined by the DB (define byte)

If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Example:
directive.
RELPC: INC A
MOVvC A,@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H
Variations

MOVC A,@A+PC

Binary Mode Source Mode

Bytes: 1
States: 6
[Encoding] 1000 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOVC
(PC) - (PC)+1
(A) ~ ((A) + (PC))
MOVC A,@A+DPTR
Binary Mode Source Mode
Bytes: 1
States: 6
[Encoding] 1001 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(A) - ((A) + (DPTRY))

MOVH DRk ,#datal6
Function:

Description:

Move immediate 16-bit data to the high word of a dword (double-word) register

Moves 16-bit inmediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

A-97

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Flags:
CcY AC ov N z
Example: The dword register DRk contains 5566 7788H. After the instruction
MOVH DRk, #1122H
executes, DRk contains 1122 7788H.
Variations

MOVH DRK,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 3 2
[Encoding]
0111 1010 ‘ ‘ uuuu 1100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVH
(DRk).31:16 ~ #datal6

MOVS WRj,Rm

Function: Move 8-bit register to 16-bit register with sign extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.

Flags:

CcYy AC ov N z

Example: Eight-bit register Rm contains 055H (01010101B) and the 16-bit register WRj contains
OFFFFH (11111111 11111111B). The instruction
MOVS WRj,Rm
moves the contents of register Rm (01010101B) to register WR;j (i.e., WRj contains
00000000 01010101B).

Variations

A-98

Int9|® INSTRUCTION SET REFERENCE

MOVS WRj,Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1010 ‘ ‘ tttt SSSS

Hex Code in: Binary Mode = [A5][Encoding]

Operation:

Source Mode = [Encoding]
MOVS

(WRj).7-0 « (Rm).7-0
(WRj).15-8 -~ MSB

MOVX <dest>,<src>

Function:

Description:

Flags:

Example:

Variations

Move external

Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external 1/0O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its upper
address lines driven by P2 can be addressed via the data pointer, or with code to output
upper address bits to P2 followed by a MOVX instruction using RO or R1.

CY AC oV N 4

The 8x930 controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal I/O. RO
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

MOVX A,@R1
MOVX @RO,A

the accumulator and external RAM location 12H contain 56H.

A-99

8x930AXx, 8x930HXx USER’'S MANUAL

MOVX A,@DPTR

Binary Mode Source Mode

Bytes: 1 1
States: 5 5
[Encoding] 1110 0000
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOVX
(A) - ((DPTR))
MOVX A,@RIi
Binary Mode Source Mode
Bytes: 1 1
States: 3 3
[Encoding] 1110 001i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOVX
(A) ~ ((R)
MOVX @DPTR,A
Binary Mode Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 1111 0000
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOVX
((DPTR)) ~ (A)
MOVX @Ri,A
Binary Mode Source Mode
Bytes: 1 1
States: 4 4
[Encoding] 1111 001i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

A-100

intel.

INSTRUCTION SET REFERENCE

Operation: MOVX
(R)) — (A)
MOVZ WRj,Rm
Function: Move 8-bit register to 16-bit register with zero extension
Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of
the 16-bit register is filled with zeros.
Flags:
CY AC oV N z
Example: Eight-bit register Rm contains 055H (01010101B) and 16-bit register WRj contains OFFFFH
(11111111 11111111B). The instruction
MOVZ WRj,Rm
moves the contents of register Rm (01010101B) to register WRj. At the end of the operation,
WRj contains 00000000 01010101B.
Variations
MOVZ WRj,Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1010 ‘ ‘ tttt SSSS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOVZ
(WRj)7-0 —~ (Rm)7-0
(WRj)15-8 ~ 0

MUL <dest>,<src>

Function:

Description:

Multiply

Multiplies the unsigned integer in the source register with the unsigned integer in the
destination register. Only register addressing is allowed.

For 8-bit operands, the result is 16 bits. The most significant byte of the result is stored in the
low byte of the word where the destination register resides. The least significant byte is
stored in the following byte register. The OV flag is set if the product is greater than 255
(OFFH); otherwise it is cleared.

For 16-bit operands, the result is 32 bits. The most significant word is stored in the low word
of the dword where the destination register resides. The least significant word is stored in
the following word register. In this operation, the OV flag is set if the product is greater than
OFFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.

A-101

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Flags:
CY AC oV N z
0 — 3 3 3
Example: Register R1 contains 80 (50H or 10010000B) and register RO contains 160 (OAOH or
10010000B). After executing the instruction
MUL R1,RO
which gives the product 12,800 (3200H), register RO contains 32H (00110010B), register R1
contains 00H, the OV flag is set, and the CY flag is clear.
MUL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 6 5

[Encoding] 1010 1100 ‘ ‘ SSSS

SSSS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (8-bit operands)
if <dest>md =0, 2,4, .., 14
Rmd high byte of the Rmd X Rms
Rmd+1 ~ low byte of the Rmd X Rms
if <dest>md=1, 3,5, ..,15
Rmd-1 — high byte of the Rmd X Rms
Rmd ~ low byte of the Rmd X Rms

MUL WRjd, WRjs

Binary Mode Source Mode
Bytes: 3 2
States: 12 1

[Encoding] 1010 1101 | | tttt

tttt

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (16-bit operands)
if <dest>jd =0, 4,8, .., 28
WRjd ~ high word of the WRjd X WRjs
WRjd+2 ~ low word of the WRjd X WRjs
if <dest>jd = 2, 6, 10, .., 30
WRjd-2 ~ high word of the WRjd X WRjs
WRjd ~ low word of the WRjd X WRjs

A-102

intel.

INSTRUCTION SET REFERENCE

MUL AB
Function: Multiply
Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.
Flags:
CY AC ov N z
0 — 3 3 3
Example: The accumulator contains 80 (50H) and register B contains 160 (0AOH). After executing the
instruction
MUL AB
which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.
Binary Mode Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 1010 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MUL
(A) « low byte of (A) X (B)
(B) ~ high byte of (A) X (B)
NOP
Function: No operation
Description: Execution continues at the following instruction. Affects the PC register only.
Flags:

CY AC ov N 4

A-103

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Example: You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P27
NOP
NOP
NOP
SETB P2.7

Binary Mode Source Mode
Bytes: 1 1
States: 1 1

[Encoding] 0000 0000

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: NOP
(PC) - (PC)+1

ORL <dest> <src>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CY AC oV N 4

Example: The accumulator contains 0C3H (11000011B) and RO contains 55H (01010101B). After
executing the instruction

ORL A,RO

the accumulator contains 0D7H (11010111B).

A-104

Int9|® INSTRUCTION SET REFERENCE

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL dir8,A

Binary Mode Source Mode
Bytes: 2 2
States: 2t 2f

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding] 0100 0010 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) « (dir8) V (A)

ORL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0100 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ~ (dir8) V #data

ORL A #data

Binary Mode Source Mode
Bytes: 2 2
States: 1 1

[Encoding] 0100 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) « (A)V #data

A-105

8x930AXx, 8x930HXx USER’'S MANUAL

ORL A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0100 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ORL
(A) < (A)V (dir8)
ORL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0100 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: ORL
(A) = (A)V(RD)
ORL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0100 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: ORL
(A) - (A)V (Rn)
ORL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0100 1100 ‘ ‘ ssss SSssS

A-106

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) «~ (Rmd) V (Rms)

ORL WRjd,WRijs

Binary Mode Source Mode
Bytes: 3 2
States: 3 2

[Encoding] 0100 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRjd) - (WRjd) V (WRjs)

ORL Rm #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0100 1110 | | ssss 0000 | | #dam

Hex Code in Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) — (Rm) V #data

ORL WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0100 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) « (WRj) V #datal6

A-107

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

ORL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) « (Rm) V (dir8)
ORL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0100 1111 | | tttt 0101 | | directaddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) « (WR)) V (dir8)
ORL Rm,dir1l6
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0100 1110 ‘ ‘ SSSsS 0011 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) — (Rm) V (dirl6)
ORL WR;j,dirl6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3

A-108

Int9|® INSTRUCTION SET REFERENCE

[Encoding]

\ 0100 \ 1110 \ \ tttt 0111 \ \ direct addr \ \ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) « (WRj) V (dir16)
ORL Rm,@WR;j
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0100 1110 | [ttet 1001 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) — (Rm) V ((WRj)))
ORL Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0100 1110 | [wuuu 1011 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) — (Rm) V ((DRK))

ORL CY,<src—bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

CY AC ov N 4

A-109

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Example: Set the CY flag if and only if P1.0 =1, ACC. 7=1, 0or OV = 0:
MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.
Variations
ORL CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 0010 \ \ bit addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ORL
(CY) « (CY) V (bit51)
ORL CY,/bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 0000 \ \ bit addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ORL
(CY) « (CY) V= (bit51)
ORL CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 0111 0 yyy ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL

A-110

(CY) « (CY) V (bit)

intel.

INSTRUCTION SET REFERENCE

ORL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 | | 1110 0 yyy | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(CY) < (CY) V = (bit)
POP <src>
Function: Pop from stack
Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.
Flags:
CcY AC ov N z
Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence
POP DPH
POP DPL
the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction
POP SP
the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).
Variations
POP dir8
Binary Mode Source Mode
Bytes: 2 2
States: 3 3
[Encoding] 1101 0000 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

A-111

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Operation: POP
(dir8) « ((SP))
(SP) - (SP)-1

POP Rm
Bytes: 3 2
States: 3 2

[Encoding] 1101 1010 H ssss 1000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: POP
(Rm) —~ ((SP))
(SP) - (SP)-1

POP WRj

Binary Mode Source Mode
Bytes: 3 2
States: 5 4

[Encoding] 1101 1010 ‘ ‘ tttt 1001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) - (SP)-1
(WRj) ~ ((SP))
(SP) - (SP)-1

POP DRk

Binary Mode Source Mode
Bytes: 3 2
States: 10 9

[Encoding] 1101 1010 H uuuu 1011

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) - (SP)-3
(DRK) ~ ((SP))
(SP) -« (SP)-1

PUSH <dest>
Function: Push onto stack

Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

A-112

Int9|® INSTRUCTION SET REFERENCE

Flags:
CY AC oV N z
Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence
PUSH DPL
PUSH DPH
the stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01H and
23H, respectively.
Variations
PUSH dir8
Binary Mode Source Mode
Bytes: 2 2
States: 4 4

[Encoding] 1100 0000 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) « (SP) +1
((SP)) ~ (dir8)

PUSH #data
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1100 1010 | | o000 0010 | | #daa

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) « (SP) +1
((SP)) ~ #data

PUSH #datal6
Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
1100 1010 ‘ ‘ 0000 0110 ‘ ‘ #data hi ‘ ‘ #data lo

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-113

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Operation: PUSH
(SP) « (SP) +2
((SP)) — MSB of #data16
((SP)) ~ LSB of #data16

PUSH Rm

Binary Mode Source Mode
Bytes: 3 2
States: 4 3

[Encoding] 1100 1010 | | ssss 1000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) « (SP) +1
((SP)) ~ (Rm)

PUSH WR;j

Binary Mode Source Mode
Bytes: 3 2
States: 5 4

[Encoding] 1100 1010 ‘ ‘ tttt 1001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) - (SP) +1
((SP)) ~ (WRj)
(SP) « (SP) +1

PUSH DRk

Binary Mode Source Mode
Bytes: 3 2
States: 9 8

[Encoding] 1100 1010 H uuuu 1011

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) - (SP) +1
((SP)) « (DRK)
(SP) « (SP) +3

RET
Function: Return from subroutine
Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack

pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

A-114

intel.

Flags:

Example:

Bytes:
States:

Hex Code in:

Operation:

INSTRUCTION SET REFERENCE

CY AC oV N 4

The stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01H and
23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.
Binary Mode Source Mode
1 1
7 7

[Encoding] 0010 0010

Binary Mode = [Encoding]
Source Mode = [Encoding]

RET
(PC).15:8 — ((SP))
(SP) « (SP) -1
(PC).7:0 — ((SP))
(SP) « (SP) -1

RETI
Function:

Description:

Flags:

Return from interrupt

This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:. The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre-
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts
at the same priority level as the one just processed. Program execution continues at the
return address, which normally is the instruction immediately after the point at which the
interrupt request was detected. If an interrupt of the same or lower priority is pending when
the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

CY AC oV N 4

A-115

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Example: INTR = 0. The stack pointer contains 0BH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations 0AH and OBH contain 01H and 23H,
respectively. After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.
Binary Mode Source Mode

Bytes: 1 1
States (INTR = 0): 9 9
States (INTR = 1): 12 12
[Encoding] 0011 0010

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for INTR = O:
RETI
(PC).15:8 ~((SP))
(SP) « (SP) -1
(PC).7:0 " ((SP))
(SP) —~(SP)-1

Operation for INTR = 1:
RETI
(PC).15:8 — ((SP))
(SP) - (SP)-1
PC).7:0 ~ ((SP))
(SP) - (SP)-1
(PC).23:16 ~ ((SP))
(SP) - (SP)-1
PSW1 ~ ((SP))
(SP) - (SP)-1

RL A
Function: Rotate accumulator left
Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0
position.
Flags:
CcY AC ov N z
Example: The accumulator contains 0C5H (11000101B). After executing the instruction,
RL A

the accumulator contains 8BH (10001011B); the CY flag is unaffected.

A-116

intel.

INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0010 0011

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: RL

(A).a+l ~ (A).a

(A).0 < (A).7
RLC A
Function: Rotate accumulator left through the carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into

the CY flag position and the original state of the CY flag moves into bit O position.
Flags:

CY AC oV N z
3 — —

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the

instruction

RLC A

the accumulator contains 8AH (10001010B) and the CY flag is set.

Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0011 0011

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: RLC

(A).a+l - (A).a

(A).0 < (CY)

(CY) « (A).7
RR A
Function: Rotate accumulator right
Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 or

15 position.
Flags:

CY AC ov N 4

A-117

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Example: The accumulator contains 0C5H (11000101B). After executing the instruction
RR A
the accumulator contains 0E2H (11100010B) and the CY flag is unaffected.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0000 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RR
(A).a « (A).a+l
(A).7 < (A).0
RRC A
Function: Rotate accumulator right through carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.
Flags:
CY AC oV N z
3 — — 3 3
Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction
RRC A
the accumulator contains 62 (01100010B) and the CY flag is set.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RRC
(A).a « (A).a+l
(A).7 — (CY)
(CY) « (A).0
SETB <bit>
Function: Set bit

A-118

intel.

INSTRUCTION SET REFERENCE

Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.
Flags: No flags are affected except the CY flag for instruction with CY as the operand.
CcY AC oV N z
3 — — — —
Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence
SETB CY
SETB P1.0
the CY flag is set and output Port 1 contains 35H (00110101B).
SETB bit51
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1101 0010 | | bitaddr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SETB
(bit51) ~ 1
SETB CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1101 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SETB
CY) -1
SETB bit
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1101 0 Vyy ‘ ‘ direct addr

A-119

8x930AXx, 8x930HXx USER’'S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit) ~ 1

SIMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

CY AC oV N z

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction
SIJMP RELADR
assembles into location 0100H. After executing the instruction, the PC contains 0123H.
(Note: In the above example, the instruction following SIMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H-0102H) = 21H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)

Binary Mode Source Mode
Bytes: 2 2
States: 4 4
[Encoding] 1000 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SIMP
(PC) « (PC)+2
(PC) ~ (PC) +rel

SLL <src>

Function: Shift logical left by 1 bit

Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted
out (MSB) is stored in the CY bit.

Flags:

A-120

CY AC ov N 4

intel.

INSTRUCTION SET REFERENCE

Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SLL register 1

Register 1 contains 8AH (10001010B) and CY = 1.
Variations
SLL Rm

Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 SSSS 0000

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SLL

(Rm).a+1 —~ (Rm).a

(Rm).0 < 0

CY ~ (Rm).7
SLL WRj

Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 tttt 0100

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SLL

WRj).b+1 « (WRj).b

(WRj).0 - 0

CY ~ (WRj).15
SRA <src>
Function: Shift arithmetic right by 1 bit
Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit

shifted out (LSB) is stored in the CY bit.
Flags:

CY

AC

ov

A-121

8x930AXx, 8x930HXx USER’'S MANUAL

Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRA register 1

Register 1 contains 0E2H (11100010B) and CY = 1.

Variations
SRA Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SRA
(Rm).7 — (Rm).7
(Rm).a — (Rm).a+1
CY ~ (Rm).0
SRA WRj
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 | | tttt 0100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SRA
(WRj).15 ~ (WRj).15
(WRj).b « (WRj).b+1
CY ~ (WR)).0

SRL <src>

Function: Shift logical right by 1 bit

Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit

shifted out (LSB) is stored in the CY bit.

Flags:
cY AC ov N z
3 — —

Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRL register 1

Register 1 contains 62H (01100010B) and CY = 1.

A-122

intel.

INSTRUCTION SET REFERENCE

SRL Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SRL

(Rm).7 - 0

(Rm).a « (Rm).a+1

CY ~ (Rm).0
SRL WRj

Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 | | tttt 0100

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SRL

(WRj).15 - 0

(WRj).b « (WRj).b+1

CY « (WRj).0

SUB <dest>,<src>

Function:

Description:

Flags:

Subtract

Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY is clear.

When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit).

The source operand allows four addressing modes: immediate, indirect, register and direct.

CY AC (0)Y] N 4

3 ot 3

tFor word and dword subtractions, AC is not affected.

A-123

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction
SUB R1,RO
register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.
Variations
SUB Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1

[Encoding] 1001 1100 H ssss SSssS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rmd) ~ (Rmd) — (Rms)

SUB WRjd,WRjs

Binary Mode Source Mode
Bytes: 3 2
States: 3 2

[Encoding] 1001 1101 | | tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRjd) — (WRjd) — (WRjs)

SUB DRkd,DRks

Binary Mode Source Mode
Bytes: 3 2
States: 5 4

[Encoding] 1001 1111 | [wuuu uuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRkd) — (DRkd) — (DRks)

A-124

Int9|® INSTRUCTION SET REFERENCE

SUB Rm #data
Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 1001 1110 | | ssss 0000 | | #dam

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) — #data

SUB WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SuUB
(WRj) « (WRj) —#datal6

SUB DRk #datal6

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
1001 1110 ‘ ‘ uuuu 1000 ‘ ‘ #data hi #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SuUB
(DRK) ~ (DRK) — #datal6
SUB Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-125

8x930AXx, 8x930HXx USER’'S MANUAL

Operation: SUB
(Rm) «~ (Rm) — (dir8)
SUB WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1001 1110 | | tttt 0101 | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(WRj) « (WRj) —(dir8)
SUB Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1001 1110 ‘ ‘ SSss 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) — (Rm) — (dir16)
SUB WR;,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 | |t 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(WRj) « (WRj) — (dir16)
SUB Rm,@WR]
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1001 1110 | [ttet 1001 | | ssss 0000

A-126

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) ~ (Rm) - ((WRj))
SUB Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
1001 1110 | [wuuuu 1011 | | ssss | | 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB

(Rm) — (Rm) — ((DRK))

SUBB A,<src—byte>

Function:

Description:

Flags:

Example:

Subtract with borrow

SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

CY AC ov N 4

The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction

SUBB A,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

A-127

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a

CLR CY instruction.

Variations
SUBB A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 1001 0100 ‘ ‘ immed. data
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SUBB
(A) — (A) - (CY) — #data
SUBB A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SUBB
(A) « (A)—(CY) — (dir8)
SUBB A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1001 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: SUBB
(A) — (A) - (CY) - ((RD)
SUBB A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1001 lrrr

A-128

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: SUBB
(A) = (A)-(CY)-(Rn)
SWAP A
Function: Swap nibbles within the accumulator
Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3—0 and bits 7—
4). This operation can also be thought of as a 4-bit rotate instruction.
Flags:
CY AC ov N z
Example: The accumulator contains 0C5H (11000101B). After executing the instruction
SWAP A
the accumulator contains 5CH (01011100B).
Binary Mode Source Mode
Bytes: 1 1
States: 2 2
[Encoding] 1100 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SWAP
(A).3:0 - ~ (A).7:4
TRAP
Function: Causes interrupt call
Description: Causes an interrupt call that is vectored through location OFFO07BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSWO0 and PSW1.
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.
Flags:
CY AC oV N z
Example: The instruction

TRAP

causes an interrupt call to location O0FFO07BH during normal operation.

A-129

8x930AXx, 8x930HXx USER’'S MANUAL

Binary Mode Source Mode

Bytes: 2 1
States (2 bytes): 11 10
States (4 bytes): 16 15
[Encoding] 1011 1001

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: TRAP

SP - SP-2

(SP) - PC

PC — (OFF007BH)
XCH A,<byte>
Function: Exchange accumulator with byte variable
Description: Loads the accumulator with the contents of the specified variable, at the same time writing

the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:
CcY AC ov N
Example: RO contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction
XCH A,@R0
RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).
Variations
XCH A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 3t 3t

ff this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding] 1100 0101

‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCH
(A) - ~ (dir8)

A-130

intel.

INSTRUCTION SET REFERENCE

XCH A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 4 5
[Encoding] 1100 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: XCH
(A) - ~ ((Ri)
XCH A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1100 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: XCH
o (A) - < (Rn)
Variations
XCHD A,@Ri
Function: Exchange digit
Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.
Flags:
CcY AC oV N z
Example: RO contains the address 20H, the accumulator contains 36H (00110110B), and on-chip
RAM location 20H contains 75H (01110101B). After executing the instruction
XCHD A,@R0
on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-
lator.
Binary Mode Source Mode
Bytes: 1 2
States: 4 5

A-131

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

[Encoding] 1101 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCHD
(A).3:0 - ~ ((Ri)).3:0

XRL <dest>,<src>
Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation ([0) between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

Flags:
CcY AC oV N z
— — — 3 3
Example: The accumulator contains 0C3H (11000011B) and RO contains 0AAH (10101010B). After
executing the instruction
XRL A,RO
the accumulator contains 69H (01101001B).
When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction
XRL P1,#00110001B
complements bits 5, 4, and 0 of output Port 1.
Variations
XRL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2f

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding] 0110 0010 ‘ ‘ direct addr

A-132

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) « (dir8) O (A)

XRL dir8,#data
Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0110 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ~ (dir8) O #data
XRL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1

[Encoding] 0110 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) « (A) O #data
XRL A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1f

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0110 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) < (A) O (dir8)
XRL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3

A-133

8x930AXx, 8x930HXx USER’'S MANUAL

[Encoding] 0110 011i

Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encodin g]
Operation: XRL

(A) « (A) O((Ri)
XRL A,Rn

Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0110 lrrr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encodin g]
Operation: XRL

(A) - (A)O(Rn)
XRL Rmd,Rms

Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0110 1100 ‘ ‘ SSSS

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: XRL

(Rmd) « (Rmd) O (Rms)

XRL WRjd, WRjs

Bytes: 3 2
States: 3 2
[Encoding] 0110 1101 \ \ tttt
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL

Binary Mode Source Mode

(WRds) — (WRjd) O (WRjs)

XRL Rm,#data

Bytes:
States:

A-134

Binary Mode Source Mode
4 3
3 2

Int9|® INSTRUCTION SET REFERENCE

[Encoding] ‘ 0110 1110 H ssss 0000 H #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) —~ (Rm) O #data

XRL WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) < (WRj) O #datal6
XRL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) — (Rm) O (dir8)
XRL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0110 1110 \ \ tttt 0101 \ \ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) « (WRj) O (dir8)

A-135

8x930AXx, 8x930HXx USER’'S MANUAL

XRL Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0110 1110 | | ssss 0011 | | directaddr | | dir8 addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) — (Rm) O (dir16)
\XRL WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | | tere 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(WRj) « (WRj) O (dir16)
XRL Rm,@Wrj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0110 1110 | | et 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) — (Rm) O ((WRj))
XRL Rm,@Drk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0110 1110 | [wuuu 1011 | | ssss | | 0000

A-136

intel.

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) — (Rm) O ((DRK))

INSTRUCTION SET REFERENCE

A-137

intel.

B

Signal Descriptions

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the external signals oka36.8Pin assign-
ments for the device are shown in Figure B-:O@Ax) and Figure B-2 (®30Hx) and are listed
by functional category in Table B-1.

Table B-2 describes each of the signals. It lists the signal type (input, output, poweurat)gro
and the alternative functions of multi-function pins. Table B-3 shiomg configuration bits
RD1:0 (referred to in Table B-2) configure the A17, A16, RD#, WR# and PSEN# pins for exter-
nal memory accesses.

2
3
4
5
6
i

A8/P2.0
A9/P2.1
A10/ P2
All/P2
Al2 /P2
A13/P2
Al4d /P2
Al15/P2
Vss

Vee

EA#

ALE
PSEN#
Reserved
Reserved
Reserved
Reserved

9
8
7
6
5
4
3
2
o1
68
67
66
65
64
63
62
61

AD7/P0.7H 10 60 3 Reserved
AD6/P0.6 & 11 59 [Reserved
AD5/P0.5H 12 58 A Reserved
AD4/P0.4 13 57 B Reserved
AD3/P0.3 14 56 [Reserved
AD2/P0.2] 15 55 [Dpg
AD1/P0.1] 16 54 [Dy
ADO/P0.0H 17 53 B ECAP
Vssp] 18 52 B Vssp
o STHE Vewdcompentas B
P3.1/TXD 21 mounted on PC board 49 B Reserved
P3.2/INTO#] 22 48 [Reserved
P3.3/INT1# 23 47 1 Reserved
P34/T0H 24 46 1 Reserved
P35/T1H 25 45 3 Reserved
P3.6 / WR#] 26 44 B PLLSELO
NODOANMINON0DNDO dNM
NANNMOOMHMOMHMMOHOMHOOMONHO®OS T T
gouuuguuogoguooouog
OANX O NHY ONDHN OF — N
e R S
235100022 Xk 33
Qaddmsn g oo
x P i Q —
S ooaaag <
o 8 <
& © 7
2o
™~
I
o

Note: Reserved pins must be left unconnected.
A4392-02

Figure B-1. 8 x930Ax 68-pin PLCC Package

B-1

8x930AXx, 8x930HXx USER’'S MANUAL

NM< N O~
SNpagagy 58888
[0 Wy Z5555
~~odamsnw o OEWWH oo an
WA AdAdAddd NOILT I VIO
CCCCCCLC>> U xrxreox
OON~NOOLTONAONOSTOMN A
@ © © O WO OOV
AD7/P0.7 4 10 60 B UPWEN#
AD6/P0.6 11 59 B OVRI#
AD5/P0.5 12 58 [Dpy
AD4 /P04 13 57 B Dm1
AD3/P0.3H 14 56 3 Reserved
AD2/P0.2] 15 55 |21 Dpg
AD1/P0.1 16 54 B Dyo
ADO/P0.0 17 View of component as 53 @ ECAP
Vssp 18 52 [Vssp
veerd 10 mounted on PC board o1 B veen
P3.0/RXD 4 20 50 | SOF#
P3.1/TXD H 21 49 B Dp3
P3.2/INTO# & 22 48 B Dy3
P3.3/INT1# 4 23 47 B Reserved
P34/T0H 24 46 [Dpy
P35/T1 25 45 [Dy
P3.6 / WR#] 26 44 B PLLSELO
NODOANMIEINONODO HdNM
NANNMOOOONOMOHOOHOONHOHO®OST I T
guuuguuuoogoooooy
(DNXGOHN%!UU)HN OF -«
SCRBEEnEgoY I Shay
2951000z Kk< 23
ga—dosino T Ta
o H&\—IHHQH
S & ocaaf<
2 o3
28
aZ
~
i
o

Note: Reserved pins must be left unconnected.

A4375-02

Figure B-2. 8 x930Hx 68-pin PLCC Package

intel.

SIGNAL DESCRIPTIONS

Table B-1. 68-pin PLCC Signal Assignments Arranged by Functional Category

T 8x930Hx only.

Address & Data Input/Output USB

Name Pin Name Pin Name Pin
ADO0/P0.0 17 P1.0/T2 28 PLLSELO 44
AD1/P0.1 16 P1.1/T2EX 29 PLLSEL1 42
AD2/P0.2 15 P1.2/ECI 30 PLLSEL2 43
AD3/P0.3 14 P1.3/CEX0 31 Dyvo 54
AD4/P0.4 13 P1.4/CEX1 32 Dpo 55
AD5/P0.5 12 P1.5/CEX2 33 Dy T 57
AD6/P0.6 11 P1.6/CEX3/WAIT# 34 Dpp T 58
AD7/P0.7 10 P1.7/CEX4/A17/WCLK 35 Dy T 45
A8/P2.0 9 P3.0/RXD 20 Dpy T 46
A9/P2.1 8 P3.1/TXD 21 Dys T 48
A10/P2.2 7 P3.4/T0 24 Dpg T 49
A11/P2.3 6 P3.5/T1 25 SOF# 50
A12/P2.4 5 ECAP 53
A13/P2.5 4 OVRHI T 59
A14/P2.6 3 UPWEN# T 60
A15/P2.7 2
P3.7/RD#/A16 27
P1.7/CEX4/A17/WCLK 35

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin
P3.2/INTO# 22 Vee 36,68 | | P3.6/WR# 26
P3.3/INT1# 23 Veer 19,51 | | P3.7/RD#/A16 27
EA# 67 AV 40 ALE 66
RST 41 EA# 67
XTAL1 38 Ves 1,37
XTAL2 39 Veer 18,52

8x930AXx, 8x930HXx USER’'S MANUAL

Table B-2. Signal Descriptions

intel.

Signal - Alternate
Name Type Description Function
A17 O Address Line 17. Output to memory as 18th external address | P1.7/CEX4/WCLK
bit in extended bus applications. Selected with bits RD1:0 in
configuration byte UCONFIGO. See Table B-3.
Al16 O Address Line 16 . Output to memory as 17th external address | RD#
bit in extended bus applications. Selected with bits RD1:0 in
configuration byte UCONFIGO. See Table B-3 and RD#, WR#,
and PSEN#.
A15:8t O Address Lines . Upper address lines for external memory. P2.7:0
AD7:0t I/O | Address/Data Lines . Multiplexed lower address lines and data | P0.7:0
lines for external memory.
ALE O Address Latch Enable . ALE signals the start of an external —
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.
AV PWR | Analog V ... A separate V. input for the phase-locked loop —
circuitry.
CEX2:0 I/O | Programmable Counter Array (PCA) Input/Output Pins P1.5:3
CEX3 These are input signals for the PCA capture mode and output P1.6/WAIT#
CEX4 signals for the PCA compare mode and PCA PWM mode. P1.7/A17/WCLK
Dwuo» Deo /O | USB Port 0. Dpg and D,,g are the data plus and data minus —
lines of USB port 0, the upstream differential port. These lines
do not have internal pullup resistors. For low-speed devices,
provide an external 1.5 KQ pullup resistor at D,,q. For full-speed
devices, provide an external 1.5 KQ pullup resistor at Dp.
NOTE: For the 8x930AXx, either Dy or D,,g must be pulled high.
Otherwise a continuous SEO (USB reset) will be applied to
these inputs causing the 8x930Ax to stay in reset.
For the 8x930Hx, provide an external 1.5 KQ pullup resistor at
Dpg so the device indicates to the host that it is a full-speed
device.
Du1, Dp1 /O | USB Ports 1, 2, 3 (8X930Hx only). Dpq, Dpy, Dp3, Dy1, Dy, —
D.. D and D3, are the data plus and data minus lines of USB ports 1,
M2 =P2 2, and 3, the three downstream differential ports. These lines do
D3, De3 not have internal pulldown resistors. Provide an external 15 KQ
pulldown resistor at each of these pins.
EA# | External Access . Directs program memory accesses to on- —

chip or off-chip code memory. For EA# strapped to ground, all
program memory accesses are off-chip. For EA# strapped to
V¢, program accesses on-chip ROM if the address is within the
range of the on-chip ROM; otherwise the access is off-chip. The
value of EA# is latched at reset. For devices without on-chip
ROM, EA# must be strapped to ground.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port O carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).

B-4

SIGNAL DESCRIPTIONS

determined by bits RDO:1 in configuration byte UCONFIGO.
(See PSEN# and Table B-3).

Table B-2. Signal Descriptions (Cont inued)
Signal - Alternate
Name Type Description Function
ECAP | External Capacitor . Connect a 1 pF or larger capacitor —
between this pin and Vgg to ensure proper operation of the
differential line drivers.
ECI | PCA External Clock Input . External clock input to the 16-bit P1.2
PCA timer.
INT1:0# | External Interrupts 0 and 1 . These inputs set the IE1:0 P3.3:2
interrupt flags in the TCON register. Bits IT1:0 in TCON select
the triggering method: edge-triggered (high-to-low) or level
triggered (active low). INT1:0 also serves as external run
control for timer1:0 when selected by GATE1:0# in TCON.
OVRI# | Overcurrent Sense (8X930Hx only). Sense input to indicate an | —
overcurrent condition for a bus-powered USB device on an
external down-stream port. Active low.
P0.7:0 I/O | Port 0. This is an 8-bit, open-drain, bidirectional /O port. AD7:0
P1.0 I/O | Port 1. This is an 8-bit, bidirectional I/O port with internal T2
P1.1 pullups. T2EX
P1.2 ECI
P1.5:3 CEX2:0
P1.6 CEX3/WAIT#
P1.7 CEX4/A17/WCLK
P2.7:0 I/O | Port 2. This is an 8-bit, bidirectional I/O port with internal Al15:8
pullups.
P3.0 I/O | Port 3. This is an 8-bit, bidirectional I/O port with internal RXD
P3.1 pullups. TXD
P3.3:2 INT1:0#
P3.5:4 T1:0
P3.6 WR#
P3.7 RD#/A16
PLLSEL2:0 | Phase-locked Loop Select . Three-bit code selects USB data | —
rate (see Table 2-4 on page 2-10).
PSEN# O Program Store Enable . Read signal output. Asserted for the —
memory address range determined by bits RDO:1 in
configuration byte UCONFIGO (see RD# and Table B-3).
RD# (@) Read. Read signal output to external data memory. Asserted as | P3.7/A16

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port O carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).

B-5

8x930AXx, 8x930HXx USER’'S MANUAL

Table B-2. Signal Descriptions (Cont inued)

intel.

Signal
Name

Type

Description

Alternate
Function

RST

Reset. Reset input to the chip. Holding this pin high for 64
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than V4, is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor
which allows the device to be reset by connecting a capacitor
between this pin and V..

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

RXD

110

Receive Serial Data . RXD sends and receives data in serial
1/0 mode 0 and receives data in serial /O modes 1, 2, and 3.

P3.0

SOF#

Start of Frame . Start of frame pulse. Active low. Asserted for 8
states (see Table 2-4 on page 2-10) when frame timer is locked
to USB frame timing and SOF token or artificial SOF is
detected.

T1:0

Timer 1:0 External Clock Input . When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

T2

110

Timer 2 Clock Input/Output . For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

T2EX

Timer 2 External Input . In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, 0 = down.

TXD

Transmit Serial Data . TXD outputs the shift clock in serial I/O
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P3.1

UPWEN#

USB Power Enable (8X930Hx only). A low signal on this pin
applies power to all three external downstream ports.

VCC

PWR

Supply Voltage . Connect this pin to the +5V supply voltage.

VCCP

PWR

Supply Voltage for I/0O buffers . Connect this pin to the +5V
supply voltage.

VSS

GND

Circuit Ground . Connect this pin to ground.

VSSP

GND

Circuit Ground for I/O buffers . Connect this pin to ground.

WAIT#

Real-time Wait State Input. The real-time WAIT# input is
enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit at
S:A7H. During bus cycles, the external memory system can
signal ‘system ready’ to the microcontroller in real time by
controlling the WAIT# input signal on the port 1.6 input.

P1.6/CEX3

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port O carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).

B-6

SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions (Cont inued)
Signal - Alternate
Name Type Description Function
WCLK O Wait Clock Output. The real-time WCLK output is driven at P1.7/CEXA4/A17
port 1.7 (WCLK) by writing a logical ‘1’ to the WCON.1
(RTWCE) bit at S:A7H. When enabled, the WCLK output
produces a square wave signal with a period of one-half the
oscillator frequency.
WR# O Write. Write signal output to external memory (Table B-3) P3.6
XTAL1 | Oscillator Amplifier Input . When implementing the on-chip —
oscillator, connect the external crystal/resonator across XTAL1
and XTAL2. If an external clock source is used, connect it to this
pin.
XTAL2 (0] Oscillator Amplifier Output . When implementing the on-chip | —

oscillator, connect the external crystal/resonator across XTAL1

and XTAL2. If an external oscillator is used, leave XTAL2
unconnected.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port O carries the lower address bits (A7:0), and port 2

carries the upper address bits (A15:8) and the data (D7:0).

Table B-3. Memory Signal Selections (RD1:0)

. A17/P1.7/
RD1:0 CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features
0 0 |Al7 Al6 Asserted for | Asserted for writes to | 256-Kbyte external
all addresses | all memory locations | memory
0 1 |P1.7/CEX4/ Al6 Asserted for | Asserted for writes to | 128-Kbyte external
WCLK all addresses | all memory locations | memory
1 0 |P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64-Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
1 1 |P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for 64-Kbyte external
WCLK for addresses | addresses writes to MCS® 51 memory. Compatible
< 7F:FFFFH = 80:0000H microcontroller data | with MCS 51
memory locations. microcontrollers.
NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3 on page 4-5).

B-7

intel.

Registers

APPENDIX C
REGISTERS

This appendix contains referenggarmation for the #8930 special function registers (SFRs).

The SFR map in Table C-1 provides the address and reset valu®3@A8 SFRs. SFRs with
double borders are endpoint-indexed. For further information, see “Special Function Registers
(SFRs)” on page 3-15.

Table C-2 depicts thex830Hx SFRs. SFRs with bold borders are port-indexed. SFRs with dou-
ble borders are endpdiindexed.

Tables C-3 through C-10 list the SFRs by functional category. “SFR Descriptions” on page C-8
contains descriptive tables of the SFRs arranged alphabetically.

NOTE

Use the prefix “S:” with SFR addresses to distinguish them from other
addresses.

“Configuration Bytes” on pageéc-78 showsthe two configuration bytes, UGONFIGO and
UCONFIGL1. For information on device configuration, see Chapter 4.

C-1

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Table C-1. 8x930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E s
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

FO | B EPINDEX TXSTAT TXDAT TXCON TXFLG TXCNTL TXCNTH F7
00000000 1xxxx000 00000000 XXXXXXXX 000x0100" || 00xx1000 00000000" || xxxxxx00

E8 CL CCAPOL CCAP1L CCAP2L CCAP3L CCAPA4L EF

00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00000000 00x10000T || 00000000 XXXXXXXX 0x000100 00xx1000 000000007 || xxxxxx00

D8 | CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 PCON1 DF
00x00000 00xxx000 x0000000 x0000000 x0000000 x0000000 x0000000 xxx00000

DO | PSW PSW1 SOFL SOFH D7
00000000 00000000 00000000 00000000

C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF
00000000 XXXXxX00 00000000 00000000 00000000 00000000

CO | FIFLG FIFLG1 EPCONFIG C7
00000000 00000000 XXXXXXXO0

B8 | IPLO SADEN SPH BF
x0000000 00000000 0000000

BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 Xxxx0000 x0000000 x0000000 x0000000

A8 | IENO SADDR AF
00000000 00000000

A0 | P2 FIE FIE1 WDTRST WCON A7
11111111 00000000 00000000 XXXXXXXX XXXXxx00

98 | SCON SBUF 9F
00000000 XXXXXXXX

90 | P1 97
11111111

88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000

80 | PO SP DPL DPH DPXL PCON 87
11111111 00000111 00000000 00000000 00000001 00XX0000

0/8 1/9 2/A 3/B 4/C 5/D 6/E s

I:l MCS 251 microcontroller SFRs @ Endpoint-indexed SFRs

T For EPCON, TXCON, TXCNTL, and RXCNTL, the reset value depends on the endpoint pair selected.
Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

C-2

Int9|® REGISTERS

Table C-2. 8X930Hx SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

FO | B EPINDEX TXSTAT TXDAT'T TXCON TXFLG TXCNTL TXCNTH F7
00000000 1xxxxx00 00000000 XHXXXXXX 000x0100" || 00xx1000 00000000" || xxxxxx00

E8 | HIFLG CL CCAPOL CCAP1L CCAP2L CCAP3L CCAPA4L EF
0xxxxx00 00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00000000 00x10000T || 00000000 XXXXXXXX 0x000100 00xx1000 000000007 || xxxxxx00

D8 | CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 PCON1 DF
00x00000 00xxx000 x0000000 x0000000 x0000000 x0000000 x0000000 xxx00000

DO | PSW PSW1 SOFL SOFH HPINDEX HPSC HPSTAT D7
00000000 00000000 00000000 00000000 XXxxx000 xxx00000 0x000100

C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 HPCON CF
00000000 XXXXxX00 00000000 00000000 00000000 00000000 Xxxxx000

CO | FIFLG C7
00000000

B8 | IPLO SADEN SPH BF
x0000000 00000000 0000000

BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 XXxxx000 x0000000 x0000000 x0000000

A8 | IENO SADDR HSTAT AF
00000000 00000000 x0000000

A0 | P2 HIE FIE WDTRST WCON A7
11111111 Oxxxxx00 00000000 XXXXXXXX XXXXXX00

98 | SCON SBUF HPPWR 9F
00000000 XXXXXXXX XXx1000x

90 | P1 HADDR 97
11111111 00000000

88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000

80 | PO SP DPL DPH DPXL PCON 87
11111111 00000111 00000000 00000000 00000001 00XX0000

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

MCS 251 microcontroller SFRs : Port-indexed SFRs

Endpoint-indexed SFRs

T For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

™ For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate
TXDAT register definition table is provided for this endpoint (see Chapter 8, “USB Hub.”)

C-3

8x930AXx, 8x930HXx USER’'S MANUAL

C.1 SFRS BY FUNCTIONAL CATEGORY

c4

Table C-3. Core SFRs

Mnemonic Name Address
AcCT Accumulator S:EOH
B' B register S:FOH
PSW Program Status Word S:DOH
PSwW1 Program Status Word 1 S:D1H
Spt Stack Pointer — LSB of SPX S:81H
SPHT Stack Pointer High — MSB of SPX S:BEH
DPTR' Data Pointer (2 bytes) —
DPL' Low Byte of DPTR S:82H
DPHT High Byte of DPTR S:83H
DPXL' Data Pointer Extended, Low S:85H
PCON Power Control S:87H
PCON1 USB Power Control. S:DFH
WCON Wait State Control Register S:A7H
"These SFRs can also be accessed by their corresponding registers in the
register file.
Table C-4. Interrupt System SFRs
Mnemonic Description Address
FIE USB Function Interrupt Enable Register. S:A2H
FIEL1 USB Function Interrupt Enable Register. S:A3H
FIFLG USB Function Interrupt Flag Register. S:COH
FIFLG1 USB Function Interrupt Flag Register. S:C1H
HIE Hub Interrupt Enable Register. S:AlH
HIFLG Hub Interrupt Flag Register. S:E8H
IENO Interrupt Enable Register 0. S:A8H
IEN1 Interrupt Enable Registerl. S:B1H
IPLO Interrupt Priority Low Register 0. S:B8H
IPHO Interrupt Priority High Register 0. S:B7H
IPL1 Interrupt Priority Low Register 1. S:B2H
IPH1 Interrupt Priority High Register 1. S:B3H
SOFH Start of Frame High Register. S:D3H
SOFL Start of Frame Low Register. S:D2H

REGISTERS
Table C-5. 1/0 Port SFRs

Mnemonic Name Address

PO Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:AOH

P3 Port 3 S:BOH

Table C-6. Serial /0 SFRs
Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table C-7. USB Function SFRs

Mnemonic Name Address
EPCON Endpoint Control Register. S:E1H
EPCONFIG Endpoint Configuration Register S:C7H
EPINDEX Endpoint Index Register. S:F1H
FADDR Function Address Register. S:8FH
RXCNTH Receive FIFO Byte-Count High Register. S:E7H
RXCNTL Receive FIFO Byte-Count Low Register. S:E6H
RXCON Receive FIFO Control Register. S:E4H
RXDAT Receive FIFO Data Register. S:E3H
RXFLG Receive FIFO Flag Register. S:E5H
RXSTAT Endpoint Receive Status Register. S:E2H
TXCNTH Transmit Count High Register. S:F7H
TXCNTL Transmit Count Low Register. S:F6H
TXCON Transmit FIFO Control Register. S:F4H
TXDAT Transmit FIFO Data Register. S:F3H
TXFLG Transmit Flag Register. S:F5H
TXSTAT Endpoint Transmit Status Register. S:FAH

C-5

8x930AXx, 8x930HXx USER’'S MANUAL

Table C-8. USB Hub SFRs

Mnemonic Name Address
HADDR Hub Address Register. S:97H
HPCON Hub Port Control. S:CFH
HPINDEX Hub Port Index Register. S:D4H
HPPWR Hub Port Power Control. S:9AH
HPSC Hub Port Status Change. S:D5H
HPSTAT Hub Port Status. S:D7H
HSTAT Hub Status and Configuration. S:AEH
Table C-9. Timer/Counter and Watchdog Timer SFRs
Mnemonic Name Address
TLO Timer/Counter O Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

C-6

Int9|® REGISTERS

Table C-10. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:F9H
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

C-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

C.2 SFR DESCRIPTIONS
This section contains descriptions of ald80 SFRs. They are presented in alphabetical order.

NOTE

SFR bits are firmware read/write unless otherwise noted in the bit definition.
SFRs may be accessed only as bytes; they may not be accessed as words or

dwords

Address: S:EOH

ACC
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCS® 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0-15) interchangeably.

7 0
Accumulator Contents

Bit Bit Function
Number Mnemonic
7:0 ACC.7:0 Accumulator.

Address: S:FOH

B
Reset State: 0000 0000B

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0-15.

7 0

B Register Contents

Bit Bit Function
Number Mnemonic

7:0 B.7:0 B Register.

C-8

intel.

REGISTERS

CCAPxH, CCAPXL (x = 0-4)

Address:

Reset State:

CCAPOH,L S:FAH, S:EAH
CCAP1H,L S:FBH, S:EBH
CCAP2H,L S:FCH, S:ECH
CCAP3H,L S:FDH, S:EDH
CCAP4H,L S:FEH, S:EEH

XXXX XXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0
High/Low Byte of Compare/Capture Values
Bit Bit Function
Number Mnemonic
7:0 CCAPXxH.7:0 | High byte of PCA comparison or capture values.
CCAPXL.7:0 | Low byte of PCA comparison or capture values.

C-9

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CCAPMx (x =0-4) Address: ggﬁgmg EBQ:
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: x000 0000B
PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value

or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

! 0
— ECOMx | CAPPx | CAPNx || MATx TOGx | PWMx | ECCFx
Bit Bit _

Number Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:

ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the firmware timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MAT x Match:

Set ECOMx and MAT x to implement the firmware timer mode. When
MATXx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGXx Toggle:

Set ECOMXx, MATXx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

C-10

Int9|® REGISTERS

CCON Address: S:D8H
Reset State: 00x0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0
CF CR — CCF4 ‘ ‘ CCF3 CCF2 CCF1 CCFO
Bit Bit Function
Number Mnemonic
7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or firmware but can be cleared only by firmware.
6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by firmware to turn the PCA timer/counter on and off.

5 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMXx register is set. Must be cleared by firmware.

CH, CL Address: S:FOH
S:E9H
Reset State: 0000 0000B

CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.
7 0
High/Low Byte PCA Timer/Counter

Bit Bit Function
Number Mnemonic
7:0 CH.7:0 High byte of the PCA timer/counter
CL.7:0 Low byte of the PCA timer/counter

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

CMOD

7

Address: S:D9H
Reset State: 00xx x000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

CIDL

WDTE

_ _ H — CcPS1 CPS0 ECF

Bit
Number

Bit
Mnemonic

Function

7

CIDL

PCA Timer/Counter Idle Control:

CIDL =1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

WDTE

Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

2:1

CPS1:0

PCA Timer/Counter Input Select:
CPS1 CPSO

0 0 Fek /6

0 1 Fo /2

1 0 Timer O overflow

1 1 External clock at ECI pin (maximum rate = F,4. /8)

ECF

PCA Timer/Counter Interrupt Enable:

ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

C-12

Int9|® REGISTERS

Address: S:83H

DPH
Reset State: 0000 0000B

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use DPTR
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

7 0
DPH Contents

Bit Bit Function
Number Mnemonic
7:0 DPH.7:0 Data Pointer High:
Bits 8-15 of the extended data pointer, DPX (DR56).
DPL Address: S:82H

Reset State: 0000 0000B

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the

low byte of the 16-bit data pointer, DPTR. Instructions in the MCSP 51 architecture use the 16-bit data

pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and

DPXL.

7 0
DPL Contents

Bit Bit Function
Number Mnemonic
7:0 DPL.7:0 Data Pointer Low:

Bits 0—7 of the extended data pointer, DPX (DR56).

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

DPXL

Address: S:85H
Reset State: 0000 0001B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7 0
DPXL Contents
Bit Bit Function
Number Mnemonic
7:0 DPXL.7:0 Data Pointer Extended Low:
Bits 16—23 of the extended data pointer, DPX (DR56).

C-14

Int9|® REGISTERS

EPCON Address: S:E1H
(Endpoint-indexed) Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2,3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.
7 0
RXSTL TXSTL CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN

Bit Bit

. Function
Number Mnemonic

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK

5 CTLEP Control Endpoint:
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:"

Set this bit to configure the receive endpoint for single data packet operation.
When enabled, only a single data packet is allowed to reside in the receive
FIFO.

NOTE: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model.
However, itis possible to have a control endpoint configured in dual
packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet overrides this bit if it is cleared, and
place the receive data in the FIFO.

T For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

EPCON (Continued) Address: S:E1H
(Endpoint-indexed) Reset State: Endpoint 0 0011 0101B
Function Endpoints 1, 2,3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.
7 0
RXSTL TXSTL CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN

Bit Bit

. Function
Number Mnemonic

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bitis used to enable the transmit endpoint. When disabled, the endpoint
does not respond to a valid IN token. This bit is hardware read only. Note
that endpoint O is enabled for transmission upon reset.

T For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

C-16

Int9|® REGISTERS

EPCONFIGT Address: S:C7H
Reset State: XXXX XXX0B

Endpoint Configuration Register. Selects the six-endpoint pair option or four-endpoint pair option as
the 8x930Ax function endpoint pair configuration.

7 0
_ _ _ _ ‘ ‘ _ — — SIXEPPEN
Bit Bit Function
Number Mnemonic
7:1 — Reserved:
Write zeroes to these bits.
0 SIXEPPEN | Six-endpoint pair enable:'’

Set this bit to select the six-endpoint pair (6EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0 Transmit Receive

FIFO FIFO
Oxxx X000 xx 16 16
Oxxx x001 ~ 00'TT 256 256
Oxxx X010 xx 32 32
Oxxx x011 xx 32 32
Oxxx x100 xx 32 32
Oxxx x101 xx 16 16

Clear this bit to select the four-endpoint pair (4EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0 Transmit Receive

FIFO FIFO

Oxxx xx00 xx 16 16
Oxxx xx01 00 256 256
01 512 512

10 1024 0

11 0 1024

Oxxx xx10 xx 16 16
Oxxx xx11 XX 16 16

T 8x930Ax only. Early sample devices did not have this SFR.

™t Select the endpoint configuration during initialization and do not change during program execution.

T When using function endpoint 1 in the six-endpoint pair configuration, clear the FFSZ1:0 bits in
TXCON to select the 256-byte size for the transmit and receive FIFOs.

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

EPINDEX Address: S:F1H
Reset State: 1xxx x000B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0
8X930Hx ‘ HORF ‘ — ‘ — ‘ — ‘ ‘ — ‘ — ‘ EPINX1 ‘ EPINXO ‘
7 0
8X930AX ‘ — ‘ — ‘ — ‘ — ‘ ‘ — ‘ — ‘ EPINX1 ‘ EPINXO ‘
4 EPP - 5
8X930AX ‘ — ‘ — ‘ — ‘ — ‘ ‘ — ‘ EPINX2 ‘ EPINX1 ‘ EPINXO ‘
6 EPP
Bit Bit

. Function
Number Mnemonic

7 HORF Hub/function Bit:

(8X930Hx) | 1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

— Reserved:
(8X930AX) Although the reset state for this bit is “1", always write a zero to this bit for
8X930Ax applications.
6:3 — Reserved:
Write zeros to these bits.

2 — Reserved:
8X930Hx or | Write a zero to this bit. 8xX930Hx
8X930Ax
(4 EPP)
1:0 EPINX1:0 | Endpoint Index:
8X930Hx | EPINDEX' EPINDEX' (8x930Hx only)
or 0xxx xx00 Function Endpoint O 1xxx xx00 Hub Endpoint 0
8X930Ax | Oxxx xx01 Function Endpoint 1 1xxx xx01 Hub Endpoint 1

(4 EPP) 0xxx xx10 Function Endpoint 2
0xxx xx11 Function Endpoint 3

2:0 EPINX2:0 | Endpoint Index:

8%930Ax | EPINDEX'

(6 EPP) 0xxx X000 Function Endpoint O
0xxx X001 Function Endpoint 1
0xxx x010 Function Endpoint 2
O0xxx x011 Function Endpoint 3
0xxx x100 Function Endpoint 4
Oxxx x101 Function Endpoint 5

T The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive
FIFO pair. The value in this register plus SFR addresses select the associated bank of endpoint-
indexed SFRs (TXDAT, TXCON, TXFLG, TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTHIL,
EPCON, TXSTAT, and RXSTAT).

C-18

intel.

REGISTERS

FADDR

Address: S:8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0
— AB:0
Bit Bit)
Number | Mnemonic Function
7 — Reserved:
Write a zero to this bit.
6:0 A6:0 7-bit Programmable Function Address:
This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

FIE

Address:
Reset State:

S:A2H

0000 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0
FRXIE3 FTXIE3 FRXIE2 FTXIE2 ‘ ‘ FRXIE1 FTXIE1 FRXIEO FTXIEO
Nua::\er Mne?r:tonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).
6 FTXIE3 Function Transmit Interrupt Enable 3:
Enables transmit done interrupt for endpoint 3 (FTXD3).

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIEO Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint O (FRXDO).

0 FTXIEO Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint 0 (FTXDO).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to

the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value is still reflected in the FIFLG register.

C-20

Int9|® REGISTERS

EIE1 Address: S:A3H
Reset State: 0000 0000B

Function Interrupt Enable Register 1. Available on the 8xX930Ax only, this register enables and
disables the receive and transmit done interrupts for function endpoints four and five.

7 0
— — H FRXIES | FTXIE5S | FRXIE4 | FTXIE4

Nua::\er Mne?r:tonic Function
7:4 — Reserved:
3 FRXIE5S Function Receive Done Interrupt Enable 5:
Enables receive done interrupt for endpoint 5 (FTXD5).
2 FTXIES Function Transmit Interrupt Enable 5:
Enables the transmit done interrupt for endpoint 5 (FTXD5).
1 FRXIE4 Function Receive Interrupt Enable 4:
Enables the receive done interrupt for endpoint 4 (FRXD4).
0 FTXIE4 Function Transmit Interrupt Enable 4:
Enables the transmit done interrupt for endpoint 4 (FTXD4).

NOTE: When the FRXIE.5:4 or FTXIE.5:4 is set, the interrupt is enabled and it will cause an
interrupt to the CPU, when a transmit of receive done flag is set. If the FRXIE.5:4 and
FTXIE.5:4 is cleared, the interrupt is disabled. All these bits can be read/write by firmware.

C-21

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

EIELG Address: S:COH
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0
FRXD3 FTXD3 FRXD2 FTXD2 ‘ ‘ FRXD1 FTXD1 FRXDO FTXDO
Nuager Mne?r:tonic Function

7 FRXD3 Function Receive Done Flag, Endpoint 3

6 FTXD3 Function Transmit Done Flag, Endpoint 3

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXDO Function Receive Done Flag, Endpoint 0

0 FTXDO Function Transmit Done Flag, Endpoint O

NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bitindicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

C-22

Int9|® REGISTERS

FIFLG1 Address: S:C1H
Reset State: 0000 0000B

Function Interrupt Flag Register 1. Available on the 8xX930Ax only, this register contains the USB

Function’s Transmit and Receive Done interrupt flags for non-isochronous endpoints.

7 0
— — — — ‘ ‘ FRXD5 | FTXD5 | FRXD4 | FTXD4
Bit Bit Function

Number Mnemonic

7:4 — Reserved:

Write zeros to these bits.

3 FTXD5 Function Receive Done Flag, Endpoint 5:

2 FTXD5 Function Transmit Done Flag, Endpoint 5:

1 FRXD4 Function Receive Done Flag, Endpoint 4:

0 FTXD4 Function Transmit Done Flag, Endpoint 4:

NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’
indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bit indicates either:

Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

C-23

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HADDR Address: S:97H
Reset State: 0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0
‘ — ‘ Hub Address
Bit .
Number Function
7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

HIE Address: S:A1H
Reset State: Oxxx xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0
_ _ — H — — HRXEO HTXEO

Bit Bit . Function
Number Mnemonic

7:2 — Reserved:
Write zeros to these bits.

1 HRXEO HRXEO:
Enable the hub endpoint 0 receive done interrupt (HRXDO).Jr

0 HTXEO HTXEO:
Enable the hub endpoint 0 transmit done interrupt (HTXDO).Jr

T For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.

C-24

Int9|® REGISTERS

HIELG Address: S:E8H
Reset State: Oxxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0
_ H — — HRXDO HTXDO

Bit Bit .
Number Mnemonic Function
7:2 — Reserved:
Write zeros to these bits.
1 HRXDO Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXDO Hub Transmit Done, Endpoint O:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:

1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits
are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXDO and HTXDO, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.

C-25

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPCON Address: S:CFH
Reset State: XXxX X000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

; 0
_ _ _ — H — HPCON2 | HPCON1 | HPCONO

Bit Bit

. Function
Number Mnemonic

7:3 — Reserved:
Write zeros to these bits.

2:0 HPCON.2:0 | Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port

001 — Enable port

010 — Reset and enable port
011 — Suspend port

100 — Resume port

See Table 8-6 for a complete description of the encoded hub port control
commands.

C-26

Int9|® REGISTERS

HPINDEX Address S:D4H
Reset State XXXX X000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,

and HPCON registers are to be accessed.

7 0
— — — — || = HPIDX2 | HPIDX1 | HPIDXO

Bit Bit .
Number Mnemonic Function
7:3 — Reserved:

Write zeros to these bits.
2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPID.2:0 bit combinations:

Port 1 = “001”
Port 2 = “010”
Port 3 ="011"

Port 4 = “100” (internal port)

NOTE: Port 0="000" (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.

C-27

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPPWR

Address: S:9AH
Reset State: xxx1 000xB

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.

7

0

— HPPWR.4 ‘ ‘HPPWR.S HPPWR.2 | HPPWR.1 —

Bit
Number

Bit
Mnemonic

Function

75

Reserved:
The value read from these bits is indeterminate. Write zeros to these bits.

HPPWR.4

Port Power Control Register for USB Port 4 (read-only):

Port 4 is an internal port and is always powered on. This bit is hard-wired to
.

31

HPPWR.3.1

Port Power Control Register for USB Ports 1-3:

Bit 3 is power control for port 3, bit 2 for port 2, and bit 1 for port 1. These
bits are set and cleared by firmware via a USB host request SetPortFeature
with the PORT_POWER feature selector. These bits will also be cleared by
hardware upon detection of an over-current condition. This is done to
prevent oscillation of the UPWEN# pin during an over-current condition with
bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the port in a

disconnected state. A value of ‘0’ turns the downstream port power off.

NOTE: The UPWEN# pinis setto ‘1’ only if all three port power enable
bits (bits 3:1) are ‘0,’ due to the use of a ganged (shared) power
enable scheme.

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

C-28

Int9|® REGISTERS

HPSC Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0
— — — RSTSC H — PSSC PESC PCSC

Bit Bit

. Function
Number Mnemonic

75 — Reserved:
Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 4: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:
Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=1,2,3): This bit is set by hardware upon completion of the firmware-
initiated resume process.

Port 4: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)

C-29

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPSC (Continued) Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0
— — — RSTSC H — PSSC PESC PCSC

Bit Bit

. Function
Number Mnemonic

1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 4: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware at the EOF2 point near the end
of a frame due to hardware connects and disconnects.

Port 4: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)

C-30

Int9|® REGISTERS

HPSTAT Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, Dy, and Dy, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT ‘ ‘ PRSTAT PSSTAT PESTAT PCSTAT

Bit Bit

. Function
Number Mnemonic

7 DPSTAT D, Status (read-only):

Value of D, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to '1’, since there is no D, signal for the embedded port

6 DMSTAT Dy, Status (read-only):

Value of D,, for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to '0’, since there is no D, signal for the embedded port.

4 PPSTAT Port Power Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 4: Hard-wired to '1’, since the internal function is always powered-on.

5 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 4: Hard-wired to '0’ (full-speed), since port 4 is permanently attached to
the embedded USB function.

NOTES:
Firmware returns the bits of this register in the first word of the 8xX930Hx' response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8xX930Hx supports ganged power
control and overcurrent indication.

C-31

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HPSTAT (Continued) Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, D, and D,, status.

7 0
DPSTAT DMSTAT LSSTAT PPSTAT ‘ ‘ PRSTAT PSSTAT PESTAT PCSTAT

Bit Bit

. Function
Number Mnemonic

3 PRSTAT Port Reset Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as a result of initiating a port x
reset by writing to HPCON. ‘1’ = reset signaling is currently asserted for port
x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2 point near
end of frame.

Port 4: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently suspended. ‘0’ = not suspended. Sampled
only at the EOF2 point near end of frame.

Port 4: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled only
at the EOF2 point near end of frame.

Port 4: Same as port x.

0 PCSTAT Port Connect Status (read-only):
Port x connect status from previous frame time.

Port x (x=1,2,3): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 4: Hard-wired to ‘1’, since the internal function is permanently
connected.

NOTES:

Firmware returns the bits of this register in the first word of the 8xX930Hx' response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8xX930Hx supports ganged power
control and overcurrent indication.

C-32

Int9|® REGISTERS

HSTAT Address: S:AEH
Reset State: x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0
— HRWUPE | EP1STL | EP1EN ‘ ‘ ovISC — ovl —
Bit Bit Function
Number Mnemonic
7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
6 HRWUPE Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit

is modified through the SetFeature and ClearFeature requests using the

DEVICE_REMOTE_WAKEUP feature selector. When ‘0,” a hub cannot

propagate resume signaling for connect/disconnect and resume events

detected on downstream ports.

NOTE: Do not set this bit until after the hub is enumerated and the host
issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

5 EP1STL Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1," will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of

0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon

receipt of configuration value other than 0001H or a system or USB

reset.

NOTE: This bit must be set in order for the UPWEN# pin to enable
power to the downstream ports. Downstream power cannot be
applied until this is done.

3 oViIsC Hub Over-current Indicator Status Change (read/clear-only): T

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

2 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

T Bits 3:0 are returned in response to a Get Hub Status request from the USB host. This response is a
four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

C-33

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

HSTAT (Continued)

Address: S:AEH
Reset State: x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0
— HRWUPE | EP1STL | EP1EN || owisc — ovi —
Bit Bit Function
Number Mnemonic
1 oVi Latest Over-current Indicator (read-only): i
Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.
0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

T Bits 3:0 are returned in response to a Get Hub Status request from the USB host. This response is a
four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00([1] 0.

C-34

intel.

REGISTERS
IENO Address: S:A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

7

EA

EC

ET2 ES H ET1 EX1

ETO

EXO0

Bit
Number

Bit
Mnemonic

Function

EA

Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits

0-6 of this register, as well as the interrupts enabled by the bits in the

IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which

is always enabled.

EC

PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.

ET2

Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

ES

Serial /O Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.

ET1

Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

EX1

External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

ETO

Timer O Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

EXO0

External Interrupt O Enable:
Setting this bit enables external interrupt 0.

C-35

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

IEN1 Address: S:B1H
Reset State: xxxx XO00H
Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.
7 0
— — — - || = ESR EF ESOF
Bit Bit : Function
Number Mnemonic
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 ESR Enable Suspend/Resume:
USB global suspend/resume interrupt enable bit.
1 EF Enable Function:
Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.
0 ESOF Enable USB Hub/Start of Frame:
Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.

C-36

intel.

REGISTERS

IPHO

Address: S:B7H
Reset State: x000 0000B

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPHO.6 IPHO.5 IPHO.4 ‘ ‘ IPHO.3 IPHO.2 IPHO.1 IPHO.0
Nuataer Mne?r:tonic Function
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPHO.6 PCA Interrupt Priority Bit High
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High
2 IPHO.2 External Interrupt 1 Priority Bit High
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High
0 IPHO.0 External Interrupt O Priority Bit High

C-37

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

IPH1

Address:
Reset State:

S:B3H
x000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — — - || = IPH12 | IPHL1 | IPH1.0
Nuataer Mne?r:tonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High
IPH1.1 USB Function Interrupt Priority Bit High
0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High

C-38

intel.

REGISTERS

IPLO

Address: S:B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPLO.6 IPLO.5 IPLO.4 ‘ ‘ IPLO.3 IPLO.2 IPLO.1 IPLO.O
Nua:)er Mne?r:tonic Function
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPLO.6 PCA Interrupt Priority Bit Low
5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial /0 Port Interrupt Priority Bit Low
3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt 1 Priority Bit Low
1 IPLO.1 Timer O Overflow Interrupt Priority Bit Low
0 IPLO.O External Interrupt O Priority Bit Low

C-39

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

IPL1 Address: S:B2H
Reset State: x000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — — - || = IPLL.2 IPLL.1 IPL1.0
Bit Bit .
Number Mnemonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low
IPL1.1 USB Function Interrupt Priority Bit Low
0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low
PO Address: S:80H

Reset State: 1111 1111B

Port 0. PO is the SFR that contains data to be driven out from the port O pins. Read-modify-write
instructions that read port O read this register. The other instructions that read port 0 read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 0
PO Contents

Bit Bit Function
Number Mnemonic
7:0 P0.7:0 Port 0 Register:
Write data to be driven onto the port O pins to these bits.

C-40

L]
Int9|® REGISTERS
P1 Address: S:90H
Reset State: 1111 1111B
Port 1. P1is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.
7 0
P1 Contents
Bit Bit .
Number Mnemonic Function
7:0 P1.7:0 Port 1 Register:
Write data to be driven onto the port 1 pins to these bits.
P2 Address: S:AOH

Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0
P2 Contents
Bit Bit Function
Number Mnemonic
7:0 P2.7:0 Port 2 Register:
Write data to be driven onto the port 2 pins to these bits.

C-41

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

P3

Address:
Reset State:

S:BOH
1111 1111B

Port 3. P3is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0
P3 Contents
Bit Bit .
Number Mnemonic Function
7:0 P3.7:0 Port 3 Register:
Write data to be driven onto the port 3 pins to these bits.

C-42

Int9|® REGISTERS

PCON Address: S:87H
Reset State: 00xx 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial 1/0
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7 0
SMOD1 SMODO LC POF ‘ ‘ GF1 GFO PD IDL
Bit Bit Function
Number Mnemonic
7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 13-10.

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See the SCON register (Figure 13-2 on page 13-4).

5 LC Low-clock Mode Enable:

Setting this bit forces the internal clock (F,) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns F to the
clock frequency determined by pins PLLSEL2:0.

4 POF Power Off Flag:

Set by hardware as V. rises above 3 V to indicate that power has been
off or V. had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by firmwatre.

3 GF1 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bitis also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-43

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

PCON1 Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x930.

7 0
— — — URDIS ‘ ‘ URST RWU GRSM GSUS
Bit Bit Function
Number Mnemonic

75 — Reserved:
The value read from these bits are indeterminate. Write zeroes to these
bits.

4 URDIS USB Reset Disable:

(8x930AX) When clear by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 251 core, USB blocks and all
peripherals.

When set by firmware, the MCS 251 core and peripherals will not reset
when a USB reset signal is detected. Upon detecting a USB reset signal,
the 8x930Ax resets all the USB blocks (FIFOs, FIU, SIE, and
transceiver), sets the URST bit and generates a USB reset interrupt
(refer to the description of URST).

URDIS Reserved:

(8X930HX) The value read from these bits are indeterminate. Write zeroes to these
bits.

3 URST USB Reset Flag:

(8x930AX) This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IEN1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

URST Reserved:

(8x930Hx) The value read from these bits are indeterminate. Write zeroes to these
bits.

2 RWU Remote Wake-up Bit:
1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1 and GRSM = 0). See
Figure 15-3 on page 15-11.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

C-44

Int9|® REGISTERS

PCON1 (Continued) Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x930.

7 0
— — — URDIS ‘ ‘ URST RWU GRSM GSUS

1 GRSM Global Resume Bit:

1 =resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interruthr
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 15-3
on page 15-11.

0 GSUs Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.Jr During this ISR, firmware should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 15-3 on page 15-11.

T Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

C-45

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

PSW Address: S:DOH
Reset State: 0000 0000B
7 0
cy AC FO RS1 ‘ ‘ RSO ov uD P
Bit Bit Function
Number Mnemonic
7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 FO Flag 0:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 (e)Y] Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ubD User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

C-46

REGISTERS
PSwi1 Address: S:D1H
Reset State: 0000 0000B
7 0
cy AC N Rs1 || Rso ov z —
Bit Bit . Function
Number Mnemonic
7 CY Carry Flag:
Identical to the CY bit in the PSW register.
6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register.
5 N Negative Flag:
This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.
4-3 RS1:0 Register Bank Select Bits 0 and 1:
Identical to the RS1:0 bits in the PSW register.
2 (e)Y] Overflow Flag:
Identical to the OV bit in the PSW register.
1 z Zero Flag:
This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.
0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

RCAP2H, RCAP2L

Address: RCAP2H S:CBH
RCAP2L S:CAH
Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0
High/Low Byte of Timer 2 Reload/Capture Value
Bit Bit)
Number Mnemonic Function
7:0 RCAP2H.7:0 | High byte of the timer 2 reload/recapture register
RCAP2L.7:0 | Low byte of the timer 2 reload/recapture register

C-47

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXCNTH, Address: S:E7H
RXCNTL S:E6H
(Endpoint-indexed) Reset States:

Endpoint 1 RXCNTH xxxx xx00B
RXCNTL 0000 0000B

Other
Endpoints’ RXCNTL xxx0 0000B

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8
. - [- [=1 = J = | = | B9 | Becs |
7 (RXCNTL) 0
‘ BC7 ‘ BC6 ‘ BC5 ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
7 (RXCNTL) Other Endpoints’ 0
‘ — ‘ — ‘ — ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
Nu‘rgnit:\er Mne?rit)nic Function

Endpoint 1

15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.

Ten-bit, ring buffer byte. Stores receive byte count (RXCNT). Implemented
for function endpoint 1 only.

Other EndpointsJr

7.0 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count (RXCNT). 3.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.

C-48

Int9|® REGISTERS

RXCON Address: S:E4H
(Endpoint-indexed) Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0
RXCLR — RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP

Bit Bit

. Function
Number Mnemonic

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and

RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation

is completed.
6 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.
5 RXWS Receive FIFO Wait-state Read:

At the 8x930 core frequency of 12 MHz, not all instructions that access the
receive FIFO are guaranteed to work due to critical paths inherent in the
8x930 architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:Jr

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:Jr

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

T ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

C-49

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXCON (Continued) Address: S:E4H
(Endpoint-indexed) Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.
7 0
RXCLR — RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP

Bit Bit

. Function
Number Mnemonic

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

NOTE: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker: T

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: T

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

T ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

C-50

intel.

REGISTERS

RXDAT
(Endpoint-indexed)

Address: S:E3H
Reset: XXXX XXXXB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this

register.
7 0
RXDAT.7:0
Bit Bit . Function
Number Mnemonic
7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read

data from the receive FIFO, the 8x930 reads from this register. The write
pointer and read pointer are incremented automatically after a write and
read, respectively.

C-51

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXFLG

(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7

0

RXFIF1

RXFIFO

— — H RXEMP | RXFULL | RXURF | RXOVF

Bit
Number

Bit
Mnemonic

Function

7:6

RXFIF1:0

Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-5 on page 7-26). The RXFIF bits are updated after each

write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC
01 Set RXFFRC

00 Unchanged
00 Unchanged
11 Set RXFFRC 10/01 Unchanged
10 Set RXFFRC 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements” RXFIF
immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you
utilize control endpoints in single-packet mode only.

X X X X

5:4

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

RXEMP

Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

T When set, all transmissions are NAKed.

C-52

Int9|® REGISTERS

RXFLG (Continued) Address: S:E5H
(Endpoint-indexed) Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO — — ‘ ‘ RXEMP RXFULL RXURF RXOVF

Bit Bit

. Function
Number Mnemonic

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals the
read pointer. Hardware clears the bit when the full condition no longer exists.
This is not a sticky bit and always tracks the current status of the receive
FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flagt:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following

rule: Firmware events cause status change immediately, while USB events

cause status change only at SOF. Since underrun can only be caused by

firmware, RXURF is updated immediately. You must check the RXURF flag

after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bitis set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flagt:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through firmware, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In 1ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.t

T When set, all transmissions are NAKed.

C-53

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXSTAT Address: S:E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit Function
Number | Mnemonic
7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): i

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written

along with the new RXSEQ value.

NOTE: Always verify this bit after writing to ensure that there is no conflict
with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP | Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.

T Under normal operation, this bit should not be modified by the user.
™ For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

™1 The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

C-54

Int9|® REGISTERS

RXSTAT Address: S:E2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit

. Function
Number Mnemonic

4 EDOVW End Overwrite FIag:Jr This flag is set by hardware during the handshake
phase of a SETUP stage. It is set after every SETUP packet is received and
must be cleared prior to reading the contents of the FIFO. When set, the
FIFO state (FIF and read pointer) remains locked for this endpoint until this
bit is cleared. This prevents a prior, ongoing firmware read from corrupting
the read pointer after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

NOTE: Make sure the EDOVW bit is cleared prior to reading the contents
of the FIFO.

3 RXSOVW | Receive Data Sequence Overwrite Bit: i

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.

Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’

when read. 711

2 RXVOID Receive Void Condition (read-only):TJr

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked
2. The EPCON register’'s RXSTL bit is set

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.
™ For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

™1 The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

C-55

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

RXSTAT

(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7

0

RXSEQ

RXSETUP

STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic

Function

1

RXERR

Receive Error (read-only):TJr

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.
2. Bit stuffing error.
3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is

set when active. This bit is updated with the RXACK bit at the end of data
reception and is mutually exclusive with RXACK.

RXACK

Receive Acknowledged (read-only): Tt

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8xX930Ax with 6EPP) is

set when active. This bit is updated with the RXERR bit at the end of data
reception and is mutually exclusive with RXERR.

+
Tt

Under normal operation,
For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

this bit should not be modified by the user.

™1 The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new
configuration or interface.

C-56

Int9|® REGISTERS

SADDR Address: S:A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit Bit)
Number Mnemonic Function
70 SADDR.7:0
SADEN Address: S:B9H

Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given
address for multiprocessor communication.

7 0
Mask for SADDR
Bit Bit Function
Number Mnemonic
7:0 SADEN.7:0
SBUF Address: S:99H
Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial 1/0 port. Reading SBUF
reads the receive buffer of the serial 1/0 port.

7 0
Data Sent/Received by Serial /0 Port

Bit Bit Function
Number Mnemonic
7:0 SBUF.7:0

C-57

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

SCON Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SMm1 sMm2 REN ‘ ‘ TBS RB8 TI RI
Bit Bit .
Number Mnemonic Function
7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

SMO0 Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Firmware writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rat e’

0 0 0 Shift register Fok/6

0 1 1 8-bit UART Variable

1 0 2 9-bit UART Foud16or F /3211
1 1 3 9-bit UART Variable

TSee note on page page 13-1.

TMselect by programming the SMOD bit in the PCON register (see
section “Baud Rates” on page 13-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

C-58

Int9|® REGISTERS

SCON (Continued) Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN ‘ ‘ TB8 RB8 TI RI
Bit Bit Function
Number Mnemonic
2 RB8 Receiver Bit 8:

Mode 0: Not used.
Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

C-59

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

SOFH Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0
SOFACK ASOF SOFIE FTLOCK ‘ ‘ SOFODIS TS10 TS9 TS8

Bit Bit

. Function
Number Mnemonic

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and itis cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T, S.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS | SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight T, ,s.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

C-60

Int9|® REGISTERS

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the

host.

7 0
TS7:0

Bit Bit

. Function
Number Mnemonic

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

SP Address: S:81H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0
SP Contents

Bit Bit

. Function
Number Mnemonic

7:0 SP.7:0 Stack Pointer:
Bits 0—7 of the extended stack pointer, SPX (DR60).

C-61

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

SPH

Address:
Reset State:

S:BEH
0000 0000B

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0
SPH Contents
Bit Bit Function
Number Mnemonic
7:0 SPH.7:0 Stack Pointer High:
Bits 8-15 of the extended stack pointer, SPX (DR(60)).

C-62

intel.

REGISTERS

T2CON

Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0
TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function
Number Mnemonic

7 TF2 Timer 2 Overflow Flag:
Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK=1o0r TCLK = 1.

6 EXF2 Timer 2 External Flag:
If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1).

5 RCLK Receive Clock Bit:
Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:
Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:
Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.

1 CIT2# Timer 2 Counter/Timer Select:
C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:
When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

C-63

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

T2MOD Address: S:C9H
Reset State: XxXxx xx00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0
— — H — — T20E DCEN

Bit Bit

. Function
Number Mnemonic

7:2 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

C-64

intel.

REGISTERS

TCON

7

Address:

S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

TF1

TR1

TFO TRO H IE1 IT1 IEO

ITO

Bit
Number

Bit
Mnemonic

Function

7

TF1

Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

TR1

Timer 1 Run Control Bit:
Set/cleared by firmware to turn timer 1 on/off.

TFO

Timer O Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

TRO

Timer 0 Run Control Bit:
Set/cleared by firmware to turn timer 1 on/off.

IE1

Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed

if edge-triggered.

IT1

Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.

Clear this bit to select level-triggered (active low).

IEO

Interrupt 0 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed

if edge-triggered.

ITO

Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt O.

Clear this bit to select level-triggered (active low).

C-65

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TMOD

Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0
GATE1 CIT1# M11 M01 ‘ ‘ GATEO C/TO# M10 MO0
Bit Bit)
Number Mnemonic Function
7 GATE1 Timer 1 Gate:
When GATEL1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL =1 and TR1 = 1, external signal INT1 gates the
timer input.
6 CIT1# Timer 1 Counter/Timer Select:
C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.
54 M11, MO1 Timer 1 Mode Select:
M11 MO1
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.
3 GATEO Timer O Gate:
When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO =1 and TRO = 1, external signal INTO gates the
timer input.
2 C/TO# Timer 0 Counter/Timer Select:
C/TO# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.
1,0 M10, MOO Timer 0 Mode Select:
M10 MOO
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit
timer using timer 1's TR1 and TF1 bits.

C-66

intel.

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

REGISTERS
THO, TLO Address: THO S:8CH
TLO S:8AH
Reset State: 0000 0000B

7 0
High/Low Byte of Timer O Register
Bit Bit Function
Number Mnemonic

7:0 THO.7:0 High byte of the timer O timer register.
TLO.7:0 Low byte of the timer O timer register.

TH1, TL1 Address: TH1 S:8DH

TL1 S:8BH

Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0
High/Low Byte of Timer 1 Register
Bit Bit Function
Number Mnemonic
7:0 TH1.7:0 High byte of the timer 1 timer register.
TL1.7:0 Low byte of the timer 1 timer register.

C-67

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TH2, TL2 Address: TH2 S:CDH
TL2 S:CCH
Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
2.

7 0
High/Low Byte of Timer 2 Register

Bit Bit Function
Number Mnemonic
7:0 TH2.7:0 High byte of the timer 2 timer register.
TL2.7:0 Low byte of the timer 2 timer register.

C-68

Int9|® REGISTERS

TXCNTH, Address: S:F7H
TXCNTL S:F6H
(Endpoint-indexed)

Reset States: Endpoint 1 TXCNTH xxxx xx00B
TXCNTL 0000 0000B

Other
Endpoints’ TXCNTL xxx0 0000B

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints.

15 (TXCNTH) Endpoint 1 8

. - [- [= [= J0 =1 = | 8 [Bcs |

7 (TXCNTL) 0

‘ BC7 ‘ BC6 ‘ BCS ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘

7 (TXCNTL) Other Endpoints 0

‘ — ‘ — ‘ — ‘ BC4 H BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
Bit Bit Function

Number Mnemonic

Function Endpoint 1

15:10 — Reserved.
Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count. (write, conditional read’™)
Ten-bit, ring buffer. Stores transmit byte count (TXCNT). Implemented for
function endpoint 1 only.

Other EndpointsJr

7:0 — Reserved.
Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read’™)
Five-bit, ring buffer. Stores transmit byte count (TXCNT) for endpoints 0, 2,
and 3.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.

' Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.

C-69

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXCON Address: S:F4H
(Endpoint-indexed) Reset State: Function Endpoint 1 000x 0100B
Other Endpoints’ 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0
Function ‘ TXCLR ‘ FFSZ1 ‘ FFSZ0 ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoint 1 7 0
Other ‘ TXCLR ‘ — ‘ — ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoints T

Bit Bit Function

Number Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT

register.
6:5 FFSZ1:0 FIFO Size:
For function endpoint 1 only (EPINDEX = 0000 0001B), these bits select
Function the sizes of both the transmit and receive FIFOs. (There are no FFSZ bits
Endpoint 1 | in the corresponding RXCON.) These bits are not reset when the TXCLR
only bit is set in the TXCON register.
FFSZ1:0 Transmit Size Receive Size
00 256 256
01 512 512
10 1024 0
11 0 1024
— Reserved:
Other End- | Values read from this bit are indeterminate. Write zero to this bit.
points T
4 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.
3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and
must be cleared by firmware.

T Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8 xX930AXx
only).

* ATM mode is recommended. ADVRM and REVRP, which control the read marker and read
pointer when ATM = 0, are used for test purposes,

C-70

Int9|® REGISTERS

TXCON (Continued) Address: S:F4H
(Endpoint-indexed) Reset State: Function Endpoint 1 000x 0100B
Other Endpoints’ Oxxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0
Function ‘ TXCLR ‘ FFSZ1 ‘ FFSZ0 ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoint 1 7 0
Other ‘ TXCLR ‘ — ‘ — ‘ — H TXISO ‘ ATM ‘ADVRM ‘ REVRP ‘
Endpoints T

Nulrgnif:\er Mne?riltonic Function

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISOTX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)
1. to origin of next data set 2. to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

1 ADVRM | Advance Read Marker Control (non-ATM mode only)'T:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This
bit is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode onIy)”:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the
FIU can reread the last set for retransmission. Hardware clears this bit
after the read pointer is reversed. This bit is effective only when the
ADVRM, ATM, and TXCLR bits are all clear.

Other endpoints = Hub endpoint O; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8 x930Ax

only).

T ATM mode is recommended. ADVRM and REVRP, which control the read marker and read
pointer when ATM = 0, are used for test purposes,

T

C-71

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXDAT Address: S:F3H
(Endpoint-indexed)Jr Reset State: XXXX XXXXB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit Bit

. Function
Number Mnemonic

7:0 TXDAT.7:0 | Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

T For hub endpoint 1, TXDAT is used in a different manner. See Figure 8-6 on page 8-12.

TXDAT (For hub endpoint 1 only) EPINDEX=81H" Address: S:F3H
Reset State: 0000 0000B

7 0
— — — TXDAT.4 ‘ ‘ TXDAT.3 | TXDAT.2 | TXDAT.1 | TXDAT.O

Bit Bit Function
Number | Mnemonic
75 — Reserved:
Values read from these bits are indeterminate.
4:0 TXDAT.4:0 | Hub Endpoint 1 Status Change (read-only™):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDAT.O0 hub status change

TXDAT.1 port 1 status change

TXDAT.2 port 2 status change

TXDAT.3 port 3 status change

TXDAT.4 port 4 status change

A ‘1’ indicates a status change and ‘O’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bitis a ‘1. If all bits are zero, a NAK handshake is returned.

T TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 7-8 on page 7-18.

Bits 4-0 can be set indirectly by firmware by writing to port xX's HPSC SFR. Setting any bit in port X's
HPSC results in the hardware setting bit x in TXDAT. Bits can be cleared indirectly in firmware by
clearing the condition that caused the status change.

Tt

C-72

Int9|® REGISTERS

TXFLG Address: S:F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number Mnemonic

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
firmware (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNT for traceability. See
the TXFLUSH bitin TXSTST.
NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

T When set, all transmissions are NAKed.

C-73

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXFLG (Continued) Address: S:F5H
(Endpoint-indexed) Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number Mnemonic

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun FIagT:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through firmware. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bitin TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the TXCNT doesn't agree with the data, hardware sets TXURF. This
indicates that the transmitted data was corrupted by a bit-stuffing or CRC
error.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun FIagT:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In 1ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

T When set, all transmissions are NAKed.

C-74

Int9|® REGISTERS

TXSTAT Address: S:F2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ ‘ TXSOVW | TXVOID TXERR TXACK

Bit Bit

. Function
Number Mnemonic

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): T

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:
Write zeros to these bits.
4 TXFLUSH | Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW | Transmit Data Sequence Overwrite Bit: i

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read.

2 TXVOID Transmit Void (read-only): Tt

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.
This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in

response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

™1 For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

C-75

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

TXSTAT (Continued) Address: S:F2H
(Endpoint-indexed) Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ ‘ TXSOVW | TXVOID TXERR TXACK

Bit Bit

. Function
Number Mnemonic

1 TXERR Transmit Error (read-only):TJr

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8xX930Ax
with 6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXACK bit at the end of the data
transmission (this bit is mutually exclusive with TXACK). For isochronous
transactions, this bit is not updated until the next SOF.

0 TXACK Transmit Acknowledge (read-only): Tt

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax with
6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXERR bit at the end of data
transmission (this bit is mutually exclusive with TXERR). For isochronous
transactions, this bit is not updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

™11 For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

C-76

L]
Int9|® REGISTERS

WCON Address: S:A7H

Reset: XXXX XX00B

Wait State Control Register. Use this register to enable the real-time wait state input signal and/or

the wait state output clock.

7 0

— - | = — || = — RTWCE | RTWE
Bit Bit]

Number | Mnemonic Function

7:2 — Reserved:

The values read from these bits are indeterminate. Write “0” to these
bits.

1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT
CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait
state input on port 1.6 (WAIT#).

WDTRST Address: S:A6H

Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1EH-E1H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to

read it return FFH. The WDT itself is not read or write accessible. See Chapter 11, “Timer/Counters
and Watchdog Timer.”

7 0
WDTRST Contents (Write-only)
Bit Bit Function
Number Mnemonic
7:0 WDTRST.7:0 | Provides user control of the hardware WDT.

C-77

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

C.3 CONFIGURATION BYTES

The &930 reserves the top eight bytes of the memory address space for an eight-byte configura-
tion array. The two lowest bytes of the configuration array are assigned to the two configuration
bytes UCONFIGO and UCONFIGL1. The configuration bits contained in configuration bytes are
used to select source mode or binary mode opcode configuration, select the bytes pushed onto the
stack by interrupts, map on-chip code memory, and configuexthenal memory interface. The
configuration bytes are discussed in more detail in Chapter 4, “Device Configuration.”

UCONEIGO Address: FF:FFF8H (2)
@, 3
7 0
— WSA1# WSAO# XALE# ‘ ‘ RD1 RDO PAGE# SRC
Bit Bit : Function
Number | Mnemonic
7 — Reserved:
Reserved for internal or future use. Set this bit when programming
UCONFIGO.
6:5 WSAL:0# | Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSAl# WSAO#

0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = Tggc.
Clear this bit for ALE = 3Ty4 (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930
fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size
and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.

C-78

Int9|® REGISTERS

UCONFIGO Address: FF:FFF8H (2)

1), (3

7 0
— WSAL# | WSAO# | XALE# H RD1 RDO PAGE# SRC
Bit Bit

. Function
Number Mnemonic

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on PO.
0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51
microcontrollers).

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930
fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size
and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.

C-79

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

UCONFIG1 Address: FF:FFF9H (2)

1,3

7 0

— — — INTR || — WSB1# | WSBO# | EMAP#
Bit Bit Function
Number | Mnemonic

75 — Reserved:
Reserved for internal or future use. Set these bits when programming
UCONFIGL1.

4 INTR Interrupt Mode:
If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

— Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0# External Wait State B (Region 01:):
WSB1# WSBO#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:
For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H-FF:3FFFH to 00:E000H-00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H-00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)" on page 14.

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIGL1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the
8x930 fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory depends
on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.

C-80

intel.
D

Data Flow Model

APPENDIX D
DATA FLOW MODEL

This appendix describes the data flow model for #838 USB transactions. This data flovod-

el, presented in truth table form, is intended to bridge the hardware and firmware layers of the
8x930. It describes the behavior of th®80 in response to a particular USB event, given a known

state/configuration.

The types of data transfeupported by thex®30 are:
* Non-isochronous transfer (interrupt, bulk)
* [Isochronous transfer

¢ Control transfer

Table D-1. Non-isochronous Transmit Data Flow

New TX TX TX
T(>1<_FO')F Event TXFIF | 20 | 0 | oy | OVF | URF | inter- Reg;‘zse Comments
’ (1:0) 1) 1) rupt
00 Received IN | 00 no no 1 no no None NAK No data was

token, but no chg | chg chg | chg loaded, so

data or NAK

TXOE =0

Received IN | 00 no no 1 no no None NAK Control

token, chg | chg chg | chg endpoint only.

RXSETUP = Endpoint will

1 NAK when
RXSETUP =
1 even if
TXSTL=1

Data loaded |01 no no no no no None N/A Firmware

into FIFO chg | chg chg |chg |chg should always

from CPU, check TXFIF

CNT written bits before
loading and
TXOVF after
loading.

Data loaded | 00 no no no 1 no None NAKs Only overrun

into FIFO, chg |chg chg chg future trans- | FIFO error can

FIFO error actions occur here.

occurs Firmware
should always
check TXOVF
before write
CNT.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-1

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

intel.

New TX TX TX
1'()1(F()I)F Event TXFIF ETRE(R ATCXK V-I(-;iij OVF | URF Inter- Re;:i)?]se Comments
: (1:0) 1) 1) rupt
01/10 | Received IN | 00 0 1 0 no no Set Send data ACK
token, data chg | chg transmit received, so
transmitted, interrupt no errors.
host ACKs Read marker
advanced
Received IN | 01/10 |1 0 0 no no Set Send data SIE times-out.
token, data chg | chg transmit Read ptr
transmitted, interrupt reversed.
no ACK
(time-out)
Received IN | 01/10 | no no 1 no no None NAK, NAKs | Received
token, but chg |chg chg | chg future trans- | Setup token
RXSETUP = actions (or transmit
1 (orTXOE = except disabled), so
0) SETUP. IN tokens are
NAKed. (2)
Received IN | 01/120 |1 0 0 no 1 Set Send data Only
token, data chg transmit | with bit- underrun FIFO
transmitted, interrupt | stuff error. error can
FIFO error NAKs occur here.
occurs future trans- | Read ptr
actions. reversed.
Received IN | 01/120 |1 0 1 no 1 (no | None NAK Treated like a
token with (no | (no chg | chg) “void”
existing chg) | chg) condition.
FIFO error
and TXERR
set.
Received IN | 00 0 1 0 no no Set Send data Data is
token chg | chg transmit retransmitted.
without interrupt TXACK is set
existing and TXERR is
FIFO error cleared. The
but TXERR TXERR was
set, data set by
retrans- previous
mitted, host transaction
ACKs when host
time-out.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-2

intel.

DATA FLOW MODEL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

New TX TX TX
1'()1(F()I)F Event TXFIF ETRE(R ATCXK V-I(-;iij OVF | URF Inter- Re;:i)?lse Comments
: (1:0) 1) 1) rupt
Data loaded | 11 no no no no no None N/A Firmware
into FIFO chg | chg chg |chg |chg should always
from CPU, check TXFIF
CNT written bits before
loading and
TXOVF after
loading.
Data loaded | 01/10 | no no no 1 no None NAKs future | Only overrun
into FIFO, chg | chg chg chg transactions | FIFO error can
FIFO error occur here.
occurs. CNT Firmware
not written should always
yet. check TXOVF
before write
CNT
NOTE: no
TXERR, but
TXOVF set.
11 Received IN | 10/01 |0 1 0 no no Set Send data | ACK
token, data chg | chg transmit received, so
transmitted, interrupt no errors.
host ACKs Read marker
advanced.
Received IN | 11 1 0 0 no no Set Send data SIE times-out.
token, data chg | chg transmit Read ptr
transmitted, interrupt reversed.
no ACK
(time-out)
Received IN | 11 0 0 1 no no None NAK, NAKs | Received
token, but chg | chg future trans- | Setup token
RXSETUP = actions (or transmit
1 (or TXOE = disabled), so
0) IN tokens are
NAKed. (2)
Received IN | 11 1 0 0 no 1 Set Send data | Only FIFO
token, data chg transmit | with bit- underrun
transmitted, interrupt | stuff error, error can
FIFO error NAK future | occur here.
occurs transactions | Read ptr
reversed.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-3

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

intel.

New TX TX TX
1'()1(F()I)F Event TXFIF ETRE(R ATCXK V-I(-;iij OVF | URF Inter- Re;:i)?lse Comments
: (1:0) 1) 1) rupt

Received IN | 11 1 0 1 no 1 None NAK Treated like a

token with (no | (no chg | (no “void”

existing chg) | chg) chg) condition.

FIFO error

and TXERR

set.

Received IN | 10/01 |0 1 0 no no Set Send data Data is

token chg chg transmit retransmitted.

without interrupt TXACK is set

existing and TXERR is

FIFO error cleared. The

but TXERR TXERR was

set, data set by

retrans- previous

mitted, host transaction

ACKs when host
time-out.

Data loaded | 11 no no no 1 no None N/A Writing into

into FIFO chg |chg chg chg CNT when

from CPU, TXFIF=1

CNT written sets TXOVF
bit. Firmware
should always
check TXFIF
bits before
loading.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-4

Int9|® DATA FLOW MODEL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

New (at next SOF)
TX TX TX TX
TX_FIF Event FIF OVF | URF Inter- usB Comments
(2:0) (1:0) TX TX TX w2 | 1.2 rupt Response
(é) ERR | ACK | Void ’ ’

00 Received IN 00 no no 1 no no None Send null No data was
token, but no chg chg chg | chg data packet | loaded, so send
data or TXOE=0 null data

packet. This
event should
never happen.
Data loaded into | 01 no no no no no None N/A Firmware
FIFO from CPU, chg chg chg chg | chg should always
CNT written check TXFIF
bits before
loading and
TXOVF after
loading.
Data loaded into | 00 no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT

01/10 | Received IN 00 0 1 0 no no None Send data No ACK (time-
token, data chg | chg out) for ISO.
transmitted with Read marker
or without trans- advanced.
mission error
Received IN 00 1 0 0 no 1 None Send CRC Only underrun
token, data chg with bit- FIFO error can
transmitted, stuff error occur here.
FIFO error Read marker
occurs advanced.

NOTES:

1. These are sticky bits, which must be cleared by firmware.

2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. NOTE: This table assumes TXEPEN and ATM are enabled.

D-5

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

intel.

New (at next SOF)
TX TX TX TX
TX_FIF Event FIF OVF | URF Inter- usB Comments
(2:0) (1:0) TX TX TX w2 | 1.2 rupt Response
(é) ERR | ACK | Void ’ ’
Received IN 01/10 | 1 0 1 no 1 None Send null Treated like a
token with (no (no chg | (no data packet | “void” condition.
existing FIFO chg) | chg) chg)
error
Received IN 01/10 | O 0 1 no no None Send null Endpoint not
token, but TXOE chg | chg data packet | enabled for
=0 transmit, but
no NAK for
I1SO.
Data loaded into | 11 no no no no no None N/A Firmware
FIFO from CPU, chg chg chg chg | chg should always
CNT written check TXFIF
bits before
loading and
TXOVF after
loading.
Data loaded into | 01/10 | no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can
occurs occur here.
Firmware
should always
check TXOVF
before write
CNT
Note: no
TXERR, but
TXOVF set.
1 Received IN 10/01 | O 1 0 no no None Send data No ACK (time-
token, data chg | chg out) for ISO.
transmitted with Read marker
or without trans- advanced.
mission error
NOTES:

1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.

TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
3. NOTE: This table assumes TXEPEN and ATM are enabled.

D-6

intel.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

DATA FLOW MODEL

New (at next SOF)
TX TX TX TX
TX_FIF Event FIF OVF | URF Inter- uSB Comments
(2:0) (1:0) TX TX TX w2 | 1.2 rupt Response
(é) ERR | ACK | Void ’ ’
Received IN 10/01 |1 0 0 no 1 None Send data Only a FIFO
token, data chg with underrun error
transmitted, bitstuff error | can occur
FIFO error here. Read
occurs marker
advanced.
Received IN 11 1 0 1 no 1 None Send null Treated like a
token with (no (no chg | (no data packet | “void” condition.
existing FIFO chg) | chg) chg)
error
Received IN 11 0 0 1 no no None Send null Endpoint not
token, but TXOE chg | chg data packet | enabled for
=0 transmit, but
no NAK for
ISO.
Receive SOF 10/01 | no no no no no None None Hostnever read
indication chg chg chg chg | chg | (SOF last frame’s
interrupt ISO. packet.
set) Read marker
ASOF and ptr
set. advanced,
oldest packet
is flushed from
FIFO.
Data loaded into | 11 no no no 1 no None N/A CNT written
FIFO from CPU, chg chg chg chg when
CNT written TXFIF=11 will
set TXOVF bit.
Firmware
should always
check TXFIF
bits before
loading.
NOTES:

1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.

TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
3. NOTE: This table assumes TXEPEN and ATM are enabled.

D-7

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-3. Non-isochr onous Receive

intel.

Data Flow in Single-packet Mode (RXSPM = 1)

New RX | RX RX
FIF RX RX RX RX usB
(2:0) Event (1':'0':) ERR | ACK | Void | Setup Cz\l/)F U(?)F I?SE: Response Comments
00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg |chg chg chg | chg
but RXIE=0
Received 00 no no no no no no None None FIFO not
OUT token, chg |chg |chg |chg chg | chg loaded. Write
but timed-out ptr reversed.
waiting for
data
Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg |chg | receive errors, advance
no errors interrupt write marker.
Received 00 1 0 0 0 no no Set Time-out Write ptr
OUT token, chg |chg | receive reversed.
data CRC or interrupt (Possible to
bit-stuff error have RXERR
cleared by
hardware
before seen by
firmware.)
Received 00 1 0 0 0 1 no Set Time-out, | Only RXOVF
OUT token, chg | receive | NAK FIFO error can
FIFO error interrupt | future occur, requires
occurs transac- firmware inter-
tions vention.
Received 00 1 0 1 0 1 no None NAK Considered to
OUT token (no (no (no | chg be a “void”
with FIFO chg) | chg) chg) condition. Will
error already NAK until
existing firmware clears
condition.
Received 00 no no 1 no no no None ACK Last ACK
OUT token, chg | chg chg chg |chg corrupted, so
but data send again but
sequence ignore the data.
mismatch
Received 01 0 1 0 1 0 0 Set ACK RXIE or RXSTL
SETUP receive has no effect.(2)
token, no interrupt RXSETUP will
errors be set (control
endpoints only).
NOTE:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.
2. STOVW s set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-8

intel.

DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New RX RX RX
(E_Ig) Event FIF ERI;XR ARC>f< V?)?fj S(ljt)ép OVF | URF Inter- Re;:i)?\se Comments
: (1:0) 1) (D) rupt
Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data
Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed, (2)
token, data interrupt
CRC or bit-
stuff error
Received 00 1 0 0 1 1 0 Set Time-out, | (2)
SETUP receive | NAK
token, FIFO interrupt | future
error occurs transac-
tions
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing received.RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
CPU reads 00 no no no no no 1 None NAK FIFO was
FIFO, chg |chg chg | chg chg future empty when
causes FIFO transac- read. Should
error tions, always check
except RXFIF bits
SETUP before reading.
01 Received 01 no no 1 no no no None NAK FIFO not ready,
OUT token chg |chg chg chg | chg so data is
ignored (CRC or
FIFO error not
possible)
NOTE:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-9

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New RX | RX RX
('1:?(';) Event FIF ERI;XR ARC>f< V?)?fj S;ﬁp OVF | URF Inter- Re;:i)?\se Comments
: (1:0) 1) (D) rupt
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token, no interrupt automatically,
errors forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
Received 01 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data
Received 00 1 0 0 1 0 0 Set Time-out | Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has
CRC or bit- no effect. (2)
stuff error RXSETUP will
be set (control
endpoints only).
Received 00 1 0 0 1 1 0 Set Time-out, | (2) (control
SETUP receive | NAK endpoints only).
token, FIFO interrupt | future
error occurs transac-
tions
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
CPU reads 00 no no no no no no None None
FIFO, sets chg |chg |[chg |chg chg |chg
RXFFRC
NOTE:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-10

Int9|® DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New RX | RX RX
('1:?(';) Event FIF ERI;XR ARC>f< V?)?fj S;ﬁp OVF | URF | Inter- Re;:i)?\se Comments
’ (1:0) 1) 1) rupt
CPU reads 01 no no no no no 1 None Time-out, | Firmware
FIFO, chg |chg |chg |chg chg NAK should check
causes FIFO future RXURF bit
error. transac- before writing
RXFFRC not tions RXFFRC.
set yet.
CPU reads 00 no no no no no 1 None Time-out, | Firmware
FIFO, chg |chg |[chg |chg chg NAK should check
causes FIFO future RXURF bit
error. Set transac- before writing
RXFFRC. tions RXFFRC.
NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

New RX | RX RX
(';,Ig) Event FIF EIT?XR ARCXK V%i(j S(?tﬁ OVF | URF | Inter- Regsoise Comments
: (1:0) Pl @ | @ | rupt P

00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg | chg chg chg | chg
but RXIE =0
Received 00 no no 1 no no no None None FIFO not loaded.
OUT token, chg | chg chg chg | chg Write ptr
but timed-out reversed.
waiting for
data
Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg | chg | receive errors, advance
no errors interrupt write marker.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet

intel.

Mode (RXSPM = 0) (Continued)

New RX | RX RX
(';_Ig) Event FIF ER;XR ARCXK V%?é SZ{t)Jp OVF | URF Inter- Regpsoise Comments
) (1:0) 1) 1) rupt

Received 00 1 0 0 0 no no Set Time-out Write ptr

OUT token, chg | chg | receive reversed.

data CRC or interrupt (Possible to have

bit-stuff error RXERR cleared
by hardware
before seen by
firmware.)

Received 00 1 0 0 0 1 no Set Time-out, Only RXOVF

OUT token, chg | receive | NAK FIFO error can

FIFO error interrupt | future occur, requires

occurs transac- firmware inter-

tions vention.

Received 00 1 0 1 0 1 no None NAK Considered to be

OUT token (no | (no (no | chg a “void”

with FIFO chg) | chg) chg) condition. Will

error already NAK until

existing firmware clears
condition.

Received 00 no no no no no no None ACK Last ACK

OUT token, chg |chg |chg |chg chg | chg corrupted, so

but data send again but

sequence ignore the data.

mismatch

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token, no interrupt cally, forcing new

errors (dual SETUP to be

packet mode received. RXIE

not recom- or RXSTL has no

mended!) effect. (2)
RXSETUP will be
set (control
endpoints only).

Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset

SETUP receive automatically and

token, but interrupt FIFO data is

timed-out invalid. (2)

waiting for

data

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

3.

handshake phase.

D-12

NOTE: Dual-packet mode is NOT recommended for control endpoints.

Int9|® DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX | RX RX
(E_Ig) Event FIF ER;XR ARCXK V%?fj SZ{t)Jp OVF | URF Inter- Regpsoise Comments
) (1:0) 1) 1) rupt
Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed, RXIE
token, data interrupt or RXSTL has no
CRC or bit- effect. (2)
stuff error RXSETUP will be
(dual packet set (control
mode not endpoints only).
recom-
mended)
Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive | NAK has no effect. (2)
token, FIFO interrupt | future RXSETUP will be
error occurs transac- set (control
tions endpoints only).
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. RXIE
existing or RXSTL has no
effect. (2)
RXSETUP will be
set (control
endpoints only).
CPU reads 00 no no no no no 1 None NAK FIFO was empty
FIFO, chg |chg |chg |chg chg future when read.
causes FIFO transac- Should always
error tions check RXFIF bits
before reading.
01/10 | Received 01/10 | no no 1 no no no None NAK FIFO not ready.
OUT token, chg | chg chg chg | chg
but RXIE=0
Received 01/10 | no no 1 no no no None None FIFO not loaded.
OUT token, chg | chg chg chg | chg Write ptr
but timed-out reversed.
waiting for
data
Received 1 0 1 0 0 no no Set ACK Received, no
OUT token, chg | chg | receive errors, advance
no errors interrupt write marker.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet

intel.

Mode (RXSPM = 0) (Continued)

New RX | RX RX
(';_Ig) Event FIF ER;XR ARCXK V%?é SZ{t)Jp OVF | URF Inter- Regpsoise Comments
) (1:0) 1) 1) rupt

Received 01/10 |1 0 0 0 no no Set Time-out Write ptr

OUT token, chg | chg | receive reversed.

data CRC or interrupt (Possible to have

bit-stuff error RXERR cleared
by hardware
before seen by
firmware.)

Received 01/10 |1 0 0 0 1 no Set Time-out, Only RXOVF

OUT token, chg | receive | NAK FIFO error can

FIFO error interrupt | future occur, requires

occurs transac- firmware inter-

tions vention.

Received 01/10 | 1 0 1 0 1 no None NAK Considered to be

OUT token (no | (no (no | chg a “void”

with FIFO chg) | chg) chg) condition. Will

error already NAK until

existing firmware clears
condition.

Received 01/10 | no no no no no no None ACK Last ACK

OUT token, chg |chg |chg |chg chg | chg corrupted, so

but data send again but

sequence ignore the data.

mismatch

Received 01/10 | O 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token, no interrupt cally, forcing new

errors (dual- SETUP to be

packet mode received. RXIE

not recom- or RXSTL has no

mended) effect. (2)
RXSETUP will be
set (control
endpoints only).

Received 01/10 | 1 0 0 0 0 0 Set Time-out FIFO is reset

SETUP receive automatically,

token, but interrupt forcing new

timed-out SETUP to be

waiting for received. (2)

data

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

3.

handshake phase.

NOTE: Dual-packet mode is NOT recommended for control endpoints.

D-14

intel.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet

DATA FLOW MODEL

Mode (RXSPM = 0) (Continued)

New RX RX RX
(E_Ig) Event FIF ER;XR ARCXK V%?fj SZ{t)Jp OVF | URF Inter- Regpsoise Comments
) (1:0) 1) 1) rupt
Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has no
CRC or bit- effect. (2)
stuff error
(dual-packet
mode not
recom-
mended)
Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive | NAK has no effect, (2)
token, FIFO interrupt | future RXSETUP will be
error occurs transac- set (control
tions endpoints only).
Received 01/10 | O 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. (2)
existing RXSETUP will be
set (control
endpoints only).
CPU reads 00 no no no no no no None None
FIFO, sets chg |chg |chg |chg chg | chg
RXFFRC
CPU reads 01/10 | no no no no no 1 None Time-out, Firmware should
FIFO, chg |chg |[chg |chg chg NAK check RXURF bit
causes FIFO future before writing
error. transac- RXFFRC.
RXFFRC not tions
set yet.
CPU reads 00 no no no no no 1 None Time-out, Firmware should
FIFO, chg |chg |chg |chg chg NAK check RXURF bit
causes FIFO future before writing
error. Set transac- RXFFRC.
RXFFRC. tions
11 Received 11 no no 1 no no no None NAK FIFO not ready,
OUT token chg | chg chg chg | chg so data is
ignored (CRC or
FIFO error not
possible).
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

8x930AXx, 8x930HXx USER’'S MANUAL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet

intel.

Mode (RXSPM = 0) (Continued)

New RX | RX RX
(';_Ig) Event FIF ER;XR ARCXK V%?é SZ{t)Jp OVF | URF Inter- Regpsoise Comments
) (1:0) @)) rupt

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token, no interrupt cally, forcing new

errors (dual- SETUP to be

packet mode received. (2)

not recom- RXSETUP will be

mended!) set. (control
endpoints only).

Received 1 1 0 0 0 0 0 Set Time-out FIFO is reset

SETUP receive automatically and

token, but interrupt FIFO data is

timed-out invalid. (2)

waiting for

data

Received 00 1 0 0 1 0 0 Set Time-out Write ptr

SETUP receive reversed. RXIE

token, data interrupt or RXSTL has no

CRC or bit- effect. (2)

stuff error

(dual-packet

mode not

recom-

mended).

Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL

SETUP receive | NAK has no effect. (2)

token, FIFO interrupt | future RXSETUP will be

error (dual- transac- set (control

packet mode tions endpoints only).

not recom-

mended).

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token with interrupt cally, forcing new

FIFO error SETUP to be

already received. (2)

existing RXSETUP will be
set (control
endpoints only).

CPU reads 10/01 | no no no no no no None None

FIFO, sets chg |chg |chg |chg chg | chg

RXFFRC

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

D-16

Int9|® DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX | RX RX
(';_Ig) Event FIF ER;XR ARCXK V%?é SZ{t)Jp OVF | URF | Inter- Regpsoise Comments
) (1:0) 1) 1) rupt
CPU reads 1 no no no no no 1 None NAKs Firmware should
FIFO, chg |chg |[chg |chg chg future check RXURF bit
causes FIFO transac- before writing
error. tions FFRC
RXFFRC not
written yet.
CPU reads 10/01 | no no no no no 1 None NAKs Firmware should
FIFO, chg |chg |chg |chg chg future check RXURF bit
causes FIFO transac- before writing
error. Set tions FFRC
RXFFRC.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. NOTE: Dual-packet mode is NOT recommended for control endpoints.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

- Rl\)l(eFv:/F (at next SOF) RX RX RX USE
. Event . OVF | URF Inter- Comments
(2:0) (2:0) RX RX RX 12) | 12 rupt Response
) ERR | ACK | Void ' '
00 Received OUT | 00 no no 1 no no None None/ FIFO not ready,
token, but RXIE chg chg chg chg Time-out or timed-out
=0 waiting for data
packet, but no
NAK sent

Received OUT | 00 no no no no no None None/ FIFO not loaded.

token, but chg chg chg chg chg Time-out

timed-out

waiting for data

Received OUT | 01 0 1 0 no no None None/ Received, no

token, no errors chg chg Time-out errors, advance
write marker

Received OUT | 01 1 0 0 no no None None/ Bad data still

token, data chg chg Time-out loaded into

CRC or bit-stuff FIFO.

error

Received OUT | 01 1 0 0 1 no None None/ Only RXOVF

token, FIFO chg Time-out FIFO error can

error occurs occur, requires
firmware inter-
vention.

Received OUT | 00 1 0 1 1 no None None/ Treated like a

token with (no (no (no chg Time-out “void” condition.

FIFO error chg) | chg) chg)

already existing

CPU reads 00 no no no no 1 None None/ FIFO was

FIFO, causes chg chg chg chg Time-out empty when

FIFO error read. Should
always check
RXFIF bits
before reading.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.

RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will

“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-18

Int9|® DATA FLOW MODEL

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New (at next SOF) RX RX RX
FIF Event RXFIF OVF | URF Inter- uss Comments
(2:0) (2:0) RX RX RX 12) | 12 rupt Response
2) ERR | ACK | Void ’ '
Receive SOF no up- up- up- up- no None None/ Flags are
indication chg/up | dated | dated | dated | dated | chg (SOF Time-out updated at
dated interrupt) SOF. Firmware
must check for
RXFIF =00
condition to
detect no ISO
packet received
this frame.
01/10 | Received OUT | 01/10 | no no 1 no no None None/ FIFO not ready.
token, but RXIE chg chg chg chg Time-out
=0
Received OUT | 01/10 | no no no no no None None/ FIFO not loaded.
token, but chg chg chg chg chg Time-out
timed-out
waiting for data
Received OUT |11 0 1 0 no no None None/ Received, no
token, no errors chg chg Time-out errors, advance
write marker.
Received OUT |11 1 0 0 no no None None/ Possible to
token, data chg chg Time-out have RXERR
CRC or bit-stuff cleared by
error hardware
before seen by
firmware.
Reverse write
pointer.
Received OUT | 11 1 0 0 1 no None None/ Only OVF FIFO
token, FIFO chg Time-out error can occur,
error occurs requires
firmware inter-
vention.
Received OUT | 01/10 | no no 1 no no None None/ Treated like a
token with chg chg chg chg Time-out “void” condition.
FIFO error
already existing
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

8x930AXx, 8x930HXx USER’'S MANUAL

intel.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New (at next SOF) RX RX RX
FIF Event RXFIF OVF | URF Inter- USB Comments
(2:0) (2:0) RX RX RX 12) | 12 rupt Response
) ERR | ACK | Void ' '
CPU reads 00 no no no no no None None/
FIFO, sets chg chg chg chg chg Time-out
RXFFRC
CPU reads 00 no no no no 1 None None/ Firmware
FIFO, causes chg chg chg chg Time-out should check
FIFO error RXUREF bit
before writing
RXFFRC.
11 Received OUT | 11 no no 1 no no None None/ FIFO not ready,
token chg chg chg chg Time-out but data must be
taken. This
situation should
never happen.
Received SOF | no up- up- up- up- no None None/ Error condition
indication chg/ dated | dated | dated | dated | chg (SOF Time-out (not handled by
up- interrupt) hardware).
dated Firmware
should not allow
this condition.
CPU reads 10 or no no no no no None None/
FIFO, sets 01 chg chg chg chg chg Time-out
RXFFRC
CPU reads 11 no no no no 1 None None/ Firmware
FIFO, causes chg chg chg chg Time-out should check
FIFO error. RXUREF bit
RXFFRC not before writing
set yet. RXFFRC.
CPU reads 10or |no no no no 1 None None/ Firmware
FIFO, causes 01 chg chg chg chg Time-out should check
FIFO error. Set RXURF bit
RXFFRC. before writing
RXFFRC.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.

RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will

“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-20

intel.

Glossary

intel.
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1, “Guide to this Manual,” discusses notational conventions and general terminol-

ogy.)
#0datal6 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with zeros.

#1datal6 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with ones.

#data An 8-bit constant that is immediately addressed in an
instruction.

#datal6 A 16-bit constant that is immediately addressed in an
instruction.

#short A constant, equal to 1, 2, or 4, that is immediately

addressed in an instruction.

ACK Acknowledgment. Handshake packet indicating a
positive acknowledgment.

accumulator A register or storage location that forms the result of
an arithmetic or logical operation.

addr11 An 11-bit destination address. The destination can be
anywhere in the same 2 Kbyte block of memory as the
first byte of the next instruction.

addr16 A 16-bit destination address. The destination can be
anywhere within the same 64 Kbyte region as the first
byte of the next instruction.

addr24 A 24-bit destination address. The destination can be
anywhere within the 16 Mbyte address space.

ALU Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

assert The termassertrefers to the act of making a signal
active (enabled). The polarity (high/low) is defined by
the signal name. Active-low signals are designated by
a pound symbol (#) sfi; active-high signals have no
suffix. ToassertRD# is to drive it low; tassertALE
is to drive it high.

Glossary-1

8x930AXx, 8x930HXx USER’'S MANUAL

big endien form

binary-code compatibility

binary mode

bit

bit (operand)
bit51

bit stuffing

bulk transfer

bus enumeration
byte

clear

code memory

configuration bytes

control transfer

dir8

dirl6

Glossary-2

intel.

Method of storing data that places the most significant
byte at lower storage addresses.

The ability of an 8330 to execute, without
modification, binary code written for an MCS 51
microcontroller.

An operating mode, selected by a configuration bit,
that enables anx830 to execute, without
modification, binary code written for an MCS 51
microcontroller.

A binary digit.
An addressable bit in the<830 architecture.
An addressable bit in the MCS 51 architecture.

Insertion of a ‘0’ bit into a data stream to cause an
electrical transition on the data wires allowing a PLL
to remain locked.

Non-periodic, large, “bursty” communication

typically used for a transfer that can use any available
bandwidth and can also be delayed until bandwidth is
available.

Detecting and identifying USB devices.
Any 8-bit unit of data.

The termclear refers to the value of a bit or the act of
giving it a value. If a bit iglear, its value is “0”;
clearinga bit gives it a “0” value.

Seeprogram memoty

Bytes, residing in on-chip non-volatile memory, that
determine a set of operating parameters for K98@.

One of four Universal Serial Bus Transfer Types.
Control transfers support configuration/command
[status type communications between client and

function.

An 8-bit direct address. This can be amnoey address
or an SFR address.

A 16-bit memory address (00:0000H-00:FFFFH)
used in direct addressing.

DPX

deassert

device address

doping

double word

dword

edge-triggered

encryption array

endpoint

EPP
EPROM

GLOSSARY

The 16-bit data pointer. I'x830 microcontrollers,
DPTR is the lower 16 bits of the 24-bit extended data
pointer, DPX.

The 24-bit extended data pointer k980
microcontrollers. See alddoPTR

The termdeassertefers to the act of making a signal
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designated
by a pound symbol (#) iX; active-high signals have
no suffix. TodeasserRD# is to drive it high; to
deasserALE is to drive it low.

The address of a device on the Universal Serial Bus.
The device address is the default address when the
USB device is first powered or reset. Hubs and
functions are assigned a unique device address by
USB firmware.

The process of introducing a periodic table Group I
or Group V elementito a Group IV element (e.g.,
silicon). A Group Il impurity (e.g., indium or
gallium) results in g@-typematerial. A Group V
impurity (e.g., arsenic or antimony) results inren
typematerial.

A 32-bit unit of data. In nmory, a double word
comprises four contiguous bytes.

Seedouble word

The mode in which a device or component recognizes
a falling edge (high-to-low transition), a rising edge
(low-to-high transition), or a rising or falling edge of

an input signal as the assertion of that signal. See also
level-triggered

An array of key bytes used to encrypt user code as itis
read from code memory; protects against
unauthorized access to user’s code.

A uniquely identifiable portion of a USB device that
is the source or sink of information in a commun-
ication flow between the host and the device.

Endpoint pair. Seendpoint

Erasable, programmable read-only memory

Glossary-3

8x930AXx, 8x930HXx USER’'S MANUAL

external address

FCLK

FET
FIFO

FIU

FOSC

frame

function

handshake packet

HIU

host

Hub

idle mode

input leakage

integer

Glossary-4

intel.

A 16-bit, 17-bit, or 18-bit address presented on the
device pins. The address decoded by an external
device depends on how many of these address bits the
external system uses. See digernal address

Microcontroller internal clock frequency distributed
to the CPU and on-chip peripherals.

Field-effect transistor.

First-in, first-out data buffer. Each USB endpoint pair
has a transmit FIFO and a receive FIFO.

Function Interface Unit. Its function is to manage the
data transaction that goes between tk838Hx and

the USB host based on the transfer type and the FIFOs
condition.

Frequency at pin XTAL1. The frequency of the on-
chip oscillator or external source.

The time from the start of one SOF token to the start
of the subsequent SOF token; consists of a series of
transactions.

A USB device that provides a capability to the host.
For example, an ISDN connection, a digital
microphone, or speakers.

A packet that acknowledges or rejects a specific
condition. For examples, see ACK and NACK.

Hub Interface Unit.

The host computer system where the USB host
controller is installed. This includes the host hardware
platform (CPU, bus, etc.) and the operating system in
use.

A Universal Serial bus device that provides additional
connections to the Universal Serial Bus.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

intel.

internal address

interrupt handler
interrupt latency

interrupt response time

interrupt service routine (ISR)

interrupt transfer

ISO

isochronous data

isochronous transfer

level-triggered

low-clock mode

LSB

maskable interrupt

MSB

GLOSSARY

The 24-bit address that the device generates. See also
external address

The module responsible for handling imteptsthat
are to be serviced by user-written imtept rvice
routines.

The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

The time delay between an interrupt request and the
resulting break in the current instruction stream.

The firmware routine that services an imtgt.

One of four USB transfer types. Interrupt transfer
characteristics are small data, non periodic, low
frequency, bounded latency, device initiated
communication typically used to notify the host of
device service needs.

Isochronous

A stream of data whose timing is implied by its
delivery rate.

One of four USB transfer types, isochronous transfers
provide periodic, continuous communication
between host and device.

The mode in which a device or component recognizes
a high level (logic one) or a low level (logic zero) of

an input signal as the assertion of that signal. See also
edge-triggered.

The default modepon reset, low-clock mode ensures
that the [drawn by the 8930 is less than one unit
load.

Least-significant bit of a byte or least-significant byte
of a word.

An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8x930 interrupts, except the firmware trap (TRAP),
are maskable.

Most-significant bit of a byte or most-significant byte
of a word.

Glossary-5

8x930AXx, 8x930HXx USER’'S MANUAL

multiplexed bus

n-channel FET

n-type material

nonmaskabk interrupt

npn transistor

NRZI

OTPROM
p-channel FET
p-type material
PC

phase-locked loop

PID

PLL

program memory

powerdown mode

PWM

Glossary-6

intel.

A bus on which the data is time-multiplexed with
(some of) the address bits.

A field-effect transistor with an-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping causing it to have an excess of negatively
charged carriers.

An interrupt that cannot be disabled (masked). The
firmware trap (TRAP) is theX®30’s only
nonmaskable interrupt.

A transistor consisting of one pgrtype material and
two partsn-type material.

Non Return to Zero Invert. A method of encoding
serial data in which ones and zeroes are represented
by opposite and alternating high and low voltages
where there is no return to zero (reference) voltage
between encoded bits. Eliminates the need for clock
pulses.

One-time-programmable read-only memory, a version
of EPROM.

A field-effect transistor with p-type conducting path.

Semiconductor material with introduced impurities
(doping causing it to have an excess of positively
charged carriers.

Program counter.

A circuit that acts as a phase detector to keep an
oscillator in phase with an incoming frequency.

Packet ID. A field in a USB packet that identifies the
type of packet and hence its format.

Seephase-locked loap

A part of memory where instructions can be stored for
fetching and execution.

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Pulse-width modulated (outputs).

intel.

rel

reserved bits

resume

RT

root hub

root port
SEO

SIE

set

SFR

sign extension

sink current

SOF

source-code compatibility

GLOSSARY

A signed (two's complement) 8-bit, relative
destination address. The destination is -128 to +127
bytes relative to the first byte of the next instruction.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
firmware dependence on these bits. In tk@3®, the
value read from a reserved bit is indeterminate; do not
write a “1” to a reserved bit.

Once a device is in the suspend state, its operation can
be resumed by receiving non-idle signaling on the
bus. See alssuspend

Real-time

A USB hub directly attached to the host controller.
This hub is attached to the host; tier 0.

The upstream port on a hub.

Single-ended zero. This is a reference to the USB
reset signal which is defined as botpgand Qg
below their threshold voltage.

Serial Bus Interface Engine. Handles the
communications protocol of the USB.

The termsetrefers to the value of a bit or the act of
giving it a value. If a bit iset its value is “1”;setting
a bit gives it a “1” value.

A special function register that resides in its
associated on-chip peripheral or in th®80 core.

A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

Current flowinginto a device to ground. Alays a
positive value.

Start of Frame. The SOF is the first transaction in
each frame. SOF allows endpoints to identify the start
of frame and synchronize internal endpoint clocks to
the host.

The ability of an 8330 to execute re-compiled source
code written for an MCS 51 microcontroller.

Glossary-7

8x930AXx, 8x930HXx USER’'S MANUAL

source current

source mode

SP
SPX

state time (or state)

suspend

token packet

UART

USB

WDT

word

Glossary-8

intel.

Current flowingout of a device from .. Always a
negative value.

An operating mode that is selected by a configuration
bit. In source mode, arx830 can execute re-
compiled source code written for an MCS 51
microcontroller. In source mode, thgd30 cannot
execute unmodified binary code written for an MCS
51 microcontroller. See binary mode.

Stack pointer.
Extended stack pointer.

The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (The internal clock generator produces PH1 and
PH2 by halving the frequency of the signal on
XTAL1.) With a 16 MHz crystal, onstate time

equals 125 ns. Because the device can operate at
many frequencies, this manual defines time
requirements in terms state timesather than in
specific units of time.

A low current mode used when the USB bus is idle.
The &930 enters suspend when there is a constant
idle state on the bus lines for more than 3.0 msec.
When a device is in suspend state, it draws less than
500 pA from the bus. See alsssume

A type of packet that identifies what transaction is to
be performed on the bus.

Universal asynchronous receiver and transmitter. A
part of the serial 1/0 port.

Universal Serial Bus. An industry-standard extension
to the PC architecture with a focus on Computer
Telephony Integration (CTI), consumer, and
productivity applications.

Watchdog timer, an internal timer that resets the
device if the firmware fails to operate properly.

A 16-bit unit of data. In nmory, a word comprises
two contiguous bytes.

I nt9| ® GLOSSARY

wraparound The result of interpreting an address whose

hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to the
value expressed by the lower bits.

Glossary-9

intel.

Index

intel.

#0datal6, A-3
#ldatal6, A-3
#data

definition, A-3
#datal6, A-3
#short, A-3
8x930, 1-1

block diagram, 2-2
8x930Ax, 1-1
8x93Hx, 1-1

A
A15:8, 10-1

description, 16-2
A16, 10-1

description, 16-2
Al17, 10-1
AC flag, 5-17, 5-18, C-46, C-47
ACALL instruction, 5-14, A-23, A-25
ACC, 3-12, 3-18(C-4, C-8
Accumulator, 3-14

in register file, 3-12
AD7:0, 10-1

description, 16-2
ADD instruction, 5-8, A-13
ADDC instruction, 5-8, A-13
addrll, 5-12, A-3
addrl6, 5-12, A-3
addr24, 5-12, A-3
Address spaces, 3-1

See also Memory space, SFRs, Register file,

External file, Compatibility
Addresses
internal vs external4-10
Addressing modes, 3-5, 5-4
See also Data instructions, Bit instructions,
Control instructions
AJMP instruction, 5-14, A-23
ALE
caution, 14-7
description, 16-2
extended,4-11
following reset, 14-7
idle mode, 15-7

INDEX

ANL instruction, 5-9, 5-10
for bits, A-22
ANL/ instruction, 5-10
for bits, A-22
Application notes, 1-6
Arithmetic instructions, 5-8, 5-9
table of, A-13, A-14, A-15

B
B register, 3-14, C-8
as SFR, 3-18, C-4
in register file, 3-12
Base address, 5-4
Baud rate See Serial I/O port, Timer 1, Timer 2
Big endien form, 5-2
Binary and source modes, 2-5, 4-12-4-13, 5-1
opcode maps, 4-12
selection guidelines, 4-12
Bit address
addressing modes, 5-11
definition, A-3
examples, 5-10
Bit instructions, 5-10-5-11
addressing modes, 5-4, 5-10
bit51, 5-10, A-3
Broadcast addresSge Serial 1/0 port
Bulletin board service (BBS), 1-7, 1-9
Bus cycles
See External bus cycles

C

Call instructions, 5-14
Capacitors
bypass, 14-2
CCAP1H-CCAP4H, CCAP1L-CCAP4L, 3-21,
C-7,C-9
CCAPM1-4, 3-21, 12-16, C-7, C-10
interrupts, 6-7
CCON, 3-21, 12-14, C-7,C-11
CEX1, 10-1
CEX2, 10-1
CEX3, 10-1
CEX4, 10-1
CEX4:0, 10-1

Index-1

8x930AXx, 8x930HXx USER’'S MANUAL

CH, CL, 3-21,C-7,C-11
CJNE instruction,A-24
Clock
external, 2-914-3
idle and powedown modes, 15-7
idle mode, 15-7
on-chip crystal, 2-9
PLLSEL2:0, 2-10, 14-1
powerdown mode, 15-8, 15-9
sources,14-2
USB rates (table)2-10
CLR instruction, 5-9, 5-10, A-16, A-22
CMOD, 3-21, 12-13, C-7, C-12
interrupts, 6-7
CMP instruction, 5-8, 5-13, A-14
Code constants, 4-14
Code fetches
external, 16-1, 16-6
internal, 16-6
page hit and page miss, 16-6
page mode, 16-6
Code memory
MCS 51 architecture, 3-3

N

addressing modes, 5-11, 5-13
table of, A-23
Core, 2-8
SFRs, 3-18,C-4
CPL instruction, 5-9, 5-10, A-16, A-22
CPU, 2-8
block diagram, 2-8
Crystal
on-chip oscillator,14-2
CY flag, 5-17, 5-18, C-46, C-47

D

DA instruction, A-15

Data instructions 5-4-5-10
addressing modes, 5-4

Data Pointer, C-4

tel.

Data pointerSee DPH, DPL, DPTR, DPX, DPXL

Data transfer instructions, 5-9-5-10
table of, A-21
See also Move instructions
Data types, 5-1
Datasheets
on WWW, 1-8

See also On-chip code memory, External code pgc instruction, 5-8, A-14

memory
Compatibility (MCS 251 and MCS 51
architectures), 3-2-3-5
address spaces, 3-2, 3-4
external memory, 3-5
instruction set, 5-1
SFR space, 3-5
See also Binary and source modes
Configuration
array, 4-1, C-78
external, 4-3
on-chip, 4-2
bits, 4-4
external memory, 4-7
overview, 4-1
wait state, 4-11
Configuration bytes
bus cycles, 16-15
UCONFIGO, 4-1
UCONFIGO (table), 4-5, C-78
UCONFIG1, 4-1
UCONFIGL1 (table), 4-6, C-80
verifying, 17-1
Control instructions, 5-11-5-15

Index-2

descriptors
bDescLength, 8-7
bDescriptorType, 8-7
bHulkContrCurrent, 8-7
bNbrPorts, 8-7
bPwrOn2PwrGood, 8-7
DeviceRemovable, 8-7
PortPwrCtrIMask, 8-7
wHubCharacteristics, 8-7
descriptors, hub, 8-6-8-7
Destination register, 5-3
dirle, A-3
dir8, A-3
Direct addressing, 5-4
in control instructions 5-12
Displacement addressing, 5-4, 5-8
DIV instruction, 5-8, A-15
Division, 5-8
DJNZ instruction, A-24
Documents
ordering, 1-7
related, 1-6
DPH, DPL, 3-14, C-13

intel.

as SFRs, 3-18, C-4
DPTR, 3-14

in jump instruction,5-12
DPX, 3-5, 3-12, 3-14, 5-4
DPXL, 3-14,C-14

as SFR, 3-18, C-4

external data memory mapping, 3-5, 5-4, 5-9

reset value, 3-5

E
EA#, 3-8
description, 16-2
ECALL instruction, 5-14, A-23
ECI, 10-1
EJMP instruction, 5-14, A-23
EMAP#bit, 3-9,4-14
Encryption, 17-1
Encryption array, 17-1
key bytes, 17-5
EPCON, 7-7, C-15
EPINDEX, 7-6, C-18
ERET instruction, 5-14, A-23
Escape prefix (A5H), 4-12
Extended ALE, A-1, A-11
Extended stack pointeBee SPX
External address lines
number of, 4-8
See also External bus
External bus
inactive, 16-3
pin status, 16-156-16
structure in page mode, nonpage motié-6
External bus cycles, 16-3-16-16
definitions, 16-3
extended ALE wait state, 16-10

extended RD#/WR#/PSEN# wait state, 16-8

nonpage mode, 16-3, 16-5

page mode, 16-6-16-8

page-hit vs page-mis4,6-6

Real-time wait states, 16-8
External code memory

example, 16-19, 16-29

idle mode, 15-7

powerdown mode, 15-8
External memory, 3-9

design examples]6-17-16-29

MCS 51 architecture, 3-2, 3-4, 3-5

INDEX

External memory interface
configuring, 4-7-4-14
signals, 16-3

External RAM
example, 16-25
exiting idle mode,15-8

E
FO flag, 5-17, C-46
FADDR, 7-14, C-19
FaxBack service, 1-7, 1-8
FIE, 3-18, 6-4, 6-8, C-4, C-20, C-21
FIE1, 6-9
FIFLG, 3-18, 6-4, 6-11, C-4, C-22, C-23
FIFLG1, 6-12
Flash memory

example, 16-17, 16-19, 16-29
Frame Timer, 6-12

G

Given addressSee Serial I/O port
Global suspend interrupt, 6-18

H

HADDR, 8-6, 8-8, 9-16

Help desk, 1-7

HIE, 3-18, 6-4, 6-16, C-4, C-24
HIFLG, 3-18, 6-4, 6-17, C-4, C-25
HPCON, 8-15, C-26
HPINDEX, 8-23, C-27
HPPWR, 8-28, C-28

HPSC, 8-21, C-29

HPSTAT, 8-18, C-31

HSTAT, 8-9, C-33

Hub interrupt, 6-6

|

1/0 ports, 10-1-10-8
external memory acces40Q-7
latches, 10-2
loading, 10-6
pullups, 10-6
quasi-bidirectional, 10-5
SFRs, 3-15
See also Ports 0-3

Idle mode, 2-5, 15-1, 15-7

Index-3

8x930AXx, 8x930HXx USER’'S MANUAL

entering, 15-7
exiting, 14-515-7
external bus, 16-3

IENO, 3-18, 6-4, 6-5, 6-7, 6-25, 6-36, 13-11, 15-9,

C-4, C-35

IEN1, 3-18, 6-4, 6-26, 6-36, C-4, C-36
Immediate addressing, 5-4
INC instruction, 5-8A-14
Indirect addressing, 5-4

in control instructions, 5-12

in data instructions, 5-6
Instruction set

MCS 251 architecture, A-1-A-137

MCS 51 architecture, 5-1
Instructions

arithmetic, 5-8

bit, 5-10

data, 5-4

data transfer, 5-9

logical, 5-9
INT1#, 10-1
INT1:0#, 6-1, 10-1, 11-1, 11-2

pulse width measurement41-10
Intel Architecture Labs, 1-8
Interrupt request, 6-1

cleared by hardware, 6-5, 6-6
Interrupt service routine

exiting idle mode, 15-7

exiting powerdown mode, 15-9
Interrupts, 6-16-37

blocking conditions,6-36

detection, 6-5

edge-triggered, 6-5, 6-6

enable/disablef-24

exiting idle mode, 15-7

exiting powerdown mode, 15-9

external (INT1:0#), 6-1, 6-5, 6-345-9

global enable, 6-24
global resume 6-18

global resume (GRSM), 15-5, 15-8, C-45
global suspend (GSUS), 15-5, 15-8, C-45

instruction completion timeg-33
latency, 6-32—6-36
level-triggered, 6-5, 6-6

PCA, 6-7

polling, 6-32, 6-33

priority, 3-18, 6-1, 6-4, 6-5, 6-6-27—6-30,

C-4

Index-4

priority within level, 6-27
processing, 6-32-6-37
requestSee Interrupt request
response time, 6-32, 6-33
sampling, 6-5, 6-33

serial port, 6-7

service routine (ISR), 6-5, 6-6, 6-32, 6-36, 6-

37
sources, 6-3
timer/counters, 6-6
vector cycle, 6-37
vectors, 3-3, 6-5, 6-6
INTR bit
and RETI instruction, 4-14, 5-15
IPHO, 3-18, 6-4, 6-28, 6-36, C-4, C-37
bit definitions, 6-27
IPH1, 3-18, 6-4, 6-30, 6-36, C-4, C-38
bit definitions, 6-27
IPLO, 3-18, 6-4, 6-29, 6-36, C-4, C-39
bit definitions, 6-27
IPL1, 3-18, 6-4, 6-31, C-4, C-40
bit definitions, 6-27
Isochronous RX dataflow
Dual-packet mode, D-18
Isochronous TX dataflow
Dual-packet mode, D-5
ISR, See Interrupts, service routine

J

JB instruction, 5-13, A-23

JBC instruction, 5-13, A-23

JC instruction, A-23

JE instruction, A-23

JG instruction, A-23

JLE instruction, A-23

JMP instruction, A-23

JNB instruction, 5-13, A-23

JNC instruction, A-23

JNE instruction, A-23

JNZ instruction, A-23

JSG instruction, A-24

JSGE instruction, A-24

JSL instruction, A-23

JSLEinstruction, A-24

Jumpinstructions
bit-conditional, 5-13
compare-conditional, 5-13, 5-14

intel.

unconditional,5-14
JZ instruction, A-23

K
Key bytes See Encryption array

L

Latency, 6-32

LCALL instruction, 5-14, A-23
LIMP instruction, 5-14, A-23

Lock bits
protection types, 17-5
verifying, 17-1
Logical instructions, 5-9
table of, A-16

Low clock mode, 15-1, 15-13
entering, 5-13
exiting, 15-13

M
MCS 251 microconbller
core, 2-8
MCS® 251, 1-1
MCS® 51, 1-1
Memory space, 2-4, 3-5-3-9
compatibility, See Compatibility (MCS 251
and MCS 51 ahitectures)
regions, 3-2, 3-5
reserved locations, 3-5
Miller effect, 14-3
MOV instruction, A-18, A-19, A-20
for bits, 5-10, A-22
MOVC instruction, 3-2, 5-9, A-20
Move instructions
table of, A-18
MOVH instruction, 5-10, A-20
MOVS instruction, 5-9, A-20
MOVX instruction, 3-2, 5-9, A-20
MOVZ instruction, 5-9, A-20
MUL instruction, 5-8
Multiplication, 5-8

N

N flag, 5-9, 5-18, C-47

Noise reduction, 14-2,4-3
Non-isochronous RX dataflow

INDEX

Dual-packet mode, D-11
Single-packet mode, D-8
Non-isochronous TX dataflow, D-1

Nonpage mode

bus cyclesSee External bus cycles, Nonpage

mode
bus structure, 16-3
configuration, 4-7
design example, 16-20, 16-25
port pin status, @-16
Nonvolatile memory
verifying, 17-1-17-6
NOP instruction, 5-14, A-24

O

On-chip code memory16-8
accessing in data memory, 4-14
accessing in region 00:, 3-9
idle mode, 15-7
setup for verifying,17-3-17-4
starting address, 3-8, 17-1
top eight bytes, 3-8, 4-1, 17-2, C-78
verifying, 17-1
On-chip oscillator
hardware setupl4-1
On-chip RAM, 3-8
bit addressable, 3-8, 5-11
bit addressable in MCS 51 architectufe11
idle mode, 15-7
MCS 51 architecture, 3-2, 3-4
reset, 14-6
ONCE mode, 15-1
entering, 15-13
exiting, 15-13
Opcodes
for binary and source modes, 4-12, 5-1
map, A-4
binary mode, 4-13
source mode, 4-13
See also Binary and source modes
ORL instruction, 5-9, 5-10
for bits, A-22
ORL/ instruction, 5-10
for bits, A-22
Oscillator
at startup, 14-7
ceramic resonator, 14-3

Index-5

8x930AXx, 8x930HXx USER’'S MANUAL

during reset, 14-5

on-chip crystal, 2-914-2

ONCE mode, 15-13

powerdown mode, 15-8, 15-9

verifying nonvolatile memory, 17-3
OV bit, 5-17, 5-18, C-46, C-47
Overflow See OV bit
OVRI # pin, 8-29

P

P bit, 5-17, C-46

PO, 3-19, 10-2, C-5, C-40

P1, 3-19, 10-2, C-5, C-41

P2, 3-19, 10-2, C-5, C-41

P3, 3-19, 10-2, C-5, C-42

Page mode, 2-8
address access timép-6
bus cyclesSee External bus cycles, page

mode

configuration, 4-7
design example, 16-19, 16-28
port pin status, 16-16

PAGE# bit, 4-7

PCA
compare/capture modules, 12-1
idle mode, 15-7
pulse width modulation, 12-10
SFRs, 3-21,C-7
timer/counter, 12-1
watchdog timer, 12-1, 12-9

intel.

and top of on-chip code memorg7-2
pullups, 10-7
structure, 10-3
See also External bus
Port 1, 10-2
structure, 10-3
Port 2, 10-2
and top of on-chip code memor{.7-2
structure, 10-4
See also External bus
Port 3, 10-2
structure, 10-3
Ports
at power on, 14-7
exiting idle mode,15-8
exiting powerdown mode, 15-8
extended execution times, 5-1, A-1, A-11
verifying nonvolatile memory, 17-3, 17-5
Power supply, 14-2
Powerdown mode, 2-5, 15-1, 15-8-15-9
accidental entry, 15-7
entering, 15-9
exiting, 14-5, 15-9
external bus,16-3
Program status worSee PSW, PSW1
PSEN#
caution, 14-7
description, 16-2
idle mode, 15-7
regions for asserting, 4-8

PCON, 3-18, 13-7, 15-3, 15-4, 15-7, 15-8, C-4, C-PSW, 5-17, A-25, C-46

43, C-44
idle mode, 15-7
powerdown mode, 15-9
reset, 14-5
PCON1, 3-18, 6-4, 15-8, C-4
Peripheral cycle, 2-9
Phase 1 and phase 2, 2-9
Phone numbers, customer support, 1-7
Pin conditions,15-6
Pinout diagram
8x93Hx, B-2
Pins
unused inputs, 14-2
Pipeline, 2-8
POP instruction, 3-14, 5-18-21
Port 0, 10-2

Index-6

PSW, PSW1, 3-18, 5-15-5-16, C-4
conditional jumps,5-13
effects of instructions on flags, 5-16
PSW1, 5-18, A-25, C-4, C-47
Pullups, 10-7
ports 1, 2, 3, 10-5
Pulse width measurements, 11-10
PUSH instruction, 3-14, 5-10, A-21

R
RCAP2H, RCAP2L, 3-20, 11-3, 13-1@;6, C-47
RD#, 10-1

described, 16-2

regions for asserting, 4-8
RD1:0 configuration bits, 4-8
Read-modify-write instructions, 10-2, 10-5

intel.

Real-time wait states, 16-11

Register addressing, 5-4, 5-5

Register banks, 3-2, 3-9
accessing in memory address space, 5-4
implementation, 3-9, 3-12
MCS 51 architecture, 3-2

INDEX

mode 0, 13-2

modes 1, 2, 3, 13-7
RXDAT, 7-27, C-51
RXFLG, 7-31, C-52
RXSTAT, 7-11, C-54

selection bits (RS1:0), 5-17, 5-18, C-46,C-47 S

Register file, 2-8, 3-1, 3-8-9-3-14
address space, 3-2
addressing locations ir-12
and reset, 14-6
MCS 51 architecture, 3-4
naming registers, 3-12
register types, 3-12

SADDR, 3-19, 13-2, 13-9, 13-10, C-5, C-57
SADEN, 3-19, 13-2, 13-9, 13-10, C-5, C-57
SBUF, 3-19, 13-2, 13-3, C-5, C-57
SCON, 3-19, 13-2, 13-3, 13-4, 13-7, C-5, C-58
bit definitions, 13-1
interrupts, 6-7
Security, 17-1

RegistersSee Register addressing, Register banks, garial 110 port, 13-1-13-13

Register file
rel, A-3
Relative addressing, 5-4, 5-12
Reset, 14-5-14-7
cold start, 14-5, 15-2
enteringONCE mode, 15-13
exiting idle mode, 15-7
exiting powerdown mode, 15-9
externally initiated, 14-5
need for, 14-7
operation, 14-6
power-on reset, 14-1, 14-7
timing sequence, 14-6, 14-7
USB initiated, 14-6
warm start, 14-5, 15-2
WDT initiated, 14-5
RET instruction, 5-14, A-23
RETI instruction, 5-15, 6-1, 6-36, 6-37, A-23
Return instructions, 5-14
RL instruction, A-16
RLC instruction, A-16
Rotate instructions, 5-9
RR instruction, A-16
RRC instruction, A-16
RST, 14-5, 14-7
ONCE mode, 15-13
RTWCE (Real-time WAIT CLOCK Enable) Bit,
16-12
RTWE (Real-time WAIT# Enable) Control Bit,
16-12
RXCNTH, 7-28, C-48
RXCNTL, 7-28, C-48
RXD, 10-1, 13-1

asynchronous modes, 13-7
automatic address recognition, 13-8-13-10
baud rate generatof,1-6
baud rate, mode 0, 13-2, 13-10
baud rate, modes 1, 2, 3, 1313-11-13-13
broadcast address, 13-9
data frame, modes 1, 2, 3, 13-7
framing bit error detection, 13-7
full-duplex, 13-7
given address]13-9
half-duplex, 13-2
interrupts, 13-113-8
mode 0, 13-2-13-3
modes 1, 2, 3, 13-7
multiprocessor ammunication, 13-8
SFRs, 3-19, 13-2, C-5
synchronousnode, 13-2
timer 1 baud rate, 13-11, 13-12
timer 2 baud rate, 13-12-13-13
timing, mode 0, 13-6
SETB instruction, 5-10, A-22
SetHubDescriptor, 9-19
SFRs
accessing,3-15
address space, 3-1, 3-2
idle mode, 15-7
MCS 51 architecture, 3-4
powerdown mode, 15-8
reset initialization, 14-6
tables of,3-15
unimplemented, 3-15
Shift instruction, 5-9

Index-7

8x930AXx, 8x930HXx USER’'S MANUAL Int9I®

Signal Descrigbns, B-1 mode 2, 11-5
multi-function pins, B-1 mode 3, 11-5
Signature bytes pulse width measurements, 11-10
values, 17-6 Timer 1
verifying, 17-1,17-6 applications,11-9
SJMP instruction, 5-14, A-23 auto-reload, 11-9
SLL instruction, 5-9A-16 baud rate generatof,1-6
SOF interrupt, 6-6 interrupt, 11-6
SOF# pin, 6-15 mode 0, 11-6
SOFH, 6-13, C-60 mode 1, 11-9
SOFL, 6-14, C-61 mode 2, 11-9
Solutions OEM, 1-8 mode 3, 11-9
Source register, 5-3 pulse width measurements, 11-10
SP, 3-14, 3-18, C-4, C-61 Timer 2, 11-10-11-17
Special function registeiSee SFRs auto-reload model1-12
SPH, 3-14, 3-18, C-4, C-62 baud rate generatod,1-14
SPX, 3-12, 3-14 capture mode, 11-11
SRA instruction, 5-9, A-17 clock out mode, 11-14
SRL instruction, 5-9A-17 interrupt, 11-11
State time, 2-9 mode select, 11-15
SUB instruction, 5-8, A-13 Timer/counters, 11-1-11-17
SUBB instruction, 5-8A-13 external input sampling, 11-2
SWAP instruction, 5-9, A-17 internal clock,11-1
interrupts, 11-1
T overview, 11-1-11-2
T1, 10-1 registers,11-3
T1:.0, 10-1, 11-2 SFRs, 3-20, C-6
T2, 10-1, 11-2 signal descriptions11-2
T2CON, 3-20, 11-1, 11-3, 11-10, 11-17, 13-12, C- __See also Timer 0, Timer 1, Timer 2
6, C-63 TMOD, 3-20, 11-1, 11-3, 11-4, 11-6, 11-7, 13-11,
baud rate generator, 13-12 C-6, C-66
T2EX, 10-1, 11-2, 11-11, 13-12 Tosc, 2-11
T2MOD, 3-20, 11-1, 11-3, 11-10, 11-16, C-6, C-64 TRAP instruction, 5-15, 6-3, 6-24, 6-37, A-24
Target address, 5-4 TXCNTH, 7-19, C-69
TCON, 3-20, 11-1, 11-3, 11-4, 11-6, 11-8, C-6, C- 1 XCNTL, 7-19, C-69
65 TXCON, 7-20, C-70
interrupts, 6-1 TXD, 10-1,13-1
Tech support, 1-7 mode 0, 13-2
TH2, TL2 modes 1, 2, 3, 13-7
baud rate generator, 13-12, 13-13 TXDAT, 7-18, 8-12, C-72
THx, TLx (x =0, 1,2), 3-20, 11-3, C-6C-67, C-68 T XFLG, 7-22,C-73
Timer 0, 11-4-11-8 TXSTAT, 7-9, C-75
applications, 11-9
auto-reload,11-5 U
interrupt, 11-4 UART, 13-1
mode 0, 11-4 UCONFIG1:0
mode 1, 11-4 See Configuration bytes

Index-8

intel.

uUD flag, 5-17, C-46
UPWEN# pin, 8-29
USB

configuration descriptor, 9-2

device descriptor, 9-2

endpoint selection, 7-3

endpoint-indexed SFRs, 7-3

FIFO byte capacity2-13

function
bus unenumeration, 9-2
post-receive operation®-10
post-transmit operations, 9-7
pre-transmit operations, 9-6
receive done interrupt, 6-9
receive operations, 9-9
receive routine, 9-3
receive SOF routine, 9-15
resume interrupt6-18
setup routines, 9-13
suspend and resumé5s-1
transmit done interrupt6-10
transmit operations, 9-3
transmit routine, 9-3

function endpoint pairs, 7-1

function FIFOs, 7-1

function interface, 7-1

function interface unit (FIU)2-14

function routines
overview, 9-2
receive SOF, 9-2
setup, 9-2

global resume, 15-10

global suspend, 15-8

hub
bus enumeration, 8-6, 9-16
CLEAR_FEATURE request, 9-17
ClearHubFeature request, 9-19
ClearPortFeature request, 9-21, 9-22
configuration, 8-88-10
descriptors,8-6-8-7
device signals, 8-30
embedded function8-24
embedded function remote wake-up, 8-

24
embedded function reseB-24
empedded function suspend and resume,
8-26

endpoint 1, 8-10

INDEX

endpoints, 8-10-8-13

examhing port status, 8-17-8-19

firmware examples, 9-23

firmware response tor USB requests, 9-
17-9-22

full-speed device attach, 8-5

functional diagram, 8-2

ganged power enable, 8-29

GET_CONFIGURATION request, 9-17

GET_DESCRIPTORequest,9-18

GET_INTERFACE request, 9-18

GET_STATUS request, 9-18

GetBusState request, 9-19

GetHubDescriptor request, 9-19

GetHubStatus reques9-19

GetPortStatus request, 9-2922

GetPortStatus request firmwar@,24—9-
25

global suspend and resum@.24-8-26

low-speed device attach, 8-6

monitoring port statusg8-20—-8-22

operation, 9-16-9-28

overcurrent detection, 8-28

port control, 8-14—-8-16

port control commands, 8-16

port indexing, 8-23

port power switching, 8-27—-8-28

port states, 8-3-8-4

port status change communication, 9-
22-9-28

power distribution, 8-27

SET_ADDRESS request, 9-18

SET_CONFIGURATION request, 9-17

SET_DESCRIPTOR request, 9-18

SET_FEATURE request, 9-17

SET_INTERFACE request, 9-18

SetHubDescriptor reques®-19

SetHubFeture request, 9-19

SetPortFeaturePORT_RESET)
firmware, 9-27

SetPortFeature@dORT_SUSPEND)
firmware, 9-26

SetPortFeature request, 9-20

signaling connectivity,8-5-8-6

status, 8-8-8-10

status and configuratior-17

status change communication, 8-13

SYNCH_FRAME request, 9-18

Index-9

8x930AXx, 8x930HXx USER’'S MANUAL

\%

hub interrupt, 6-6
idle state, 9-2
interrupt
hub, 6-15
interrupts
function, 6-66-7—6-11
global suspend/resume, 6-6, 6-18
start-of-frame, 6-12-6-15
module, 2-3, 2-12
block diagram, 2-7
power control, 15-8
powerdown, 15-8
programming models, 9-2
receive FIFOs, 7-24
write marker, 7-24, 9-9
write pointer, 7-24, 9-9
remote wake-up, 6-185-10
requests
ClearPortFeature, 8-14
SetPortFeature, 8-14
reset separationg-18-6-24
reset separation, operating model, 6-21
Serial Bus Interface Engine (SIE};14
special function registers (SFRs), 7-2
transaction dataflow model, 7-1, D-1
transmit FIFOs, 7-15
read marker, 7-15, 9-4
read pointer, 7-15, 9-4
unenumerated state, 9-2

Vce, 14-2

during reset, 14-5
power off flag, 15-2
power-on reset, 14-7
powerdown mode, 15-9

Verifying nonvolatilememory, 17-1
Vss, 14-2

\W

Wait state, 5-1, A-1, A-11

configuration bits,4-11
extended ALE,4-11
RD#/WR#/PSEN#, 4-11

WAIT#, 10-1
WAIT# (Wait State) Input, 16-2

Watchdog timer (hardware), 11-1, 11-16, 11-18

Index-10

enabling, disabling,11-16

in idle mode, 11-18

in powerdown mode, 11-18

initiated reset, 14-5

overflow, 11-16

SFR (WDTRST), 3-20, 11-3, C-6
Watchdog Timer (PCA), 12-1, 12-9
WCLK, 10-1
WCLK (Wait Clock) Output, 16-2
WCON, 3-18,C-4

WCON (Real-time wait state control), 16-11, C-77

WDTRST, 3-20, 11-3, 11-16, C-6, C-77
World Wide Web, 1-7
WR#, 10-1

described, 16-2

X

XALE# bit, 4-11

XCH instruction, 5-10, A-21

XCHD instruction, 5-10, A-21

XRL instruction, 5-9

XTAL1, XTAL2, 14-2
capacitance loading, 14-3

Z
Zflag, 5-9, 5-18, C-47

	8x930Ax, 8x930Hx Universal Serial Bus Microcontroller User’s Manual
	Literature Order Forms
	Copyright Page
	Contents
	Figures
	Tables

	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 FaxBack Service
	1.4.3 Bulletin Board System (BBS)

	CHAPTER 2 Architectural Overview
	2.1 Product Overview
	2.1.1 8x930Ax Features
	2.1.2 8x930Hx Features
	2.1.3 MCS® 251 Architecture Features

	2.2 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.2.1 State Time and Peripheral Cycles
	2.2.2.2 Low-clock Mode
	2.2.2.3 Reset Unit

	2.2.3 Interrupt Handler

	2.3 On-chip Memory
	2.4 Universal Serial Bus Module
	2.4.1 The 8x930Ax USB Module
	2.4.1.1 Serial Bus Interface Engine (SIE)
	2.4.1.2 Function Interface Unit (FIU)
	2.4.1.3 Function FIFOs

	2.4.2 The 8x930Hx USB Module
	2.4.2.1 Hub Repeater
	2.4.2.2 Serial Bus Interface Engine (SIE)
	2.4.2.3 Hub Interface Unit (HIU)
	2.4.2.4 Hub FIFOs
	2.4.2.5 8x930Hx CPU

	2.5 On-chip Peripherals
	2.5.1 Timer/Counters and Watchdog Timer
	2.5.2 Programmable Counter Array (PCA)
	2.5.3 Serial I/O Port

	2.6 Operating Conditions

	CHAPTER 3 Address Spaces
	3.1 MCS® 251 Architecture Address Spaces
	3.1.1 Compatibility with the MCS® 51 Architecture

	3.2 8x930 Memory Space
	3.2.1 On-chip General-purpose Data RAM
	3.2.2 On-chip Code Memory
	3.2.2.1 Accessing On-chip Code Memory in Region 00...

	3.2.3 External Memory

	3.3 8x930 Register File
	3.4 Byte, Word, and Dword Registers
	3.4.1 Dedicated Registers
	3.4.1.1 Accumulator and B Register
	3.4.1.2 Extended Data Pointer, DPX
	3.4.1.3 Extended Stack Pointer, SPX

	3.5 Special Function Registers (SFRs)

	CHAPTER 4 Device Configuration
	4.1 Configuration Overview
	4.2 Device Configuration
	4.3 The Configuration Bits
	4.4 Configuring the External Memory Interface
	4.4.1 Page Mode and Nonpage Mode (PAGE#)
	4.4.2 Configuration Bits RD1:0
	4.4.2.1 RD1:0 = 00 (18 External Address Bits)
	4.4.2.2 RD1:0 = 01 (17 External Address Bits)
	4.4.2.3 RD1:0 = 10 (16 External Address Bits)
	4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microco...

	4.4.3 Wait State Configuration Bits
	4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#
	4.4.3.2 Configuration Bit XALE#

	4.5 Opcode Configurations (SRC)
	4.5.1 Selecting Binary Mode or Source Mode

	4.6 Mapping On-chip Code Memory to Data Memory (EM...
	4.7 Interrupt Mode (INTR)

	CHAPTER 5 Programming Considerations
	5.1 Source Mode or Binary Mode Opcodes
	5.2 Programming Features of the 8x930 Architecture...
	5.2.1 Data Types
	5.2.1.1 Order of Byte Storage for Words and Double...

	5.2.2 Register Notation
	5.2.3 Address Notation
	5.2.4 Addressing Modes

	5.3 Data Instructions
	5.3.1 Data Addressing Modes
	5.3.1.1 Register Addressing
	5.3.1.2 Immediate
	5.3.1.3 Direct
	5.3.1.4 Indirect
	5.3.1.5 Displacement

	5.3.2 Arithmetic Instructions
	5.3.3 Logical Instructions
	5.3.4 Data Transfer Instructions

	5.4 Bit Instructions
	5.4.1 Bit Addressing

	5.5 Control Instructions
	5.5.1 Addressing Modes for Control Instructions
	5.5.2 Conditional Jumps
	5.5.3 Unconditional Jumps
	5.5.4 Calls and Returns

	5.6 Program Status Words

	CHAPTER 6 Interrupt System
	6.1 OVERVIEW
	6.2 8x930 Interrupt Sources
	6.2.1 External Interrupts
	6.2.2 Timer Interrupts

	6.3 Programmable Counter Array (PCA) Interrupt
	6.4 SERIAL Port Interrupt
	6.5 USB Interrupts
	6.5.1 USB Function Interrupt
	6.5.2 USB Start-of-frame Interrupt
	6.5.3 USB Hub Interrupt
	6.5.4 USB Global Suspend/Resume Interrupt
	6.5.4.1 Global Suspend
	6.5.4.2 Global Resume
	6.5.4.3 USB Remote Wake-up

	6.5.5 8x930Ax USB Reset Separation
	6.5.5.1 Initialization Required for USB Reset
	6.5.5.2 USB Reset Hardware Operations
	6.5.5.3 USB Reset ISR
	6.5.5.4 Main Routine Considerations

	6.6 Interrupt Enable
	6.7 Interrupt Priorities
	6.8 Interrupt Processing
	6.8.1 Minimum Fixed Interrupt Time
	6.8.2 Variable Interrupt Parameters
	6.8.2.1 Response Time Variables
	6.8.2.2 Computation of Worst-case Latency With Var...
	6.8.2.3 Latency Calculations
	6.8.2.4 Blocking Conditions
	6.8.2.5 Interrupt Vector Cycle

	6.8.3 ISRs in Process

	CHAPTER 7 USB Function
	7.1 Function Interface
	7.1.1 Function Endpoint Pairs
	7.1.2 Function FIFOs
	7.1.3 Special Function Registers (SFRs)
	7.1.3.1 Endpoint-indexed SFRs
	7.1.3.2 Endpoint Selection

	7.2 Transmit FIFOs
	7.2.1 Transmit FIFO Overview
	7.2.2 Transmit FIFO Registers
	7.2.3 Transmit Data Register (TXDAT)
	7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH...
	7.2.5 Transmit Data Set Management

	7.3 Receive FIFOs
	7.3.1 Receive FIFO Overview
	7.3.2 Receive FIFO Registers
	7.3.2.1 Receive Data Register (RXDAT)
	7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNT...

	7.3.3 Receive FIFO Data Set Management

	7.4 SIE Details
	7.5 SETUP Token Receive FIFO Handling
	7.6 ISO Data Management
	7.6.1 Transmit FIFO ISO Data Management
	7.6.2 Receive FIFO ISO Data Management

	CHAPTER 8 USB Hub
	8.1 Hub Functional Overview
	8.1.1 Port Connectivity States
	8.1.2 Per-packet Signaling Connectivity
	8.1.2.1 Connectivity to Downstream Ports Attached ...
	8.1.2.2 Connectivity to Downstream Ports attached ...

	8.2 Bus Enumeration
	8.2.1 Hub Descriptors
	8.2.2 The Hub Address Register (HADDR)

	8.3 Hub Status
	8.4 USB Hub Endpoints
	8.4.1 Hub Endpoint Indexing Using EPINDEX
	8.4.2 Hub Endpoint Control
	8.4.3 Hub Endpoint Transmit and Receive Operations...

	8.5 USB Hub Ports
	8.5.1 Controlling a Port Using HPCON
	8.5.2 Examining a Port’s Status Using HPSTAT
	8.5.3 Monitoring Port Status Change Using HPSC
	8.5.4 Hub Port Indexing Using HPINDEX
	8.5.5 Embedded Function
	8.5.5.1 Embedded Function Reset
	8.5.5.2 Embedded Function Remote Wake-up

	8.6 Suspend and Resume
	8.6.1 Hub Global Suspend and Resume
	8.6.2 Remote Connectivity
	8.6.2.1 Resume Connectivity
	8.6.2.2 Connectivity Due to Physical Connect/Disco...

	8.6.3 Embedded Function Suspend and Resume

	8.7 Hub Power Distribution
	8.7.1 Port Power Switching
	8.7.2 Overcurrent Detection
	8.7.3 Ganged Power Enable

	8.8 Hub Device Signals

	CHAPTER 9 USB Programming Models
	9.1 Overview of Programming Models
	9.1.1 Unenumerated State
	9.1.2 Idle State
	9.1.3 Transmit and Receive Routines
	9.1.4 USB Interrupts

	9.2 Transmit Operations
	9.2.1 Overview
	9.2.2 Pre-transmit Operations
	9.2.3 Post-transmit Operations

	9.3 Receive Operations
	9.3.1 Overview
	9.3.2 Post-receive Operations

	9.4 SETUP Token
	9.5 Start-of-frame (SOF) Token
	9.6 Hub Operation
	9.6.1 Bus Enumeration
	9.6.2 Hub Status and Configuration
	9.6.3 Port Status Change Communication
	9.6.4 Hub Firmware Examples
	9.6.4.1 GetPortStatus Request Firmware
	9.6.4.2 SetPortFeature (PORT_SUSPEND) Firmware
	9.6.4.3 SetPortFeature (PORT_RESET) Firmware

	CHAPTER 10 Input/Output Ports
	10.1 Input/Output port overview
	10.2 I/O Configurations
	10.3 Port 1 and Port 3
	10.4 Port 0 and Port 2
	10.5 Read-Modify-Write Instructions
	10.6 Quasi-bidirectional Port Operation
	10.7 Port Loading
	10.8 External Memory Access

	CHAPTER 11 Timer/Counters and Watchdog Timer
	11.1 Timer/Counter Overview
	11.2 Timer/Counter Operation
	11.3 Timer 0
	11.3.1 Mode 0 (13-bit Timer)
	11.3.2 Mode 1 (16-bit Timer)
	11.3.3 Mode 2 (8-bit Timer With Auto-reload)
	11.3.4 Mode 3 (Two 8-bit Timers)

	11.4 Timer 1
	11.4.1 Mode 0 (13-bit Timer)
	11.4.2 Mode 1 (16-bit Timer)
	11.4.3 Mode 2 (8-bit Timer with Auto-reload)
	11.4.4 Mode 3 (Halt)

	11.5 Timer 0/1 Applications
	11.5.1 Auto-reload Setup Example
	11.5.2 Pulse Width Measurements

	11.6 Timer 2
	11.6.1 Capture Mode
	11.6.2 Auto-reload Mode
	11.6.2.1 Up Counter Operation

	11.6.3 Up/Down Counter Operation
	11.6.4 Baud Rate Generator Mode
	11.6.5 Clock-out Mode

	11.7 Watchdog Timer
	11.7.1 Description
	11.7.2 Using the WDT
	11.7.3 WDT During Idle Mode
	11.7.4 WDT During PowerDown

	CHAPTER 12 Programmable Counter Array
	12.1 PCA Description
	12.1.1 Alternate Port Usage

	12.2 PCA Timer/Counter
	12.3 PCA Compare/Capture Modules
	12.3.1 16-bit Capture Mode
	12.3.2 Compare Modes
	12.3.3 16-bit Software Timer Mode
	12.3.4 High-speed Output Mode
	12.3.5 PCA Watchdog Timer Mode
	12.3.6 Pulse Width Modulation Mode

	CHAPTER 13 Serial I/O Port
	13.1 Overview
	13.2 Modes of Operation
	13.2.1 Synchronous Mode (Mode 0)
	13.2.1.1 Transmission (Mode 0)
	13.2.1.2 Reception (Mode 0)

	13.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	13.2.2.1 Transmission (Modes 1, 2, 3)
	13.2.2.2 Reception (Modes 1, 2, 3)

	13.3 Framing Bit Error Detection (Modes 1, 2, and ...
	13.4 Multiprocessor Communication (Modes 2 and 3)
	13.5 Automatic Address Recognition
	13.5.1 Given Address
	13.5.2 Broadcast Address
	13.5.3 Reset Addresses

	13.6 Baud Rates
	13.6.1 Baud Rate for Mode 0
	13.6.2 Baud Rates for Mode 2
	13.6.3 Baud Rates for Modes 1 and 3
	13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	13.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...
	13.6.3.4 Selecting Timer 2 as the Baud Rate Genera...

	CHAPTER 14 Minimum Hardware Setup
	14.1 Minimum Hardware Setup
	14.2 Electrical Environment
	14.2.1 Power and Ground Pins
	14.2.2 Unused Pins
	14.2.3 Noise Considerations

	14.3 Clock Sources
	14.3.1 On-chip Oscillator (Crystal)
	14.3.2 On-chip Oscillator (Ceramic Resonator)
	14.3.3 External Clock

	14.4 Reset
	14.4.1 Externally-Initiated Resets
	14.4.2 WDT-initiated Resets
	14.4.3 USB-initiated Resets
	14.4.3.1 8x930Ax USB Reset Separation

	14.4.4 Reset Operation
	14.4.5 Power-on Reset

	CHAPTER 15 Special Operating Modes
	15.1 General
	15.2 Power Control Registers
	15.2.1 Serial I/O Control Bits
	15.2.2 Power Off Flag
	15.2.3 8x930Ax USB Reset Separation

	15.3 Idle Mode
	15.3.1 Entering Idle Mode
	15.3.2 Exiting Idle Mode

	15.4 USB Power Control
	15.4.1 Global Suspend Mode
	15.4.1.1 Powerdown (Suspend) Mode
	15.4.1.2 Entering Powerdown (Suspend) Mode
	15.4.1.3 Exiting Powerdown (Suspend) Mode

	15.4.2 Global Resume Mode
	15.4.3 USB Remote Wake-up

	15.5 Low-Clock Mode
	15.5.1 Entering Low-clock Mode
	15.5.2 Exiting Low-clock Mode

	15.6 ON-Circuit emulation (Once) Mode
	15.6.1 Entering ONCE Mode
	15.6.2 Exiting ONCE Mode

	CHAPTER 16 External Memory Interface
	16.1 Overview
	16.2 External Bus Cycles
	16.2.1 Bus Cycle Definitions
	16.2.2 Nonpage Mode Bus Cycles
	16.2.3 Page Mode Bus Cycles

	16.3 Wait States
	16.4 External Bus Cycles With Configurable Wait St...
	16.4.1 Extending RD#/WR#/PSEN#
	16.4.2 Extending ALE

	16.5 External Bus Cycles with Real-time Wait State...
	16.5.1 Real-time WAIT# Enable (RTWE)
	16.5.2 Real-time WAIT CLOCK Enable (RTWCE)
	16.5.3 Real-time Wait State Bus Cycle Diagrams

	16.6 Configuration Byte Bus Cycles
	16.7 Port 0 and Port 2 Status
	16.7.1 Port 0 and Port 2 Pin Status in Nonpage Mod...
	16.7.2 Port 0 and Port 2 Pin Status in Page Mode

	16.8 External Memory Design Examples
	16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External...
	16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External...
	16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External...
	16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External...
	16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External...
	16.8.5.1 An Application Requiring Fast Access to t...
	16.8.5.2 An Application Requiring Fast Access to D...

	16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External...
	16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External...

	CHAPTER 17 Verifying Nonvolatile Memory
	17.1 General
	17.1.1 Considerations for On-chip Program Code Mem...

	17.2 Verify Modes
	17.3 General Setup
	17.4 Verify Algorithm
	17.5 Lock Bit System
	17.5.1 Encryption Array

	17.6 Signature Bytes

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map and Supporting Tables
	A.3 Instruction Set Summary
	A.3.1 Execution Times for Instructions Accessing t...
	A.3.2 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	C.1 SFRs by Functional Category
	C.2 SFR Descriptions
	C.3 Configuration Bytes

	APPENDIX D Data Flow Model
	Glossary
	Index

