
8x930Ax, 8x930Hx
Universal Serial Bus
Microcontroller User’s Manual

8x930A
x

8x930H
x

U
niversalSerialB

us
M

icrocontroller
U

ser’s
M

anual

27294901.qxd 10/17/96 9:50 AM Page 1

U.S. and CANADA LITERATURE ORDER FORM

NAME: __

COMPANY:___

ADDRESS: ___

CITY:____________________________STATE: ___________ ZIP: ______________

COUNTRY: ___

PHONE NO.: (_______) ___

Pay by check, money order, or include company purchase order with this form ($200 minimum).
We also accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales.
Allow 2–3 weeks for delivery.

Account No. _______________________________ Signature___________________________

FOR PHONE ORDERS IN THE U.S. AND CANADA
CALL TOLL FREE: (800) 548-4725

CG/LOF1-W/103092

ORDER NO. TITLE QTY. PRICE TOTAL

× =

× =

× =

× =

× =

× =

× =

× =

Subtotal
Must Add Your

Local Sales Tax

Postage

Total

VISA MasterCard American Express Expiration Date

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor

Include Postage:
Must add 15% of
Subtotal to cover U.S.
and Canada postage
(20% all other)

INTERNATIONAL LITERATURE ORDER FORM

NAME: __

COMPANY:___

ADDRESS: ___

CITY:____________________________STATE: ___________ ZIP: ______________

COUNTRY: ___

PHONE NO.: (_______) ___

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordina-
tor at your local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and
returned to your local Intel Sales Office.

CG/LOF2W/092792
CG-041493

ORDER NO. TITLE QTY. PRICE TOTAL

× =

× =

× =

× =

× =

× =

× =

× =

× =

× =

Subtotal
Must Add Your

Local Sales Tax

Total

September 1996

8x930Ax, 8x930Hx
Universal Serial Bus

Microcontroller
User’s Manual

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1996

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY .. 1-3

1.3 RELATED DOCUMENTS .. 1-6
1.3.1 Data Sheet ..1-6
1.3.2 Application Notes ..1-6

1.4 APPLICATION SUPPORT SERVICES.. 1-7
1.4.1 World Wide Web ...1-8
1.4.2 FaxBack Service ...1-8
1.4.3 Bulletin Board System (BBS) ..1-9

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.1 PRODUCT OVERVIEW... 2-3
2.1.1 8x930Ax Features ...2-3
2.1.2 8x930Hx Features ...2-3
2.1.3 MCS® 251 Architecture Features ..2-4

2.2 MICROCONTROLLER CORE... 2-8
2.2.1 CPU ..2-8
2.2.2 Clock and Reset Unit ..2-9

2.2.2.1 State Time and Peripheral Cycles ..2-9
2.2.2.2 Low-clock Mode ...2-10
2.2.2.3 Reset Unit ..2-10

2.2.3 Interrupt Handler ...2-12

2.3 ON-CHIP MEMORY... 2-12

2.4 UNIVERSAL SERIAL BUS MODULE.. 2-12
2.4.1 The 8x930Ax USB Module ..2-14

2.4.1.1 Serial Bus Interface Engine (SIE) ..2-14
2.4.1.2 Function Interface Unit (FIU) ..2-14
2.4.1.3 Function FIFOs ..2-14

2.4.2 The 8x930Hx USB Module ...2-14
2.4.2.1 Hub Repeater ...2-15
2.4.2.2 Serial Bus Interface Engine (SIE) ..2-15
2.4.2.3 Hub Interface Unit (HIU) ...2-15
2.4.2.4 Hub FIFOs ..2-15
2.4.2.5 8x930Hx CPU ..2-15

2.5 ON-CHIP PERIPHERALS.. 2-16
2.5.1 Timer/Counters and Watchdog Timer ...2-16
2.5.2 Programmable Counter Array (PCA) ..2-16
2.5.3 Serial I/O Port ...2-16

2.6 OPERATING CONDITIONS .. 2-17
iii

8x930Ax, 8x930Hx USER’S MANUAL
CHAPTER 3
ADDRESS SPACES

3.1 MCS® 251 ARCHITECTURE ADDRESS SPACES... 3-1
3.1.1 Compatibility with the MCS® 51 Architecture ...3-2

3.2 8X930 MEMORY SPACE .. 3-5
3.2.1 On-chip General-purpose Data RAM ..3-8
3.2.2 On-chip Code Memory ..3-8

3.2.2.1 Accessing On-chip Code Memory in Region 00: ..3-9
3.2.3 External Memory ...3-9

3.3 8X930 REGISTER FILE .. 3-9

3.4 BYTE, WORD, AND DWORD REGISTERS.. 3-12
3.4.1 Dedicated Registers ..3-12

3.4.1.1 Accumulator and B Register ..3-12
3.4.1.2 Extended Data Pointer, DPX ..3-14
3.4.1.3 Extended Stack Pointer, SPX ..3-14

3.5 SPECIAL FUNCTION REGISTERS (SFRS) ... 3-15

CHAPTER 4
DEVICE CONFIGURATION

4.1 CONFIGURATION OVERVIEW .. 4-1

4.2 DEVICE CONFIGURATION .. 4-1

4.3 THE CONFIGURATION BITS.. 4-4

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE... 4-7
4.4.1 Page Mode and Nonpage Mode (PAGE#) ..4-7
4.4.2 Configuration Bits RD1:0 ..4-8

4.4.2.1 RD1:0 = 00 (18 External Address Bits) ..4-10
4.4.2.2 RD1:0 = 01 (17 External Address Bits) ..4-10
4.4.2.3 RD1:0 = 10 (16 External Address Bits) ..4-10
4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)4-11

4.4.3 Wait State Configuration Bits ..4-11
4.4.3.1 Configuration Bits WSA1:0#, WSB1:0# ...4-11
4.4.3.2 Configuration Bit XALE# ..4-11

4.5 OPCODE CONFIGURATIONS (SRC)... 4-12
4.5.1 Selecting Binary Mode or Source Mode ..4-12

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#) 4-14

4.7 INTERRUPT MODE (INTR)... 4-14

CHAPTER 5
PROGRAMMING CONSIDERATIONS

5.1 SOURCE MODE OR BINARY MODE OPCODES .. 5-1

5.2 PROGRAMMING FEATURES OF THE 8X930 ARCHITECTURE................................ 5-1
5.2.1 Data Types ..5-1

5.2.1.1 Order of Byte Storage for Words and Double Words ...5-2
5.2.2 Register Notation ..5-2
iv

CONTENTS
5.2.3 Address Notation ..5-2
5.2.4 Addressing Modes ..5-4

5.3 DATA INSTRUCTIONS ... 5-4
5.3.1 Data Addressing Modes ..5-4

5.3.1.1 Register Addressing ...5-5
5.3.1.2 Immediate ..5-5
5.3.1.3 Direct ..5-5
5.3.1.4 Indirect ...5-6
5.3.1.5 Displacement ...5-8

5.3.2 Arithmetic Instructions ...5-8
5.3.3 Logical Instructions ...5-9
5.3.4 Data Transfer Instructions ...5-9

5.4 BIT INSTRUCTIONS ... 5-10
5.4.1 Bit Addressing ...5-10

5.5 CONTROL INSTRUCTIONS ... 5-11
5.5.1 Addressing Modes for Control Instructions ...5-12
5.5.2 Conditional Jumps ..5-13
5.5.3 Unconditional Jumps ...5-14
5.5.4 Calls and Returns ...5-14

5.6 PROGRAM STATUS WORDS .. 5-15

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW ... 6-1

6.2 8X930 INTERRUPT SOURCES .. 6-3
6.2.1 External Interrupts ...6-5
6.2.2 Timer Interrupts ...6-6

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT.. 6-7

6.4 SERIAL PORT INTERRUPT.. 6-7

6.5 USB INTERRUPTS.. 6-7
6.5.1 USB Function Interrupt ...6-7
6.5.2 USB Start-of-frame Interrupt ...6-12
6.5.3 USB Hub Interrupt ...6-15
6.5.4 USB Global Suspend/Resume Interrupt ...6-18

6.5.4.1 Global Suspend ..6-18
6.5.4.2 Global Resume ..6-18
6.5.4.3 USB Remote Wake-up ...6-18

6.5.5 8x930Ax USB Reset Separation ...6-18
6.5.5.1 Initialization Required for USB Reset ...6-19
6.5.5.2 USB Reset Hardware Operations ..6-22
6.5.5.3 USB Reset ISR ..6-22
6.5.5.4 Main Routine Considerations ...6-23

6.6 INTERRUPT ENABLE ... 6-24

6.7 INTERRUPT PRIORITIES... 6-27
v

8x930Ax, 8x930Hx USER’S MANUAL
6.8 INTERRUPT PROCESSING ... 6-32
6.8.1 Minimum Fixed Interrupt Time ..6-33
6.8.2 Variable Interrupt Parameters ...6-33

6.8.2.1 Response Time Variables ..6-33
6.8.2.2 Computation of Worst-case Latency With Variables ..6-35
6.8.2.3 Latency Calculations ..6-36
6.8.2.4 Blocking Conditions ..6-36
6.8.2.5 Interrupt Vector Cycle ..6-37

6.8.3 ISRs in Process ..6-37

CHAPTER 7
USB FUNCTION

7.1 FUNCTION INTERFACE... 7-1
7.1.1 Function Endpoint Pairs ..7-1
7.1.2 Function FIFOs ...7-1
7.1.3 Special Function Registers (SFRs) ...7-2

7.1.3.1 Endpoint-indexed SFRs ...7-3
7.1.3.2 Endpoint Selection ...7-3

7.2 TRANSMIT FIFOS... 7-15
7.2.1 Transmit FIFO Overview ...7-15
7.2.2 Transmit FIFO Registers ...7-16
7.2.3 Transmit Data Register (TXDAT) ..7-16
7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH) ..7-16
7.2.5 Transmit Data Set Management ...7-17

7.3 RECEIVE FIFOs .. 7-24
7.3.1 Receive FIFO Overview ..7-24
7.3.2 Receive FIFO Registers ..7-25

7.3.2.1 Receive Data Register (RXDAT) ..7-25
7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH) ..7-25

7.3.3 Receive FIFO Data Set Management ...7-26

7.4 SIE DETAILS ... 7-33

7.5 SETUP TOKEN RECEIVE FIFO HANDLING.. 7-33

7.6 ISO DATA MANAGEMENT ... 7-34
7.6.1 Transmit FIFO ISO Data Management ...7-34
7.6.2 Receive FIFO ISO Data Management ..7-35

CHAPTER 8
USB HUB

8.1 HUB FUNCTIONAL OVERVIEW... 8-1
8.1.1 Port Connectivity States ..8-3
8.1.2 Per-packet Signaling Connectivity ..8-5

8.1.2.1 Connectivity to Downstream Ports Attached With Full-speed Devices8-5
8.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices8-6

8.2 BUS ENUMERATION.. 8-6
vi

CONTENTS
8.2.1 Hub Descriptors ..8-6
8.2.2 The Hub Address Register (HADDR) ..8-8

8.3 HUB STATUS .. 8-8

8.4 USB HUB ENDPOINTS... 8-10
8.4.1 Hub Endpoint Indexing Using EPINDEX ...8-11
8.4.2 Hub Endpoint Control ..8-11
8.4.3 Hub Endpoint Transmit and Receive Operations ..8-11

8.5 USB HUB PORTS.. 8-14
8.5.1 Controlling a Port Using HPCON ..8-14
8.5.2 Examining a Port’s Status Using HPSTAT ..8-17
8.5.3 Monitoring Port Status Change Using HPSC ..8-20
8.5.4 Hub Port Indexing Using HPINDEX ..8-23
8.5.5 Embedded Function ..8-24

8.5.5.1 Embedded Function Reset ...8-24
8.5.5.2 Embedded Function Remote Wake-up ..8-24

8.6 SUSPEND AND RESUME... 8-24
8.6.1 Hub Global Suspend and Resume ...8-24
8.6.2 Remote Connectivity ...8-25

8.6.2.1 Resume Connectivity ...8-25
8.6.2.2 Connectivity Due to Physical Connect/Disconnect ...8-26

8.6.3 Embedded Function Suspend and Resume ...8-26

8.7 HUB POWER DISTRIBUTION .. 8-27
8.7.1 Port Power Switching ..8-27
8.7.2 Overcurrent Detection ...8-28
8.7.3 Ganged Power Enable ..8-29

8.8 HUB DEVICE SIGNALS .. 8-30

CHAPTER 9
USB PROGRAMMING MODELS

9.1 OVERVIEW OF PROGRAMMING MODELS .. 9-2
9.1.1 Unenumerated State ...9-2
9.1.2 Idle State ...9-2
9.1.3 Transmit and Receive Routines ..9-3
9.1.4 USB Interrupts ..9-3

9.2 TRANSMIT OPERATIONS.. 9-3
9.2.1 Overview ...9-3
9.2.2 Pre-transmit Operations ..9-6
9.2.3 Post-transmit Operations ..9-7

9.3 RECEIVE OPERATIONS... 9-9
9.3.1 Overview ...9-9
9.3.2 Post-receive Operations ...9-10

9.4 SETUP TOKEN ... 9-13

9.5 START-OF-FRAME (SOF) TOKEN... 9-15
vii

8x930Ax, 8x930Hx USER’S MANUAL
9.6 HUB OPERATION ... 9-16
9.6.1 Bus Enumeration ..9-16
9.6.2 Hub Status and Configuration ...9-17
9.6.3 Port Status Change Communication ...9-22
9.6.4 Hub Firmware Examples ...9-23

9.6.4.1 GetPortStatus Request Firmware ..9-24

CHAPTER 10
INPUT/OUTPUT PORTS

10.1 INPUT/OUTPUT PORT OVERVIEW... 10-1

10.2 I/O CONFIGURATIONS... 10-2

10.3 PORT 1 AND PORT 3 ... 10-2

10.4 PORT 0 AND PORT 2 ... 10-2

10.5 READ-MODIFY-WRITE INSTRUCTIONS... 10-5

10.6 QUASI-BIDIRECTIONAL PORT OPERATION.. 10-5

10.7 PORT LOADING.. 10-6

10.8 EXTERNAL MEMORY ACCESS... 10-7

CHAPTER 11
TIMER/COUNTERS AND WATCHDOG TIMER

11.1 TIMER/COUNTER OVERVIEW... 11-1

11.2 TIMER/COUNTER OPERATION... 11-1

11.3 TIMER 0... 11-4
11.3.1 Mode 0 (13-bit Timer) ...11-4
11.3.2 Mode 1 (16-bit Timer) ...11-4
11.3.3 Mode 2 (8-bit Timer With Auto-reload) ..11-5
11.3.4 Mode 3 (Two 8-bit Timers) ..11-5

11.4 TIMER 1... 11-6
11.4.1 Mode 0 (13-bit Timer) ...11-9
11.4.2 Mode 1 (16-bit Timer) ...11-9
11.4.3 Mode 2 (8-bit Timer with Auto-reload) ...11-9
11.4.4 Mode 3 (Halt) ..11-9

11.5 TIMER 0/1 APPLICATIONS... 11-9
11.5.1 Auto-reload Setup Example ..11-9
11.5.2 Pulse Width Measurements ..11-10

11.6 TIMER 2... 11-10
11.6.1 Capture Mode ...11-11
11.6.2 Auto-reload Mode ...11-12

11.6.2.1 Up Counter Operation ..11-12
11.6.3 Up/Down Counter Operation ...11-13
11.6.4 Baud Rate Generator Mode ..11-14
11.6.5 Clock-out Mode ...11-14

11.7 WATCHDOG TIMER ... 11-16
viii

CONTENTS
11.7.1 Description ..11-16
11.7.2 Using the WDT ..11-18
11.7.3 WDT During Idle Mode ...11-18
11.7.4 WDT During PowerDown ..11-18

CHAPTER 12
PROGRAMMABLE COUNTER ARRAY

12.1 PCA DESCRIPTION.. 12-1
12.1.1 Alternate Port Usage ...12-2

12.2 PCA TIMER/COUNTER... 12-2

12.3 PCA COMPARE/CAPTURE MODULES ... 12-5
12.3.1 16-bit Capture Mode ...12-5
12.3.2 Compare Modes ...12-7
12.3.3 16-bit Software Timer Mode ..12-7
12.3.4 High-speed Output Mode ..12-8
12.3.5 PCA Watchdog Timer Mode ...12-9
12.3.6 Pulse Width Modulation Mode ..12-10

CHAPTER 13
SERIAL I/O PORT

13.1 OVERVIEW ... 13-1

13.2 MODES OF OPERATION.. 13-2
13.2.1 Synchronous Mode (Mode 0) ..13-2

13.2.1.1 Transmission (Mode 0) ..13-2
13.2.1.2 Reception (Mode 0) ..13-3

13.2.2 Asynchronous Modes (Modes 1, 2, and 3) ...13-7
13.2.2.1 Transmission (Modes 1, 2, 3) ...13-7
13.2.2.2 Reception (Modes 1, 2, 3) ..13-7

13.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)...................................... 13-7

13.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3).................................... 13-8

13.5 AUTOMATIC ADDRESS RECOGNITION... 13-8
13.5.1 Given Address ..13-9
13.5.2 Broadcast Address ..13-9
13.5.3 Reset Addresses ...13-10

13.6 BAUD RATES.. 13-10
13.6.1 Baud Rate for Mode 0 ...13-10
13.6.2 Baud Rates for Mode 2 ...13-11
13.6.3 Baud Rates for Modes 1 and 3 ...13-11

13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) ..13-11
13.6.3.2 Selecting Timer 1 as the Baud Rate Generator ...13-11
13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) ..13-12
13.6.3.4 Selecting Timer 2 as the Baud Rate Generator ...13-12
ix

8x930Ax, 8x930Hx USER’S MANUAL
CHAPTER 14
MINIMUM HARDWARE SETUP

14.1 MINIMUM HARDWARE SETUP.. 14-1

14.2 ELECTRICAL ENVIRONMENT ... 14-1
14.2.1 Power and Ground Pins ..14-2
14.2.2 Unused Pins ..14-2
14.2.3 Noise Considerations ..14-2

14.3 CLOCK SOURCES.. 14-2
14.3.1 On-chip Oscillator (Crystal) ...14-2
14.3.2 On-chip Oscillator (Ceramic Resonator) ...14-3
14.3.3 External Clock ...14-3

14.4 RESET... 14-5
14.4.1 Externally-Initiated Resets ..14-5
14.4.2 WDT-initiated Resets ..14-5
14.4.3 USB-initiated Resets ...14-6

14.4.3.1 8x930Ax USB Reset Separation ..14-6
14.4.4 Reset Operation ..14-6
14.4.5 Power-on Reset ..14-7

CHAPTER 15
SPECIAL OPERATING MODES

15.1 GENERAL.. 15-1

15.2 POWER CONTROL REGISTERS... 15-1
15.2.1 Serial I/O Control Bits ...15-1
15.2.2 Power Off Flag ..15-2
15.2.3 8x930Ax USB Reset Separation ...15-2

15.3 IDLE MODE ... 15-7
15.3.1 Entering Idle Mode ..15-7
15.3.2 Exiting Idle Mode ..15-7

15.4 USB POWER CONTROL .. 15-8
15.4.1 Global Suspend Mode ..15-8

15.4.1.1 Powerdown (Suspend) Mode ...15-8
15.4.1.2 Entering Powerdown (Suspend) Mode ..15-9
15.4.1.3 Exiting Powerdown (Suspend) Mode ...15-9

15.4.2 Global Resume Mode ...15-10
15.4.3 USB Remote Wake-up ..15-10

15.5 LOW-CLOCK MODE ... 15-13
15.5.1 Entering Low-clock Mode ..15-13
15.5.2 Exiting Low-clock Mode ..15-13

15.6 ON-CIRCUIT EMULATION (ONCE) MODE .. 15-13
15.6.1 Entering ONCE Mode ...15-13
15.6.2 Exiting ONCE Mode ..15-14
x

CONTENTS
CHAPTER 16
EXTERNAL MEMORY INTERFACE

16.1 OVERVIEW ... 16-1

16.2 EXTERNAL BUS CYCLES .. 16-3
16.2.1 Bus Cycle Definitions ..16-3
16.2.2 Nonpage Mode Bus Cycles ..16-3
16.2.3 Page Mode Bus Cycles ...16-6

16.3 WAIT STATES... 16-8

16.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES.......................... 16-8
16.4.1 Extending RD#/WR#/PSEN# ..16-8
16.4.2 Extending ALE ..16-10

16.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES................................. 16-11
16.5.1 Real-time WAIT# Enable (RTWE) ...16-12
16.5.2 Real-time WAIT CLOCK Enable (RTWCE) ...16-12
16.5.3 Real-time Wait State Bus Cycle Diagrams ..16-12

16.6 CONFIGURATION BYTE BUS CYCLES... 16-15

16.7 PORT 0 AND PORT 2 STATUS .. 16-15
16.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode ..16-16
16.7.2 Port 0 and Port 2 Pin Status in Page Mode ..16-16

16.8 EXTERNAL MEMORY DESIGN EXAMPLES.. 16-17
16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM16-17
16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM16-19
16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM ..16-20
16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM ..16-23
16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM16-25

16.8.5.1 An Application Requiring Fast Access to the Stack ...16-25
16.8.5.2 An Application Requiring Fast Access to Data ...16-25

16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM16-28
16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash ..16-29

CHAPTER 17
VERIFYING NONVOLATILE MEMORY

17.1 GENERAL.. 17-1
17.1.1 Considerations for On-chip Program Code Memory ...17-1

17.2 VERIFY MODES.. 17-3

17.3 GENERAL SETUP... 17-3

17.4 VERIFY ALGORITHM.. 17-5

17.5 LOCK BIT SYSTEM... 17-5
17.5.1 Encryption Array ...17-5

17.6 SIGNATURE BYTES ... 17-6
xi

8x930Ax, 8x930Hx USER’S MANUAL
APPENDIX A
INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS.. A-2

A.2 OPCODE MAP AND SUPPORTING TABLES ... A-4

A.3 INSTRUCTION SET SUMMARY.. A-11
A.3.1 Execution Times for Instructions Accessing the Port SFRs A-11
A.3.2 Instruction Summaries .. A-13

A.4 INSTRUCTION DESCRIPTIONS ... A-25

APPENDIX B
SIGNAL DESCRIPTIONS

APPENDIX C
REGISTERS

C.1 SFRS BY FUNCTIONAL CATEGORY ... C-4

C.2 SFR DESCRIPTIONS... C-8

C.3 CONFIGURATION BYTES... C-78

APPENDIX D
DATA FLOW MODEL

GLOSSARY

INDEX
xii

CONTENTS

FIGURES
Figure Page
2-1 8x930Ax and 8x930Hx in a USB System ...2-1
2-2 Functional Block Diagram of the 8x930..2-2
2-3 8x930Ax USB Module Block Diagram..2-6
2-4 8x930Hx USB Module Block Diagram..2-7
2-5 The CPU...2-8
2-6 Clock Circuit ...2-9
2-7 Clocking Definitions (Low Speed)...2-11
2-8 Clocking Definitions (Full Speed) ...2-11
3-1 MCS® 251Architecture Address Spaces ..3-1
3-2 Address Spaces for the MCS® 51 Architecture ...3-3
3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture.............3-4
3-4 8x930 Address Space ..3-6
3-5 Hardware Implementation of the 8x930 Address Space ..3-7
3-6 The Register File ..3-10
3-7 Register File Locations 0–7..3-11
3-8 Dedicated Registers in the Register File and their Corresponding SFRs...................3-13
4-1 Configuration Array (On-chip)...4-2
4-2 Configuration Array (External) ..4-3
4-3 User Configuration Byte 0 (UCONFIG0) ..4-5
4-4 User Configuration Byte 1 (UCONFIG1) ..4-6
4-5 Internal/External Address Mapping (RD1:0 = 00 and 01)...4-8
4-6 Internal/External Address Mapping (RD1:0 = 10 and 11)...4-9
4-7 Binary Mode Opcode Map..4-13
4-8 Source Mode Opcode Map ..4-13
5-1 Word and Double-word Storage in Big Endien Form ...5-3
5-2 Program Status Word Register...5-17
5-3 Program Status Word 1 Register..5-18
6-1 Interrupt Control System ..6-2
6-2 USB/Hub Interrupt Control System...6-3
6-3 FIE: USB Function Interrupt Enable Register...6-8
6-4 FIE1: USB Function Interrupt Enable Register...6-9
6-5 FIFLG: USB Function Interrupt Flag Register ..6-11
6-6 FIFLG1: USB Function Interrupt Flag Register ..6-12
6-7 SOFH: Start of Frame High Register..6-13
6-8 SOFL: Start of Frame Low Register ...6-14
6-9 HIE: Hub Interrupt Enable Register ..6-16
6-10 HIFLG: Hub Interrupt Status Register ..6-17
6-11 USB Reset Separation Operating Model..6-21
6-12 IEN0: Interrupt Enable Register 0 ..6-25
6-13 IEN1: USB Interrupt Enable Register ...6-26
6-14 IPH0: Interrupt Priority High Register 0 ..6-28
6-15 IPL0: Interrupt Priority Low Register 0..6-29
6-16 IPH1: Interrupt Priority High Register 1 ..6-30
6-17 IPL1: Interrupt Priority Low Register 1..6-31
xiii

8x930Ax, 8x930Hx USER’S MANUAL

FIGURES
Figure Page
6-18 The Interrupt Process...6-32
6-19 Response Time Example #1 ..6-34
6-20 Response Time Example #2 ..6-35
7-1 EPCONFIG: Endpoint Configuration Register..7-5
7-2 EPINDEX: Endpoint Index Register ..7-6
7-3 EPCON: Endpoint Control Register..7-7
7-4 TXSTAT: Transmit FIFO Status Register ...7-9
7-5 RXSTAT: Receive FIFO Status Register..7-11
7-6 FADDR: Function Address Register...7-14
7-7 Transmit FIFO Outline..7-15
7-8 TXDAT: Transmit FIFO Data Register..7-18
7-9 TXCNTH/TXCNTL Transmit FIFO Byte Count Registers...7-19
7-10 TXCON: Transmit FIFO Control Register...7-20
7-11 TXFLG: Transmit FIFO Flag Register ..7-22
7-12 Receive FIFO ...7-24
7-13 RXDAT: Receive FIFO Data Register ..7-27
7-14 RXCNTH/RXCNTL: Receive FIFO Byte Count Registers..7-28
7-15 RXCON: Receive FIFO Control Register ...7-29
7-16 RXFLG: Receive FIFO Flag Register ...7-31
8-1 8X930Hx Hub Functional Diagram...8-2
8-2 Hub State Flow...8-4
8-3 Packet Signaling Connectivity ..8-5
8-4 HADDR: Hub Address Register..8-8
8-5 HSTAT: Hub Status and Configuration Register ..8-9
8-6 TXDAT: Hub Transmit Data Buffer (Endpoint 1) ..8-12
8-7 Status Change Communication To Host ..8-13
8-8 HPCON: Hub Port Control Register ...8-15
8-9 HPSTAT: Hub Port Status Register..8-18
8-10 HPSC: Hub Port Status Change Register ..8-21
8-11 HPINDEX: Hub Port Index Register ...8-23
8-12 Resume Connectivity ...8-26
8-13 HPPWR: Hub Port Power Control ..8-28
9-1 Program Flow ...9-1
9-2 High-level View of Transmit Operations ...9-5
9-3 Pre-transmit ISR (Non-Isochronous) ..9-6
9-4 Post-transmit ISR (Non-isochronous)...9-7
9-5 Post-transmit ISR (Isochronous) ..9-8
9-6 High-level View of Receive Operations ..9-10
9-7 Post-receive ISR (Non-isochronous) ..9-11
9-8 Receive SOF ISR (Isochronous) ..9-12
9-9 Post-receive ISR (Control)..9-14
9-10 Hardware Operations for SOF Token...9-15
9-11 Hub-to-host Port Status Communication ..9-23
9-12 GetPortStatus Request ..9-24
xiv

CONTENTS

FIGURES
Figure Page
9-13 Firmware Response to GetPortStatus..9-25
9-14 SetPortFeature (PORT_SUSPEND) Routine...9-26
9-15 SetPortFeature (PORT_RESET) Routine ..9-27
10-1 Port 1 and Port 3 Structure...10-3
10-2 Port 0 Structure ..10-3
10-3 Port 2 Structure ..10-4
10-4 Internal Pullup Configurations ..10-6
11-1 Basic Logic of the Timer/Counters ...11-3
11-2 Timer 0/1 in Mode 0 and Mode 1 ...11-4
11-3 Timer 0/1 in Mode 2, Auto-reload...11-5
11-4 Timer 0 in Mode 3, Two 8-bit Timers..11-6
11-5 TMOD: Timer/Counter Mode Control Register ...11-7
11-6 TCON: Timer/Counter Control Register ...11-8
11-7 Timer 2: Capture Mode ..11-11
11-8 Timer 2: Auto-reload Mode (DCEN = 0) ...11-12
11-9 Timer 2: Auto-reload Mode (DCEN = 1) ...11-13
11-10 Timer 2: Clock Out Mode..11-15
11-11 T2MOD: Timer 2 Mode Control Register..11-16
11-12 T2CON: Timer 2 Control Register ..11-17
12-1 Programmable Counter Array...12-3
12-2 PCA 16-bit Capture Mode ..12-6
12-3 PCA Software Timer and High-speed Output Modes...12-8
12-4 PCA Watchdog Timer Mode...12-10
12-5 PCA 8-bit PWM Mode ..12-11
12-6 PWM Variable Duty Cycle ..12-12
12-7 CMOD: PCA Timer/Counter Mode Register...12-13
12-8 CCON: PCA Timer/Counter Control Register...12-14
12-9 CCAPMx: PCA Compare/Capture Module Mode Registers.....................................12-16
13-1 Serial Port Block Diagram ..13-3
13-2 SCON: Serial Port Control Register ...13-4
13-3 Mode 0 Timing..13-6
13-4 Data Frame (Modes 1, 2, and 3) ..13-6
13-5 Timer 2 in Baud Rate Generator Mode ..13-14
14-1 Minimum Setup ..14-1
14-2 CHMOS On-chip Oscillator...14-3
14-3 External Clock Connection for the 8x930 ...14-4
14-4 External Clock Drive Waveforms..14-4
14-5 Reset Timing Sequence ...14-7
15-1 PCON: Power Control Register ..15-3
15-2 PCON1: USB Power Control Register..15-4
15-3 Suspend/Resume Program with/without Remote Wake-up15-11
16-1 Bus Structure in Nonpage Mode and Page Mode..16-1
16-2 External Code Fetch (Nonpage Mode)...16-4
16-3 External Data Read (Nonpage Mode) ..16-5
xv

8x930Ax, 8x930Hx USER’S MANUAL

FIGURES
Figure Page
16-4 External Data Write (Nonpage Mode) ..16-5
16-5 External Code Fetch (Page Mode) ...16-7
16-6 External Data Read (Page Mode) ..16-7
16-7 External Data Write (Page Mode)...16-8
16-8 External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)16-9
16-9 External Data Write (Nonpage Mode, One WR# Wait State)16-9
16-10 External Code Fetch (Nonpage Mode, One ALE Wait State)...................................16-10
16-11 WCON: Real-time Wait State Control Register ..16-11
16-12 External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)................16-13
16-13 External Data Write (Nonpage Mode, Real-time Wait State)16-13
16-14 External Data Read (Page Mode, Real-time Wait State) ...16-14
16-15 External Data Write (Page Mode, Real-time Wait State)..16-14
16-16 Configuration Byte Bus Cycles...16-15
16-17 Bus Diagram for Example 1: 80930AD in Page Mode ...16-17
16-18 Address Space for Example 1..16-18
16-19 Bus Diagram for Example 2: 80930AD in Page Mode ...16-19
16-20 Address Space for Example 2..16-20
16-21 Bus Diagram for Example 3: 83930AE in Nonpage Mode16-21
16-22 Memory Space for Example 3 ..16-22
16-23 Bus Diagram for Example 4: 83930AE in Nonpage Mode16-23
16-24 Address Space for Example 4..16-24
16-25 Bus Diagram for Example 5: 80930AD in Nonpage Mode16-26
16-26 Address Space for Examples 5 and 6 ..16-27
16-27 Bus Diagram for Example 6: 80930AD in Page Mode ...16-28
16-28 Bus Diagram for Example 7: 80930AD in Page Mode ...16-29
17-1 Setup for Verifying Nonvolatile Memory ...17-4
17-2 Verify Bus Cycles ...17-4
B-1 8x930Ax 68-pin PLCC Package.. B-1
B-2 8x930Hx 68-pin PLCC Package.. B-2
xvi

CONTENTS

TABLES
Table Page

1-1 Intel Application Support Services..1-7
2-1 8x930 Memory Options ..2-3
2-2 8x930 USB Features Summary..2-4
2-3 MCS® 251 Architecture Features ..2-5
2-4 8x930 Operating Frequency...2-10
2-5 Endpoint Pairs for 8x930Hx and 8x930Ax (4EPP Option)..2-13
2-6 Endpoint Pairs for 8x930Ax (6EPP Option)..2-13
3-1 Address Mappings..3-4
3-2 Minimum Times to Fetch Two Bytes of Code...3-8
3-3 Register Bank Selection ...3-11
3-4 Dedicated Registers in the Register File and their Corresponding SFRs...................3-14
3-5 8x930Ax SFR Map ..3-16
3-6 8X930Hx SFR Map ...3-17
3-7 Core SFRs..3-18
3-8 Interrupt System SFRs ...3-18
3-9 I/O Port SFRs ...3-19
3-10 Serial I/O SFRs ..3-19
3-11 USB Function SFRs ...3-19
3-12 USB Hub SFRs ..3-20
3-13 Timer/Counter and Watchdog Timer SFRs ..3-20
3-14 Programmable Counter Array (PCA) SFRs..3-21
4-1 External Addresses for Configuration Array ...4-2
4-2 Memory Signal Selections (RD1:0) ..4-7
4-3 RD#, WR#, PSEN# External Wait States...4-11
4-4 Examples of Opcodes in Binary and Source Modes ..4-14
5-1 Data Types ...5-2
5-2 Notation for Byte Registers, Word Registers, and Dword Registers5-3
5-3 Addressing Modes for Data Instructions in the MCS® 51 Architecture........................5-5
5-4 Addressing Modes for Data Instructions in the MCS® 251 Architecture5-7
5-5 Bit-addressable Locations ..5-11
5-6 Addressing Two Sample Bits..5-11
5-7 Addressing Modes for Bit Instructions..5-11
5-8 Addressing Modes for Control Instructions...5-13
5-9 Compare-conditional Jump Instructions ...5-14
5-10 The Effects of Instructions on the PSW and PSW1 Flags..5-16
6-1 Interrupt System Input Signals ...6-1
6-2 Interrupt System Special Function Registers ...6-4
6-3 Interrupt Control Matrix...6-5
6-4 USB/Hub Interrupt Control Matrix...6-6
6-5 Level of Priority...6-27
6-6 Interrupt Priority Within Level ...6-27
6-7 Interrupt Latency Variables ..6-35
6-8 Actual vs. Predicted Latency Calculations..6-36
7-1 Non-hub USB Signal Descriptions..7-2
xvii

8x930Ax, 8x930Hx USER’S MANUAL

TABLES
Table Page

7-2 USB Function SFRs ...7-4
7-3 Writing to the Byte Count Register ...7-17
7-4 Truth Table for Transmit FIFO Management..7-18
7-5 Status of the Receive FIFO Data Sets ...7-26
7-6 Truth Table for Receive FIFO Management...7-27
8-1 USB Hub SFRs ..8-2
8-2 8x930Hx Descriptors ..8-7
8-3 Hub Descriptors..8-7
8-4 Hub Endpoint Configuration ...8-10
8-5 USB Requests Ignored by Hardware (by Port State) ...8-14
8-6 Encoded Hub Port Control Commands ..8-16
8-7 UPWIN# Pin State Truth Table...8-29
8-8 Signal Descriptions...8-30
9-1 Firmware Actions for USB Requests Sent to Hub ..9-17
9-2 Firmware Action for Hub Class-Specific Requests...9-19
10-1 Input/Output Port Pin Descriptions ...10-1
10-2 Read-Modify-Write Instructions ..10-5
10-3 Instructions for External Data Moves..10-7
11-1 External Signals ...11-2
11-2 Timer/Counter and Watchdog Timer SFRs ..11-3
11-3 Timer 2 Modes of Operation...11-15
12-1 PCA Special Function Registers (SFRs) ..12-4
12-2 External Signals ...12-4
12-3 PCA Module Modes ...12-15
13-1 Serial Port Signals ..13-2
13-2 Serial Port Special Function Registers ...13-2
13-3 Summary of Baud Rates ..13-10
13-4 Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3..................................13-12
13-5 Selecting the Baud Rate Generator(s) ...13-13
13-6 Timer 2 Generated Baud Rates ...13-14
15-1 Pin Conditions in Various Modes..15-6
16-1 External Memory Interface Signals...16-2
16-2 Bus Cycle Definitions (No Wait States) ..16-4
16-3 Port 0 and Port 2 Pin Status In Normal Operating Mode..16-16
17-1 Signal Descriptions...17-2
17-2 Verify Modes ..17-3
17-3 Lock Bit Function..17-5
17-4 Contents of the Signature Bytes...17-6
17-5 Timing Definitions...17-6
A-1 Notation for Register Operands... A-2
A-2 Notation for Direct Addresses.. A-3
A-3 Notation for Immediate Addressing ... A-3
A-4 Notation for Bit Addressing.. A-3
A-5 Notation for Destinations in Control Instructions ... A-3
xviii

CONTENTS

TABLES
Table Page
A-6 Instructions for MCS® 51 Microcontrollers.. A-4
A-7 Instructions for the 8x930 Architecture .. A-5
A-8 Data Instructions ... A-6
A-9 High Nibble, Byte 0 of Data Instructions.. A-6
A-10 Bit Instructions... A-7
A-11 Byte 1 (High Nibble) for Bit Instructions... A-7
A-12 PUSH/POP Instructions .. A-7
A-13 Control Instructions .. A-8
A-14 Displacement/Extended MOVs.. A-9
A-15 INC/DEC.. A-10
A-16 Encoding for INC/DEC .. A-10
A-17 Shifts ... A-10
A-18 State Times to Access the Port SFRs ... A-11
A-19 Summary of Add and Subtract Instructions... A-13
A-20 Summary of Compare Instructions.. A-14
A-21 Summary of Increment and Decrement Instructions ... A-14
A-22 Summary of Multiply, Divide, and Decimal-adjust Instructions.................................. A-15
A-23 Summary of Logical Instructions ... A-16
A-24 Summary of Move Instructions.. A-18
A-25 Summary of Exchange, Push, and Pop Instructions ... A-21
A-26 Summary of Bit Instructions... A-22
A-27 Summary of Control Instructions ... A-23
A-28 Flag Symbols... A-25
B-1 68-pin PLCC Signal Assignments Arranged by Functional Category.......................... B-3
B-2 Signal Descriptions.. B-4
B-3 Memory Signal Selections (RD1:0) ... B-7
C-1 8x930Ax SFR Map ...C-2
C-2 8X930Hx SFR Map ..C-3
C-3 Core SFRs...C-4
C-4 Interrupt System SFRs ..C-4
C-5 I/O Port SFRs ..C-5
C-6 Serial I/O SFRs ...C-5
C-7 USB Function SFRs ..C-5
C-8 USB Hub SFRs ...C-6
C-9 Timer/Counter and Watchdog Timer SFRs ...C-6
C-10 Programmable Counter Array (PCA) SFRs...C-7
D-1 Non-isochronous Transmit Data Flow ...D-1
D-2 Isochronous Transmit Data Flow in Dual-packet Mode...D-5
D-3 Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)D-8
D-4 Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) D-11
D-5 Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) D-18
xix

1
Guide to this Manual

se by
itec-

ppen-

in

rs

d

 a map
e map-
s

ed
its, the
, bina-

to data
gura-

t.
ns in
rogram
ch in-

inter-
-
ponse
CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8x930Ax and 8x930Hx† microcontrollers; the initial members of a new
family of products for universal serial bus (USB) applications. This manual is intended for u
both firmware and hardware designers familiar with the principles of microcontroller arch
ture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and a
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional for-
mation.

Chapter 2 — “Architectural Overview” — provides an overview of device hardware. It cove
core functions (pipelined CPU, clock and reset unit, and interrupts), I/O ports, on-chip memory,
and on-chip peripherals (USB, timer/counters, watchdog timer, programmable counter array, an
serial I/O port).

Chapter 3 — “Address Spaces” — describes the three address spaces of the 8x930: memory
address space, special function register (SFR) space, and the register file. It also provides
of the SFR space showing the location of the SFRs and their reset values and explains th
ping of the address spaces relative to the MCS® 51 and MCS® 251 architectures into the addres
spaces of the 8x930.

Chapter 4 — “Device Configuration” — describes microcontroller features that are configur
at device reset, including the external memory interface (the number of external address b
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#)
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory
memory. It describes the configuration bytes and how to program them for the desired confi
tion. It also describes how internal memory maps into external memory.

Chapter 5 — ‘‘Programming Considerations” — provides an overview of the instruction se
It describes each instruction type (control, arithmetic, logical, etc.) and lists the instructio
tabular form. This chapter also discusses the addressing modes, bit instructions, and the p
status words. Appendix A, “Instruction Set Reference” provides a detailed description of ea
struction.

Chapter 6 — “Interrupt System”— describes the 8x930 interrupt circuitry which provides a
TRAP instruction interrupt and ten maskable interrupts: two external interrupts, three timer
rupts, a PCA interrupt, a serial port interrupt, and three USB interrupts. This chapter also discuss
es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt res
time.

† In this manual, the 8x930Ax and 8x930Hx are referred to collectively as the 8x930.
1-1

8x930Ax, 8x930Hx USER’S MANUAL

 as-
 inter-

on-
r-
nd hub

r us-
embed-

d
pecial

 to
te gen-
recog-

ng
 device

,
. This

atus of

us
 the
es bus

-
 (PSW,
Chapter 7 — “USB Function”— describes the FIFOs and special function registers (SFRs)
sociated with the USB function interface. This chapter describes the operation of function
face on the 8x930 USB microcontrollers.

Chapter 8 — “USB Hub”— describes the operation of the Intel Universal Serial Bus (USB)
chip hub. This chapter introduces on-chip hub operation and includes information on bus enume
ation, hub endpoint status and configuration, hub port control, hub suspend and resume, a
power control.

Chapter 9 — “USB Programming Models”— describes the programming models of the 8x930
USB function interface. This chapter provides flow charts of suggested firmware routines fo
ing the transmit and receive FIFOs to perform data transfers between the host PC and the
ded function and describes how the firmware interacts with the USB module hardware.

Chapter 10 — “Input/Output Ports”— describes the four 8-bit I/O ports (ports 0–3) and dis-
cusses their configuration for general-purpose I/O. This chapter also discusses external memory
accesses (ports 0, 2) and alternative special functions.

Chapter 11 — “Timer/Counters and Watchdog Timer”— describes the three on-chip
timer/counters and discusses their application. This chapter also provides instructions for using
the hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 12 — “Programmable Counter Array”— describes the PCA on-chip peripheral an
explains how to configure it for general-purpose applications (timers and counters) and s
applications (programmable WDT and pulse-width modulator).

Chapter 13 — “Serial I/O Port”— describes the full-duplex serial I/O port and explains how
program it to communicate with external peripherals. This chapter also discusses baud ra
eration, framing error detection, multiprocessor communications, and automatic address
nition.

Chapter 14 — “Minimum Hardware Setup”— describes the basic requirements for operati
the 8x930 in a system. It also discusses on-chip and external clock sources and describes
resets, including power-on reset.

Chapter 15 — “Special Operating Modes”— provides an overview of the idle, powerdown
and on-circuit emulation (ONCE) modes and describes how to enter and exit each mode
chapter also describes the power control (PCON) special function register and lists the st
the device pins during the special modes and reset.

Chapter 16 — “External Memory Interface”— describes the external memory signals and b
cycles and provides examples of external memory design. It provides waveform diagrams for
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provid
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 17 — “Verifying Nonvolatile Memory”— provides instructions for verifying on-chip
program memory, configuration bytes, signature bytes, and lock bits.

Appendix A — “Instruction Set Reference”— provides reference information for the instruc
tion set. It describes each instruction; defines the bits in the program status word registers
1-2

GUIDE TO THIS MANUAL

al op-

ip-
ignals

def-

other

 the
t the
the
de.

xt
ible

d by

ect

ent
ay

For
PSW1); shows the relationships between instructions and PSW flags; and lists hexadecim
codes, instruction lengths, and execution times.

Appendix B — “Signal Descriptions”— describes the function(s) of each device pin. Descr
tions are listed alphabetically by signal name. This appendix also provides a list of the s
grouped by functional category.

Appendix C — “Registers”— accumulates, for convenient reference, copies of the register
inition figures that appear throughout the manual.

Appendix D — “Data Flow Model”— describes the data flow model for the 8x930 USB trans-
actions.

Glossary — a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on
context. When used with a signal name, the symbol means tha
signal is active low. When used with an instruction mnemonic,
symbol prefixes an immediate value in immediate addressing mo

italics Italics identify variables and introduce new terminology. The conte
in which italics are used distinguishes between the two poss
meanings.

Variables in registers and signal names are commonly represente
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1–4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the corr
values when configuring or programming registers or identifying
signals.

XXXX, xxxx Uppercase X (no italics) and lowercase x (no italics) repres
unknown values or a “don’t care” states or conditions. The value m
be either binary or hexadecimal, depending on the context.
example, 2xAFH (hex) indicates that bits 11:8 are unknown; 10xx in
binary context indicates that the two LSBs are unknown.
1-3

8x930Ax, 8x930Hx USER’S MANUAL

l
tive
ls

 it
e it

ion.
.

V
e of

 of
um

imal

imal

e in
ite-

An
 a
wer
For

s the
ase
ple,
4.

 this
rite
ter-
Assert and Deassert The terms assert and deassert refer to the act of making a signa
active (enabled) and inactive (disabled), respectively. The ac
polarity (high/low) is defined by the signal name. Active-low signa
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive
high; to deassert RD# is to drive it high; to deassert ALE is to driv
low.

Instructions Instruction mnemonics are shown in upper case to avoid confus
When writing code, either upper case or lower case may be used

Logic 0 (Low) An input voltage level equal to or less than the maximum value of IL

or an output voltage level equal to or less than the maximum valu
VOL. See data sheet for values.

Logic 1 (High) An input voltage level equal to or greater than the minimum value
VIH or an output voltage level equal to or greater than the minim
value of VOH. See data sheet for values.

Numbers Hexadecimal numbers are represented by a string of hexadec
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a dec
number and 1111 1111 is a binary number. In some cases, the letterB
is added for clarity.

Register Access All register bits support read/write access unless noted otherwis
the bit description. Other types of access include read-only, wr
only, read/conditional-write, etc.

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit.
individual bit is represented by the register name, followed by
period and the bit number. For example, PCON.4 is bit 4 of the po
control register. In some discussions, bit names are used.
example, the name of PCON.4 is POF, the power-off flag.

Register Names Register names are shown in upper case. For example, PCON i
power control register. If a register name contains a lowerc
character, it represents more than one register. For exam
CCAPMx represents the five registers: CCAPM0 through CCAPM

Reserved Bits Some registers contain reserved bits. These bits are not used in
device, but they may be used in future implementations. Do not w
a “1” to a reserved bit. The value read from a reserved bit is inde
minate.
1-4

GUIDE TO THIS MANUAL

g

are a
ame
evi-

nal.

re:
Set and Clear The terms set and clear refer to the value of a bit or the act of givin
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.

Signal Names Signal names are shown in upper case. When several signals sh
common name, an individual signal is represented by the signal n
followed by a number. Port pins are represented by the port abbr
ation, a period, and the pin number (e.g., P0.0, P0.1). A pound
symbol (#) appended to a signal name identifies an active-low sig

Units of Measure The following abbreviations are used to represent units of measu

A amps, amperes

DCV direct current volts

Kbyte kilobytes

KΩ kilo-ohms

mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

W watts

V volts

µA microamps, microamperes

µF microfarads

µs microseconds

µW microwatts
1-5

8x930Ax, 8x930Hx USER’S MANUAL

 that
1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems
incorporate the 8x930. To order documents, please call Intel Literature Fulfillment (1-800-548-
4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646

Embedded Processors Order Number 272396

Embedded Applications Order Number 270648

Packaging Order Number 240800

Universal Serial Bus Specification Order Number 272904

1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.

8x930Ax Universal Serial Bus Microcontroller Order Number 272917

8x930Hx Universal Serial Bus Microcontroller Order Number 272928

1.3.2 Application Notes

The following MCS 251 application notes apply to the 8x930.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers Order Number 230659

AP-708, Introducing the MCS® 251 Microcontroller Order Number 272670
—the 8XC251SB

AP-709, Maximizing Performance Using MCS® 251 Microcontroller Order Number 272671
—Programming the 8XC251SB

AP-710, Migrating from the MCS® 51 Microcontroller to the Order Number 272672
MCS 251 Microcontroller (8XC251SB)—Firmware and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the 8x930.

AP70, Using the Intel MCS® 51 Boolean Processing Capabilities Order Number 203830
1-6

GUIDE TO THIS MANUAL

 provid-

estions
se con-
AP-223, 8051 Based CRT Terminal Controller Order Number 270032

AP-252, Designing With the 80C51BH Order Number 270068

AP-425, Small DC Motor Control Order Number 270622

AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490

AP-415, 83C51FA/FB PCA Cookbook Order Number 270609

AP-476, How to Implement I2C Serial Communication Order Number 272319
Using Intel MCS® 51 Microcontrollers

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, the FaxBack* service, and Intel’s Brand Products and Applications Support
bulletin board service (BBS). These systems are available 24 hours a day, 7 days a week,
ing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your qu
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, plea
tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe

World Wide Web URL:http://www.intel.com/ URL:http://www.intel.com/ URL:http://www.intel.com/

World Wide Web URL:http://www.intel.com/
design/usb/

URL:http://www.intel.com/
design/usb/

URL:http://www.intel.com/
design/usb/

FaxBack* 800-525-3019 503-264-6835

916-356-3105

+44(0)1793-496646

BBS 503-264-7999

916-356-3600

503-264-7999

916-356-3600

+44(0)1793-432955

Help Desk 800-628-8686
916-356-7999

Please contact your local
distributor.

Please contact your local
distributor.

Literature 800-548-4725 708-296-9333

+81(0)120 47 88 32

+44(0)1793-431155
England

+44(0)1793-421777
France

+44(0)1793-421333
Germany
1-7

8x930Ax, 8x930Hx USER’S MANUAL

and

e char-
k 24

h
t a doc-

e you
of doc-
gs list
ted
number
t doc-
ument
1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL: ht-
tp://www.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, news
USB information at: www.intel.com/design/usb/.

1.4.2 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change notifications, product literature, devic
acteristics, design recommendations, and quality and reliability information from FaxBac
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access wityour
phone. Just dial the telephone number and respond to the system prompts. After you selec
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first tim
use FaxBack, you should order the appropriate subject catalogs to get a complete listing
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalo
the title, status, and order number of each document that has been added, revised, or deledur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog
followed by a zero. For example, for the complete microcontroller and flash catalog, reques
ument number 2; for the daily update to the microcontroller and flash catalog, request doc
number 20.

The following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog

4. Systems catalog

5. Multimedia catalog

6. Multibus and iRMX® firmware catalog and BBS file listings

7. Microprocessor, PCI, and peripheral catalog

8. Quality and reliability and change notification catalog

9. iAL (Intel Architecture Labs) technology catalog
1-8

GUIDE TO THIS MANUAL

load

ty and

 config-
arity, 8

d to the
per-
ccount
1.4.3 Bulletin Board System (BBS)

Intel’s Brand Products and Applications Support bulletin board system (BBS) lets you down
files to your PC. The BBS has the latest ApBUILDER firmware, hypertext manuals and
datasheets, firmware drivers, firmware upgrades, application notes and utilities, and quali
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic
uration support for 1200- through 19200-baud modems. Use these modem settings: no p
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respon
system prompts. During your first session, the system asks you to register with the system o
ator by entering your name and location. The system operator will set up your access a
within 24 hours. At that time, you can access the files on the BBS.

NOTE
In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).
1-9

2
Architectural
Overview

B)
uch as
put

as a

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8x930Ax and 8x930Hx are PC peripheral microcontrollers for Universal Serial Bus (US
applications. These microcontrollers provide the means for connecting PC peripherals s
monitors, keyboards, joysticks, telephones, and modems to USB-equipped personal comers.
The USB material in this document relies heavily on the Universal Serial Bus Specification which
provides a detailed description of the USB system.

In the language of the USB specification, the 8x930Ax and 8x930Hx are USB devices. A USB
device can serve as a function by providing an interface for a PC peripheral, and it can serve
hub by providing USB ports for additional PC peripherals.

The 8x930Ax described in this manual serves as a USB function. The 8x930Hx serves as both a
USB function and as a hub; it supports one embedded function and provides three externaldown-
stream ports. Figure 2-1 depicts the 8x930Ax and 8x930Hx in an example USB system.

Figure 2-1. 8 x930Ax and 8x930Hx in a USB System

Speakers

USB Function

Joystick

USB Function

Digital Camera

PC

USB Hub

USB Function

Host

A4395-02

8x930Hx

Monitor

USB Function

8x930Ax

8x930Ax 8x930Ax8x930Ax

Printer
2-1

8x930Ax, 8x930Hx USER’S MANUAL

Figure 2-2. Functional Block Diagram of the 8 x930

A4340-01

SRC2 (8)

Code Address (24)Code Bus (16)

RAMROM

Watchdog

Timer

Timer/

Counters

PCA

Serial I/O

Port 2

Drivers

P2.7:0

Port 0

Drivers

P0.7:0

Port 3

Drivers

P3.7:0

Port 1

Drivers

P1.7:0

D
at

a
A

dd
re

ss
 (

24
)

D
at

a
B

us
 (

8)
Memory Address (16)

System Bus and I/O Ports
I/O Ports and

Peripheral Signals

SRC1 (8)

IB
 B

us
 (

8)

Peripheral

Interface

Interrupt

Handler

Clock

&

Reset

Bus Interface

Instruction Sequencer

DST (16)

ALU
Data

Memory

Interface

Memory Data (16)

Register

File

USB†

USB Ports

Microcontroller Core

† For details, see the USB module block diagram.
2-2

ARCHITECTURAL OVERVIEW

-
gure
rts,
n with

chi-

nction
s
ary of
umma-
mpo-

f

hubs.

mmary

com-
2.1 PRODUCT OVERVIEW

The 8x930 can be briefly described as an MCS® 251 microcontroller with an on-chip USB mod
ule, and additional pinouts for USB signals. As shown in the functional block diagram (Fi
2-2), the 8x930 consists of a microcontroller core, on-chip ROM (optional) and RAM, I/O po
the on-chip USB module, and on-chip peripherals. The USB module operates in conjunctio
the CPU to provide the capabilities of a USB device.

Table 2-1 lists the on-chip memory options. The on-chip peripherals provide hardware timers,
counters, and a serial I/O port. The 8x930 uses the standard instruction set of the MCS 251 ar
tecture.

2.1.1 8x930Ax Features

The 8x930Ax USB microcontroller contains all the features of the MCS® 251 architecture, plus
it provides a USB interface for a PC peripheral. The 8x930Ax supports all four types of USB data
transfers: control, isochronous, interrupt, and bulk. The user can select the number of fu
endpoint pairs (4 or 6) and whether USB reset is separate from chip reset. Each endpoint pair ha
a transmit FIFO and a receive FIFO data buffer. Table 2-2 on page 2-4 provides a summ
USB features including FIFO sizes and operating rates. Table 2-3 on page 2-5 provides a s
ry of MCS® 251 architecture features. The block diagram in Figure 2-3 shows the main co
nents of the 8x930Ax USB module and how they interface with the CPU.

2.1.2 8x930Hx Features

The 8x930Hx USB microcontroller is similar to the 8x930Ax in that it contains all the features o
the MCS® 251 architecture and provides a USB interface for a PC peripheral. The 8x930Hx also
provides a USB hub capability, permitting the connection of additional PC peripherals or
It provides three external downstream ports and one internal downstream port. The 8x930Hx sup-
ports two hub endpoint pairs and four function endpoint pairs. Each endpoint pair (except hub
endpoint 1) has a transmit FIFO and a receive FIFO. Table 2-2 on page 2-4 provides a su
of USB features including FIFO sizes and operating rates. Table 2-3 on page 2-5 provides a sum-
mary of MCS® 251 architecture features. The block diagram in Figure 2-4 shows the main
ponents of the 8x930Hx USB module and how they interface with the CPU. (The 8x930Hx does
not provide the separate USB reset or the six-endpoint pair options.)

Table 2-1. 8x930 Memory Options

8x930Ax
(Hubless)

8x930Hx
(Hub)

On-chip Memory

ROM
(Kbytes)

RAM
(Bytes)

80930AD 80930HD 0 1024

83930AD 83930HD 8 1024

83930AE 83930HE 16 1024
2-3

8x930Ax, 8x930Hx USER’S MANUAL

ernal
CS
wing

e

e

2.1.3 MCS® 251 Architecture Features

The 8x930 retain all the features of the MCS 251 architecture including the configurable ext
memory bus, four 8-bit I/O ports, on-chip peripherals, and code-compatibility with the M®

251 microcontroller. The features of the MCS 251 architecture are discussed in the follo
paragraphs and summarized in Table 2-2.

The 8x930 stores code and data in a single, linear 16-Mbyte memory space. The usable mmory
space of the 8x930 consists of four 64-Kbyte regions (256 Kbytes). The external bus provides up
to 256 Kbytes of external memory addressability. The special function registers (SFRs) and th

Table 2-2. 8x930 USB Features Summary

8x930Ax 8x930Hx

General USB Features

Complete Universal Serial Bus Specification
rev. 1.0 compatibility

On-chip USB transceivers
Automatic transmit/receive FIFO management
Timebase (crystal/PLL)
USB rate (full speed)
USB rate (low speed)
Low-clock mode
USB interrupt vectors
Suspend/resume
Separate USB and chip resets (2)

Yes

Yes
Yes

6 or 12 MHz
12 Mbps
1.5 Mbps

Yes
3

Yes
Yes

Yes

Yes
Yes

12 MHz
12 Mbps (1)

—
Yes
3

Yes
No

USB Function Features

Function endpoint pairs
Transmit/receive FIFO/ sizes:

Endpoint 0
Endpoints 2, 3
Endpoint 4 (8x930Ax only) (2)
Endpoint 5 (8x930Ax only) (2)
Endpoint 1 (4)

4 or 6 (3)

16 bytes
16 or 32 bytes
16 or 32 bytes

16 bytes
0-1024 bytes

4

16 bytes
16 bytes

—
—

0-1024 bytes

USB Hub Features

External downstream ports
Internal downstream ports
Hub Endpoint 0: Transmit and receive FIFOs
Hub Endpoint 1: One transmit data buffer register

—
—
—
—

3
1

16 bytes
1 byte

NOTES:
1. The 8x930Hx operates at full speed only. Root port (DP0, DM0) data transfers are

always full speed. Data transfer rates on the external downstream ports are matched to
the type of USB device attached (full speed or low speed).

2. Early sample devices did not have this feature.
3. The 8x930Ax can be programmed to have either four or six function endpoint pairs.

Endpoint 2, 3, and 4 FIFOs sizes are 16 bytes for the four endpoint pair (4EPP) option
and 32 bytes for the 6EPP option. Early sample devices did not have this feature.

4. Programmable size.The 4EPP option provides transmit/receive FIFO size options of
256/256, 512/512, 1024/0, or 0/1024 bytes for function endpoint 1. The 6EPP option
supports only 256/256-byte FIFOs for function endpoint 1.
2-4

ARCHITECTURAL OVERVIEW

cription

ands,
tional
ditional
t and

cture
, and
code
e

 or as
orts P0
8 data
r
ntrol

ks to
tor is
ring the
ecial
register file have separate address spaces. Refer to Chapter 3, “Address Spaces” for a des
of the address modes.

Certain instructions in the MCS 251 instruction set operate on 8-bit, 16-bit, or 32-bit oper
providing easier and more efficient programming in high-level languages such as C. Addi
features include the TRAP instruction, a displacement addressing mode, and several con
jump instructions. Chapter 5, “Programming Considerations,” describes the instruction se
compares it with the instruction set for MCS 51 microcontrollers.

You can configure the 8x930 for the binary mode or source mode opcode arrangement. Both
modes execute all of the MCS 51 architecture instructions and all of the MCS 251 archite
instructions. However, source mode is more efficient for MCS 251 architecture instructions
binary mode is more efficient for MCS 51 architecture instructions. In binary mode, object
for an MCS 51 microcontroller runs on the 8x930 without recompiling. For details see “Opcod
Configurations (SRC)” on page 4-12.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal
a special-function signal that supports the external bus or one of the on-chip peripherals. P
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with
bits. (You can also configure the 8x930 to have a 17-bit or an 18-bit external address bus. Refe
to “Configuring the External Memory Interface” on page 4-7. Ports P1 and P3 carry bus-co
and peripheral signals.

The 8x930 has two power-saving modes. In idle mode, the CPU clock is stopped, while cloc
the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscilla
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can b
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 15, “Sp
Operating Modes,” for details on the power-saving modes.

Table 2-3. MCS® 251 Architecture Features

Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits

On-chip ROM 0, 8 or 16 Kbytes
On-chip RAM 1024 bytes
Register file 40 bytes
Eight interrupt vectors
I/O ports Four 8-bit I/O ports
On-chip Peripherals:

Serial I/O port (industry-standard MCS® 51 UART)
Programmable counter array with 5 compare/capture modules
Three general-purpose timer/counters
Hardware watchdog timer

User-selectable configurations: external address range, wait states, page mode
Real-time wait states
Powerdown and idle power-saving modes
Register-based MCS® 251 architecture
Code-compatible with MCS 51 and MCS 251 microcontrollers
2-5

8x930Ax, 8x930Hx USER’S MANUAL

Figure 2-3. 8 x930Ax USB Module Block Diagram

D
P

0

Transceiver

Control

Control

Control

T
ra

ns
m

it/
R

ec
ei

ve
 B

us
FIFOs

D
M

0

A4231-03

D
at

a
B

us

Serial Bus

Interface Engine

(SIE)

Function

Interface Unit

(FIU)

USB

Upstream

Port

To

CPU
2-6

ARCHITECTURAL OVERVIEW

Figure 2-4. 8 x930Hx USB Module Block Diagram

A5102-01

 DP3

 DM3

 DP2

 DM2

 DP1

 D
M

0
 D

P
0

 DM1

Repeater

USB Upstream Port

USB

Downstream

Ports

Serial Bus Interface Engine

(SIE)

 Transceiver

 Transceiver

 Transceiver

Hub

Interface

Unit

(HIU)

Function

Interface

Unit

(FIU)

Control

Control

FIFOs

Data Bus

To

CPU

Transmit/Receive Bus

 Transceiver
2-7

8x930Ax, 8x930Hx USER’S MANUAL

he bus
egister

ingle
nfigure
 In
e fetch
les” on

double

 on-
ll and
Figure 2-5. The CPU

2.2 MICROCONTROLLER CORE

The microcontroller core contains the CPU, the clock and reset unit, the interrupt handler, t
interface, and the peripheral interface. The CPU contains the instruction sequencer, ALU, r
file, and data memory interface.

2.2.1 CPU

Figure 2-5 is a functional block diagram of the CPU (central processor unit). The 8x930 fetches
instructions from on-chip code memory two bytes at a time, or from external memory in s
bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can co
the 8x930 to operate in page mode for accelerated instruction fetches from external memory.
page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetch, th
requires one state time rather than two state times. See “State Time and Peripheral Cyc
page 2-9.

The 8x930 register file has forty registers, which can be accessed as bytes, words, and
words. As in the MCS®51 architecture, registers 0–7 consist of four banks of eight registers each,
where the active bank is selected by the program status word (PSW) for fast context switches.
Refer to Chapter 3, “8x930 Register File” or see Figure 5-2 on page 5-17.

The 8x930 is a single-pipeline machine. When the pipeline is full and code is executing from
chip code memory, an instruction is completed every state time. When the pipeline is fu

A4272-01

SRC2 (8)

Code Address (24)Code Bus (16)

SRC1 (8)

Instruction Sequencer

DST (16)

ALU
Data

Memory

Interface

Register

File

Data Address (24)

Data Bus (8)

Interrupt Handler
2-8

ARCHITECTURAL OVERVIEW

gnal),

 and

n-chip
d

he in-
ause
ull-
 the ex-
or low

-
d once
code is executing from external memory (with no wait states and no extension of the ALE si
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit

Figure 2-6 on page 2-9 shows the internal clock circuitry of the 8x930. The timing waveform at
XTAL1 can be provided by:

• an on-chip oscillator employing an external crystal/resonator connected across XTAL1
XTAL2

• an external frequency source connected to XTAL1

“Clock Sources” on page 14-2 discusses the requirements for external-clock signals and o
oscillators. Power management options – idle, powerdown, and low-clock mode – are discusse
in Chapter 15, “Special Operating Modes.”

Device pins PLLSEL2:0 determine the USB operating rate (full speed or low speed) and t
ternal frequency (FCLK) distributed to the CPU and on-chip peripherals. See Table 2-4. Bec
of its hub capability, the 8x930Hx (including the embedded function) always operates as a f
speed USB device. Root port data transfers are always full speed. Data transfer rates on
ternal downstream ports are matched to the type of USB device attached (i.e., full speed
speed). For full speed operation, the PLL provides the 4X USB sampling rate.

2.2.2.1 State Time and Peripheral Cycles

The basic unit of time for 8x930 microcontrollers is the state time (or state). States are divided
into two phases identified as phase 1 and phase 2. See Figures 2-7 and 2-8. The 8x930 on-chip
peripherals operate on a peripheral cycle, which is six state times. A specific time within a pe
ripheral cycle is denoted by its state and phase. For example, the PCA timer is incremente
each peripheral cycle in phase 2 of state 5 (denoted as S5P2).

Figure 2-6. Clock Circuit

Clock

Generator

A5135-01

XTAL1

XTAL2

FOSC

(6 or 12 MHz)

PCON.0

(Idle Mode)

IDL
PCON.1

(Powerdown)

0

1

PD

÷ 2

1 02
PLLSEL

FCLK

CPU

On-chip

Peripherals

Internal Clock

PCON.5

(Low-clock Mode)

LC

0

1

3 MHz
2-9

8x930Ax, 8x930Hx USER’S MANUAL

re two
 (full

s

n in
ice re-

al Op-

 pin,

refer to
As shown in Table 2-4 and Figure 2-7, when PLLSEL2:0 = 001 or 100 (low speed), there a
TOSC periods per state. As shown in Table 2-4 and Figure 2-8, when PLLSEL2:0 = 110
speed), there is one TOSC period per state. See “Low-clock Mode” below.

As shown in Table 2-4 the internal clock frequency (FCLK) distributed to the CPU and peripheral
(3, 6, or 12 MHz) is a function of PLLSEL2:0 and FOSC. Note that in Figure 2-6, for PLLSEL2:0
= 110 (full speed), the two-to-one divider stage is bypassed and FCLK = FOSC = 12 MHz.

2.2.2.2 Low-clock Mode

A special power-reduction mode (low-clock mode) overrides the timing definitions give
“State Time and Peripheral Cycles” above and Figures 2-7 and Figures 2-8. Following dev
set, the CPU and on-chip peripherals operate in low-clock mode (FCLK = 3 MHz) until the LC bit
in PCON is cleared. During low-clock mode, there are four TOSC periods per state for PLLSEL2:0
= 001 or 100. Low-clock mode does not affect the USB rate. Also see Chapter 15, “Speci
erating Modes.”

2.2.2.3 Reset Unit

The reset unit resets the 8x930 to a known state. A chip reset is initiated by asserting the RST
by a USB-initiated reset, or by allowing the watchdog timer to time out. The 8x930Ax can be pro-
grammed so a USB-initiated reset does not cause a chip reset. For information on resets
Chapter 14, “Minimum Hardware Setup”.

Table 2-4. 8x930 Operating Frequency

Device
PLLSEL2:0

(Pins 43, 42, 44)
(1)

XTAL1
Frequency

 (FOSC)

USB Rate
(2)

Internal
Frequency

(FCLK)
(3)

XTAL1
Clocks per

State
(TOSC/state)

 (5)

Comments

8x930Ax 001 6 Mhz 1.5 Mbps
(Low Speed)

3 Mhz 2 (4) PLL Off

8x930Ax 100 12 Mhz 1.5 Mbps
(Low Speed)

6 Mhz (4) 2 (4) PLL Off

8x930Ax
8x930Hx

110 12 Mhz 12 Mbps
(Full Speed)

12 Mhz (4) 1 PLL On

NOTES:
1. Other PLLSEL2:0 combinations are not valid.
2. The sampling rate is 4X the USB rate.
3. The internal frequency, FCLK = 1/TCLK, is the clock signal distributed to the CPU and the on-chip

peripherals,
4. Following device reset, the CPU and on-chip peripherals operate in low-clock mode (FCLK = 3 Mhz)

until the LC bit in the PCON register is cleared. In low clock mode, there are four TOSC periods per state
for PLLSEL2:0 = 100 or 110. Low-clock mode does not affect the USB rate.

5. The number of XTAL1 clock periods per state (TOSC/state) depends on PLLSEL2:0 and the LC bit.
2-10

ARCHITECTURAL OVERVIEW

Figure 2-7. Clocking Definitions (Low Speed)

Figure 2-8. Clocking Definitions (Full Speed)

TOSC

State 2

P1 P2
State 1

P1 P2
State 3

P1 P2
State 4

P1 P2
State 5

P1 P2

State 6

P1 P2

Peripheral Cycle

2 TOSC = State Time

XTAL1

XTAL1

P1 P2

Phase 1 Phase 2

A2604-02

TOSC

State

P1

Peripheral Cycle

(6 States)

1 TOSC = State Time

XTAL1

XTAL1

P1

A5086-01

P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 2 3 4 5 6

P2
2-11

8x930Ax, 8x930Hx USER’S MANUAL

e
 the in-
n
for a

0H.
 lo-
-

 that
ge 4-9
gura-

em-
dress-

B de-
he

 (pins
or
-
al

SFRs

scribe
pendix
-

e. The

 func-
O

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven maskable sources and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontinues thnor-
mal flow of instructions and branches to a routine that services the source that requested
terrupt. You can enable or disable the interrupts individually (except for TRAP) and you ca
assign one of four priority levels to each interrupt. Refer to Chapter 6, “Interrupt System,”
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, the 8x930 provides on-chip program memory beginning at location FF:000
See Table 2-1 for memory options. Following chip reset, the first instruction is fetched from
cation FF:0000H. (For devices without ROM, instruction fetches are always from external mem
ory. Following chip reset, the first instruction is fetched from the external memory location
corresponds to internal address FF:0000H. Figure 4-5 on page 4-8 and Figure 4-6 on pa
show how addresses in region FF: map into external memory for various memory confi
tions.)

The 8x930 provides on-chip data RAM beginning at location 00:0020H (just above the four banks
of registers R0–R7 which occupy the first 32 bytes of the memory space). See Table 2-1 for m
ory options. Data RAM locations can be accessed with direct, indirect, and displacement ad
ing. Ninety-six of these locations (20H–7FH) are bit addressable.

2.4 UNIVERSAL SERIAL BUS MODULE

The USB module operates in conjunction with the CPU to provide the capabilities of a US
vice. The 8x930Ax USB module provides a function interface for one USB function. T
8x930Hx USB module supports one USB function and in addition provides a USB hub capability.

The 8x930 USB module communicates with the host PC by means of upstream data port 0
DP0, DM0). In addition to the upstream port, the 8x930Hx has three external downstream ports f
bus expansion (pins DP1, DM1, DP2, DM2, DP3, DM3) and an internal downstream port for commu
nicating with the embedded function. The 8x930 provides on-chip transceivers for each extern
USB port.

Operation of the USB module is controlled through the use of special function registers (SFRs).
SFRs associated with the function interface are described in Chapter 7, “USB Function.”
associated with USB hub operations are described in Chapter 8, “USB Hub.” Interrupt SFRs are
described in Chapter 6, “Interrupt System.” Register definition tables in these chapters de
register usage and define the register bits. The register definition tables also appear in Ap
C in alphabetical order. Memory maps of the 8x930Ax and 8x930Hx SFRs are presented in Chap
ter 3, “Address Spaces” and Appendix C.

Data transfers with the host are made to/from endpoint pairs (EPPs) on the USB modul
8x930Hx provides four function endpoint pairs and two hub endpoint pairs. The 8x930Ax can be
programmed to support either four or six function endpoint pairs. Table 2-5 lists the hub and
tion endpoint pairs available on the 8x930Hx along with the associated transmit and receive FIF
data buffers. Except for hub endpoints 0 and 1, Table 2-5 also to applies to the 8x930Ax when the
4EPP option is selected. Table 2-6 lists the endpoint pairs available on the 8x930Ax when the
2-12

ARCHITECTURAL OVERVIEW

air in-

” sec-

“Tim-
6EPP option is selected. The value in the EPINDEX register determines the endpoint p
volved in any given data transfer operation (Tables 2-5 and Table 2-6).

A complete description of the USB can be found in Universal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics
tions of the “Electrical” chapter of the Universal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and
ing Diagram” sections of the same chapter.

Table 2-5. Endpoint Pairs for 8 x930Hx and 8x930Ax (4EPP Option)

 EPINDEX Endpoint Pair Transmit
FIFOs

Receive
FIFOs

FIFO Size
Select (1)

0000 0000 Function Endpoint 0 (Control) 16 bytes 16 bytes XX

0000 0001 Function Endpoint 1 256 bytes 256 bytes 0 0

512 bytes 512 bytes 0 1

1024 bytes 0 bytes 1 0

0 bytes 1024 bytes 1 1

0000 0010 Function Endpoint 2 16 bytes 16 bytes XX

0000 0011 Function Endpoint 3 16 bytes 16 bytes XX

1000 0000 Hub Endpoint 0 (Control) (2) 16 bytes 16 bytes XX

1000 0001 Hub Endpoint 1 (2), (3) N/A N/A XX

NOTE:
1. Bits FFSZ1:0 (TXCON.6:5) specify the size of the transmit and receive FIFOs for function

endpoint 1.
2. Hub endpoints are not applicable to the 8X930Ax.
3. Hub endpoint 1 assembles status-change information in a buffer register (TXDAT) and

transmits it to the host PC. Hub endpoint 1 does not require FIFOs.

Table 2-6. Endpoint Pairs for 8 x930Ax (6EPP Option)

 EPINDEX Endpoint Pair Transmit
FIFOs

Receive
FIFOs

FIFO Size
Select (1)

0000 0000 Function Endpoint 0 (Control) 16 bytes 16 bytes XX

0000 0001 Function Endpoint 1 256 bytes 256 bytes 0 0

0000 0010 Function Endpoint 2 32 bytes 32 bytes XX

0000 0011 Function Endpoint 3 32 bytes 32 bytes XX

0000 0100 Function Endpoint 4 (2) 32 bytes 32 bytes XX

0000 0101 Function Endpoint 5 (2) 16 bytes 16 bytes XX

NOTE:
1. Bits FFSZ1:0 (TXCON.6:5) specify the size of the transmit and receive FIFOs for function

endpoint 1. For the 6EPP option, use FFSZ1:0 = 00.
2. On the 8x930Ax, setting the SIXEPPEN bit in the EPCONFIG register selects the six-

endpoint option (6EPP). Function endpoints 4 and 5 are available only when the 6EPP option
is selected. Early sample devices did not have this feature.
2-13

8x930Ax, 8x930Hx USER’S MANUAL

en the
E), the
mmu-
es the

bulk.

 host

IFOs,
ol
the

onfig-
ceive

have

, and

s not

data
l data

ability.
2.4.1 The 8x930Ax USB Module

Figure 2-3 on page 2-6 shows the main functional blocks of the 8x930Ax USB module and how
they interface with the CPU. The USB function interface manages communications betwe
host PC and the USB function. This interface consists of the serial bus interface engine (SI
function interface unit (FIU), and the transmit and receive FIFOs. The SIE handles the co
nication protocol of the universal serial bus, and the FIU handles data transfers and provid
interface between the SIE and the 8x930Ax CPU.

The 8x930Ax function interface, which can be programmed to have either four or six endpoint
pairs, supports all four types of USB data transfer: control, isochronous, interrupt, and
Function endpoint 1 handles only control data transfers, whereas function endpoints 1 through 5
handle all four data transfer types.

2.4.1.1 Serial Bus Interface Engine (SIE)

The SIE is the USB protocol interpreter for communications between the 8x930Hx and the host
PC over the USB lines. It provides serial-to-parallel conversion for data transfers from the
and parallel-to-serial conversion for data transfers to the host. For additional information on the
SIE, see “SIE Details” on page 7-33.

2.4.1.2 Function Interface Unit (FIU)

The FIU manages data movement within the USB module. It controls the operation of the F
monitors the status of the data transactions, and at the appropriate moment transfers event contr
to the CPU through an interrupt request. The exact nature of a data transaction depends on
type of data transfer and the initial conditions of the transmit and receive FIFOs.

2.4.1.3 Function FIFOs

Each endpoint pair contains a transmit FIFO and a receive FIFO. See Table 2-5 for FIFO c
urations. Transmit FIFOs are written by the CPU, then read by the FIU for transmission. Re
FIFOs are written by the FIU following reception, then read by the CPU. All transmit FIFOs
the same architecture, and all receive FIFOs have the same architecture.

2.4.2 The 8x930Hx USB Module

Figure 2-4 on page 2-7 shows the main functional blocks of the 8x930Hx USB module and how
they interface with CPU. As on the 8X930Ax USB module described above, The SIE, FIU
function FIFOs comprise the function interface. The 8x930Hx function interface is similar to that
of the 8x930Ax. See “The 8x930Ax USB Module” on page 2-14. There are three main differenc-
es: the 8x930Hx function interface is accessed via the internal downstream port, and it doe
have the six-endpoint pair option nor the separate USB reset feature.

The 8x930Hx function interface has four endpoint pairs. It supports all four types of USB
transfer: control, isochronous, interrupt, and bulk. Function endpoint 0 handles only contro
transfers, whereas function endpoints 1, 2, and 3 handle all four data transfer types.

The repeater, the SIE, the hub interface unit (HIU), and the hub FIFOs provide the hub cap
The hub interface has two endpoint pairs. Hub endpoint 0 supports only control data transfers.
Hub endpoint 1 is used to transmit hub status change information to the host PC.
2-14

ARCHITECTURAL OVERVIEW

d hub
e en-

n-
am
rforms

n and

a from
pos-
on.The

fers to
plete

intain
onse to

, “USB

nsfers
ading

ata

rface.
USB re-
 is im-
e is
8x930Hx USB hub operations are divided into two categories: hub repeater operations an
controller operations. The hub controller is split among four modules: the serial bus interfac
gine, the hub interface unit, the hub endpoint 0 transmit and receive FIFOs, and the 8x930Hx
CPU. (See Chapter 8.) The following subsections discuss the role of each module.

2.4.2.1 Hub Repeater

The repeater is the connectivity manager for the 8X930Hx. It detects the connection or disco
nection of devices on the external downstream ports and manages the upstream/downstrecon-
nectivity for data packets. It keeps track of hub port status, manages connectivity, and pe
power management for external down stream ports. The repeater supports both full-speed (12
Mbps) and low-speed (1.5 Mbps) data traffic. The repeater also controls bus fault detectio
recovery. Downstream port control is managed primarily by the HIU.

2.4.2.2 Serial Bus Interface Engine (SIE)

The SIE is the USB communication protocol interpreter. It places data on and accepts dat
the bus. On the 8x930Hx, the hub interface and the function interface share the SIE. This is
sible because the host communicates with only a single device during any one transacti
SIE is permanently attached to the internal downstream port. The SIE provides serial-to-parallel
conversion for data transfers from the host and parallel-to-serial conversion for data trans
the host. For additional information on the SIE, see “SIE Details” on page 7-33. For com
functional, signal, and timing information, refer to the USB Function SIE Interface Specification.

2.4.2.3 Hub Interface Unit (HIU)

The HIU uses special function registers (SFRs) to control the operation of the hub and to ma
the status of the hub and its downstream ports. Control SFRs are set by firmware in resp
USB requests. Status SFRs are set by the repeater hardware. Refer to Chapter 8, “USB Hub”, and
Chapter 9, “USB Programming Models,” for a discussion on the use of the HIU SFRs.

2.4.2.4 Hub FIFOs

Hub FIFOs operate in the same manner as the function interface FIFOs. See Chapter 7
Function.” Hub endpoint 0 handles only control data transfers. It is implemented with 16-byte
transmit and receive FIFO data buffers. The maximum packet size for hub control data tra
is eight bytes. Data received from the USB for endpoint 0 is stored in the receive FIFO for re
by firmware. Data to be sent to the host from hub endpoint 0 is loaded into the transmit FIFO.

Hub endpoint 1 transmits single-byte interrupt tokens to the host and does not have FIFO d
buffers.

2.4.2.5 8x930Hx CPU

The CPU runs the firmware associated with the operation of the hub and the function inte
The CPU reads the receive FIFOs, loads the transmit FIFOs, and decodes and executes
quests for the hub. Control transaction stages are also tracked by firmware. Hub operation
plemented by reading and writing SFRs in the HIU. Operation of the function interfac
implemented by reading and writing SFRs in the FIU.
2-15

8x930Ax, 8x930Hx USER’S MANUAL

 func-
FRs).
able

me of
r gen-
uests.

e
egins
ormal
n oc-
et
hapter

-
 output
 mod-

-

odes.
in

 simul-
e
 of 11
can be
 2, you

e over-
2.5 ON-CHIP PERIPHERALS

The on-chip peripherals reside outside the microcontroller core. They perform specialized
tions in hardware. Firmware controls the peripherals via their special function registers (S
The 8x930 has four peripherals: the watchdog timer, the timer/counter unit, the programm
counter array (PCA), and the serial I/O port.

2.5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter. You can program them for special applications, such as capturing the ti
an event on an external pin, outputting a programmable clock signal on an external pin, o
erating a baud rate for the serial I/O port. Timer/counter events can generate interrupt req

The watchdog timer is a circuit that automatically resets the 8x930 in the event that a hardwar
or firmware operation fails to complete. When enabled by firmware, the watchdog timer b
running, and unless firmware intervenes, the timer overflows and initiates a chip reset. In n
operation, firmware periodically clears the timer register to prevent the reset. If a malfunctio
curs and firmware fails to clear the timer, the resulting chip reset disables the timer and rurns
the system to a known state. The watchdog timer and the timer/counters are described in C
11, “Timer/Counters and Watchdog Timer.”

2.5.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in
put pin; generating an interrupt request when the timer matches a stored value; toggling an
pin when the timer matches a stored value; generating a programmable PWM (pulse width
ulator) signal on an output pin; and serving as a firmware watchdog timer. Chapter 12, “Program
mable Counter Array,” describes this peripheral in detail.

2.5.3 Serial I/O Port

The serial I/O port provides one synchronous and three asynchronous communication m
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one p
and transmits or receives data on another pin.

The asynchronous modes (modes 1–3) are full-duplex (i.e., the port can send and receive
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. Thbaud
rate is generated by the overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame
bits: a start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit
used for parity checking or to specify that the frame contains an address and data. In mode
can use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use th
flow from timer 1 or timer 2 to determine the baud rate.
2-16

ARCHITECTURAL OVERVIEW

onment
elf or a
 another

perat-

Reset
In its asynchronous modes (modes 1–3) the serial port can operate as a slave in an envir
where multiple slaves share a single serial line. It can accept a message intended for its
message that is being broadcast to all of the slaves, and it can ignore a message sent to
slave.

2.6 OPERATING CONDITIONS

The 8x930 is designed for a commercial operating environment and to accommodate the o
ing rates of the USB interface. For detailed specifications, refer to the current 8x930 Universal
Serial Bus Microcontroller datasheet. For USB module operating rates, see “Clock and
Unit” on page 2-9.
2-17

3
Address Spaces

ace, and

chitec-
ing from
CHAPTER 3
ADDRESS SPACES

The 8x930 has three address spaces: a memory space, a special function register (SFR) sp
a register file. This chapter describes these address spaces as they apply to the 8x930. It also dis-
cusses the compatibility of the MCS® 251 architecture and the MCS® 51 architecture in terms of
their address spaces.

3.1 MCS® 251 ARCHITECTURE ADDRESS SPACES

Figure 3-1 shows the memory space, the SFR space, and the register file for MCS 251 ar
ture. (The address spaces are depicted as being eight bytes wide with addresses increas
left to right and from bottom to top.)

Figure 3-1. MCS® 251Architecture Address Spaces

A4100-01

FF:FFFFH

SFR Space

512 Bytes

Memory Address Space

16 Mbytes

00:0000H 0

Register File

64 Bytes

7

63

S:000H

S:1FFH

00:0007H

S:007H
3-1

8x930Ax, 8x930Hx USER’S MANUAL

e

 at lo-
ytes of

file are
anks,

space.

resses
he
mem-
ge

CS

lity of

cations
nly be
te code
with the
the

 eight

s spaces
It is convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyt
regions, numbered 00: to FF:.

NOTE
The memory space in the 8x930 is unsegmented. The 64-Kbyte “regions” 00:,
01:, ..., FF: are introduced only as a convenience for discussions. Addressing in
the 8x930 is linear; there are no segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at location 00:0000H. The
first 32 bytes (00:0000H–00:001FH) provide storage for a part of the register file. The on-chip,
general-purpose data RAM resides just above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning
cation FF:0000H. Following device reset, execution begins at this address. The top eight b
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register
numbered decimally from 0 to 63. Locations 0–7 represent one of four switchable register b
each having eight registers. The 32 bytes required for these banks occupy locations 00:0000H–
00:001FH in the memory space. Register file locations 8–63 do not appear in the memory
See “8x930 Register File” on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 eight-bit special function registers with add
S:000H–S:1FFH. SFRs implemented in the 8x930 are shown in Table 3-6 on page 3-10. In t
MCS 251 architecture, use the prefix “S:” with SFR addresses to distinguish them from the
ory space addresses 00:0000H–00:01FFH. See “Special Function Registers (SFRs)” on pa3-15
for details on the SFR space.

3.1.1 Compatibility with the MCS ® 51 Architecture

The address spaces in the MCS 51 architecture† are mapped into the address spaces in the M
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 5, “Programming Considerations” discusses the compatibi
the two instruction sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory lo
00H–7FH can be addressed directly and indirectly. Internal data locations 80H–FFH can o
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kby
memory has a separate memory space. Data in the code memory can be accessed only
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with
MOVX instruction.

The register file (registers R0–R7) comprises four switchable register banks, each having
registers. The 32 bytes required for the four banks occupy locations 00H–1FH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the addres
in the MCS 251 architecture; details are listed in Table 3-1.

† MCS®51 Microcontroller Family User’s Manual (Order Number: 272383)
3-2

ADDRESS SPACES

 code
cted to
-

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are dire
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans
parent to the user; code executes just as before, without modification.

Figure 3-2. Address Spaces for the MCS ® 51 Architecture

External Data

(MOVX)

FFFFH

0000H

A4139-01

00H

FFH

80H
7FH

Code

(MOVC)

Internal Data

(direct, indirect)

Register File

SFRs

(direct)

Internal Data

(indirect)

0000H

FFFFH

80H

FFH

R7R0
3-3

8x930Ax, 8x930Hx USER’S MANUAL
Figure 3-3. Address Space Mappings MCS ® 51 Architecture to MCS ® 251 Architecture

Table 3-1. Address Mappings

Memory Type

MCS® 51 Architecture MCS ® 251 Architecture

Size Location Data
Addressing Location

Code 64 Kbytes 0000H–FFFFH Indirect using
MOVC instr. FF:0000H–FF:FFFFH

External Data 64 Kbytes 0000H–FFFFH Indirect using
MOVX instr. 01:0000H–01:FFFFH

Internal Data
128 bytes 00H–7FH Direct, Indirect 00:0000H–00:007FH

128 bytes 80H–FFH Indirect 00:0080H–00:00FFH

SFRs 128 bytes S:80H–S:FFH Direct S:080H–S:0FFH

Register File 8 bytes R0–R7 Register R0–R7

FFH

SFR Space

512 Bytes

Memory Address Space

16 Mbytes

S:000H

MCS 51 Architecture

Code Memory

MCS 51 Architecture

External Data Memory

MCS 51 Architecture

Internal Data Memory

FFFFH

00H

0000H

FFFFH

0000H

MCS 51 Architecture

SFRs

00:0000H

01:0000H

02:0000H

FF:0000H

A4133-01

S:100H

S:1FFH

8

Register File

64 Bytes

MCS 51 Architecture R. F.00

63

S:07FH
80H

FFH

7

3-4

ADDRESS SPACES

-
gister
The re-
e 3-3.
 51

rchi-
entical

ed to
archi-
per
ions in

ace of

ad-
S 251
side in
pped

a
e to the

ber of

evice

uture
e the

nfigu-

 of mem-
 RAM
The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory re
gion specified by bits 16–23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as re
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-12).
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figur
You can change this mapping by writing a different value to DPXL. A mapping of the MCS
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 a
tecture provides complete run-time compatibility because the lower 16 address bits are id
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (00H-FFH) are mapp
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51
tecture, the lower 128 bytes (00H-7FH) are directly and indirectly addressable; however the up
128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all locat
region 00: are accessible by direct, indirect, and displacement addressing (see “8x930 Memory
Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR sp
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com-
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit
dressing). The SFR addresses are unchanged in the new architecture. In the MC
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) re
the register file for high performance. However, to maintain compatibility, they are also ma
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8x930 MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8x930 microcontroller. The usable memory
space of the 8x930 consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can execute
from all four regions; code execution begins at FF:0000H. Regions 02:-FD are reserved. Reding
a location in the reserved area returns an unspecified value. Firmware can execute a writ
reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum num
external address lines is 18, which limits external memory to a maximum of four regions (256
Kbytes). See “Configuring the External Memory Interface” on page 4-7, and “External Memory
Design Examples” on page 16-17.

Locations FF:FFF8H–FF:FFFFH are reserved for the configuration array (see Chapter 4, “D
Configuration”). The two configuration bytes for the 8x930 are accessed at locations FF:FFF8H
and FF:FFF9H; locations FF:FFFAH–FF:FFFFH are reserved for configuration bytes in f
products. Do not attempt to execute code from locations FF:FFF8H–FF:FFFFH. Also, se
caution on page 4-3 regarding execution of code from locations immediately below the co
ration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose
(00:0020H–00:007FH) are bit addressable. Chapter 5, “Programming Considerations,” discusses
addressing modes.
3-5

8x930Ax, 8x930Hx USER’S MANUAL

Figure 3-4. 8 x930 Address Space

A4385-01

01:FFFFH

FE:FFFFH

FF:FFFFH

01:0000H

FE:0000H

FF:0000H

Memory Address Space

16 Mbytes

00:0080H

00:0020H
00:007FH

00:0000H 00:001FH

00:FFFFH

Indirect and

Displacement

Addressing

(16 Mbytes)

Direct Addressing

(64 Kbytes)

Bit Addressing

(96 Bytes)Register Addressing

(32 Bytes)

Regions 02–FD

are Reserved
3-6

ADDRESS SPACES

Figure 3-5. Hardware Implementation of the 8 x930 Address Space

A5209-01

01:FFFFH

FE:FFFFH

FF:FFF7H

01:0000H

FE:0000H

FF:0000H

External Memory

External Memory

Registers R0-R7

External Memory

00:0000H

00:FFFFH

On-chip ROM

8 or 16 Kbytes

On-chip RAM

1024 Bytes

External Memory

† Eight-byte configuration array (FF:FFF8H - FF:FFFFH)

†† Four banks of registers R0-R7 (32 bytes, 00:0000H - 00:001FH)

†

††

Regions 02–FD

are Reserved
3-7

8x930Ax, 8x930Hx USER’S MANUAL

rnal

m on-
ations

FF:.
e. On-
 data
cution

nly if

p code
 code
Figure 3-5 shows how areas of the memory space are implemented by on-chip RAM and exte
memory. The first 32 bytes of on-chip RAM store banks 0–3 of the register file (see “8x930 Reg-
ister File” on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM provides general data storage (Figure 3-5). Instructions cannot execute fro
chip data RAM. The data is accessible by direct, indirect, and displacement addressing. Loc
00:0020H–00:007FH are also bit addressable.

3.2.2 On-chip Code Memory

The 8x930 is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region
(Figure 3-5). Table 2-1 on page 2-3 lists the amount of on-chip code memory for each devic
chip ROM is intended primarily for code storage, although its contents can also be read as
with the indirect and displacement addressing modes. Following a chip reset, program exe
begins at FF:0000H. Chapter 17, “Verifying Nonvolatile Memory,” describes the procedure for
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM o
EA# = 1. For EA# = 0, a code fetch in this address range accesses external memory. The value of
EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chi
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of
from on-chip memory and external memory.

NOTE
If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:1FF8H–FF:1FFFH for 8 Kbytes, FF:3FF8H–FF:3FFFH for 16
Kbytes). Because of its pipeline capability, the 8x930 may attempt to prefetch
code from external memory (at an address above FF:1FFFH/ FF:3FFFH) and
thereby disrupt I/O ports 0 and 2. Fetching code constants from these eight
bytes does not affect ports 0 and 2.

If your program executes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. As the 8x930 fetches
bytes above the top address in the on-chip ROM, code fetches automatically
become external bus cycles. In other words, the rollover from on-chip ROM to
external code memory is transparent to the user.

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times

On-chip Code Memory 1

External Memory (page mode) 2

External Memory (nonpage mode) 4
3-8

ADDRESS SPACES

of the
a

g
t hold

n

eferred

ted as

These

ed

, as il-

ddress
cessi-
le 3-3.

d
d.
3.2.2.1 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half
on-chip code memory can also be read as data at locations at the top of region 00: (see “Mpping
On-chip Code Memory to Data Memory (EMAP#)” on page 4-14). That is, locations FF:2000H–
FF:3FFFH can also be accessed at locations 00:E000H–00:FFFFH. This is useful for accessin
code constants stored in ROM. Note, however, that all of the following three conditions mus
for this mapping to be effective:

• The device is configured with EMAP# = 0 in the UCONFIG1 register (See Figure 4-3 o
page 4-5).

• EA# = 1.

• The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are r
to external memory.

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemen
external memory (Figure 3-5). For discussions of external memory, see “Configuring the External
Memory Interface” on page 4-7, and Chapter 16, “External Memory Interface.”

3.3 8x930 REGISTER FILE

The 8x930 register file consists of 40 locations: 0–31 and 56–63, as shown in Figure 3-6.
locations are accessible as bytes, words, and dwords, as described in “Byte, Word, and Dword
Registers” on page 3-12.” Several locations are dedicated to special registers (see “Dedicat
Registers” on page 3-12); the remainder are general-purpose registers.

Register file locations 0–7 actually consist of four switchable banks of eight registers each
lustrated in Figure 3-7 on page 3-11. The four banks are implemented as the first 32 bytes of on-
chip RAM and are always accessible as locations 00:0000H–00:001FH in the memory a
space.† Only one of the four banks is accessible via the register file at a given time. The ac
ble, or “active,” bank is selected by bits RS1 and RS0 in the PSW register, as shown in Tab
(The PSW is described in “Program Status Words” on page 5-15.”) This bank selection can be
used for fast context switches.

Register file locations 8–31 and 56–63 are always accessible. These locations are implemente
as registers in the CPU. Register file locations 32–55 are reserved and cannot be accesse

† Because these locations are dedicated to the register file, they are not considered a part of the general-purpose,
1-Kbyte, on-chip RAM (locations 00:0020H–00:041FH).
3-9

8x930Ax, 8x930Hx USER’S MANUAL

Figure 3-6. The Register File

A4099-01

DR4DR0

DR12DR8

15141312111098

2322212019181716

3130292827262524

Locations 32-55 are Reserved

6362616059585756

R7R6R5R4R3R2R1R0

R15R14R13R12R11R10R9R8

DR20DR16

DR28DR24

WR6WR4WR2WR0

WR14WR12WR10WR8

WR22WR20WR18WR16

WR30WR28WR26WR24

DR60 = SPXDR56 = DPX

Dword Registers

Word Registers

Byte Registers

Register File

76543210

76543210

Banks 0-3

Note: R10 = B

 R11 = ACC

3-10

ADDRESS SPACES

Figure 3-7. Register File Locations 0–7

Table 3-3. Register Bank Selection

Bank Address Range
PSW Selection Bits

RS1 RS0

Bank 0 00H–07H 0 0

Bank 1 08H–0FH 0 1

Bank 2 10H–17H 1 0

Bank 3 18H–1FH 1 1

A4215-01

Register File

0 1 2 3 4 5 6 7
8

63

Memory Address Space

FF:FFFFH

00:0020H

18H 1FH
10H 17H
08H 0FH
00H 07H

Banks 0–3

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7PSW bits RS1:0

select one bank

to be accessed via

the register file.

Banks 0–3

accessible

in memory

address space
3-11

8x930Ax, 8x930Hx USER’S MANUAL

nd/or a
d byte

ressable
ad-
ise the

L
 of DPX

ed

e as
h

ne state

r data
n
MCS

r
3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on its location in the register file, a register is addressable as a byte, a word, a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbere
location. For example:

R4 is the byte register consisting of location 4.

WR4 is the word register consisting of registers 4 and 5.

DR4 is the dword register consisting of registers 4–7.

Locations R0–R15 are addressable as bytes, words, or dwords. Locations 16–31 are add
only as words or dwords. Locations 56–63 are addressable only as dwords. Registers are
dressed only by the names shown in Figure 3-6 — except for the 32 registers that compr
four banks of registers R0–R7, which can also be accessed as locations 00:0000H–00:001FH in
the memory space.

3.4.1 Dedicated Registers

The register file has four dedicated registers:

• R10 is the B-register

• R11 is the accumulator (ACC)

• DR56 is the extended data pointer, DPX

• DR60 is the extended stack pointer, SPX

These registers are located in the register file; however, R10; R11; the DPXL, DPH, and DP
bytes in DR56; and the SPH and SP bytes in DR60 are also accessible as SFRs. The bytes
and SPX can be accessed in the register file only by addressing the dword registers. The dedicated
registers in the register file and their corresponding SFRs are illustrated in Figure 3-8 and list
in Table 3-4.

3.4.1.1 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR spac
ACC at S:E0H (Figure 3-8). The B register, used in multiplies and divides, is register R10, whic
is also accessible in the SFR space as B at S:F0H. Accessing ACC or B as a register is o
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register fo
moves and calculations. However, in the MCS 251 architecture, any of registers R1–R15 ca
serve for these tasks†. As a result, the accumulator does not play the central role that it has in
51 microcontrollers.

† Bits in the PSW and PSW1 registers reflect the status of the accumulator. There are no equivalent status indicators fo
the other registers.
3-12

ADDRESS SPACES

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs

R11, Accumulator, ACC

DR60 = Extended Stack Pointer, SPX
63626160

S:81HSP
Stack Pointer

Register File SFRs

Stack Pointer, High S:BEH

DR56 = Extended Data Pointer, DPX

59585756

S:82HDPL
Data Pointer, Low

Data Pointer Extended, Low

Data Pointer, High S:83H

DPXL

R10, B Register

ACC

B S:F0H

S:E0H

S:85H

B

DPH DPLDPXL

ACC

SPH SP

SPH

A4152-02

DPH
3-13

8x930Ax, 8x930Hx USER’S MANUAL

f

er, in-
er.

e 64-

 mem-

it

H can

 the
3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-8). The lower three bytes o
DPX (DPL, DPH, DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer
DPTR. While instructions in the MCS 51 architecture always use DPTR as the data point
structions in the MCS 251 architecture can use any word or dword register as a data point

DPXL, the byte in location 57, specifies the region of memory (00:–FF:) that maps into th
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external
ory. The reset value of DPXL is 01H.

3.4.1.3 Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (Figure 3-8). The byte at location 63 is the 8-b
stack pointer, SP, in the MCS 51 architecture. The byte at location 62 is the stack pointer high,
SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SP
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve
stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs

 Name Mnemonic Reg. Location Mnemonic Address

Stack
Pointer
(SPX)

— —

DR60

60 — —

— — 61 — —

Stack Pointer, High SPH 62 SPH S:BEH

Stack Pointer, Low SP 63 SP S:81H

Data
Pointer
(DPX)

— —

DR56

56 — —

Data Pointer Extended, Low DPXL 57 DPXL S:85H

DPTR
Data Pointer, High DPH 58 DPH S:83H

Data Pointer, Low DPL 59 DPL S:82H

Accumulator (A Register) A R11 11 ACC S:E0H

B Register B R10 10 B S:F0H
3-14

ADDRESS SPACES

nd the

e reset

imple-
 loca-
ation

tions

ecifies
dexed

 There
ccessed
rt num-
-23.

space.
3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in the microcontroller core, the USB module, a
on-chip peripherals. Memory maps showing the location of all the 8x930Ax and 8x930Hx SFRs
are presented in Tables 3-5 and Tables 3-6. The contents of each register following devic
is given. An “x” indicates the bit value following reset is indeterminate.

Blank locations in Tables 3-5 and 3-6 and locations below S:80H and above S:FFH are un
mented, i.e., no register exists. If an instruction attempts to write to an unimplemented SFR
tion, the instruction executes, but nothing is actually written. If an unimplemented SFR loc
is read, it returns an unspecified value.

Endpoint-indexed SFRs are implemented as banks of registers similar to register file loca
R0-R7. There is a set or bank of registers for each endpoint pair. Endpoint-indexed SFRs are ac-
cessed by means of the SFR address and an index value. The EPINDEX register sp
hub/function and the endpoint number (which serves as the index value). See “Endpoint-in
SFRs” on page 7-3 and “Hub Endpoint Indexing Using EPINDEX” on page 8-11.

Port-indexed SFRs (HPCON, HPSC, and HPSTST) are implemented in a similar manner.
is a set or bank of these registers for each USB downstream port. Port-indexed SFRs are a
by means of the SFR address and an index value. The HPINDEX register contains the po
ber which serves as the index value. See “Hub Port Indexing Using HPINDEX” on page 8

SFR addresses are preceded by “S:” to differentiate them from addresses in the memory

Tables describing the SFRs are presented in alphabetical order in Appendix C.

Table 3-7 through Table 3-14 list the SFRs by functional category.
Table 3-7 — Core SFRs

Table 3-8 — Interrupt System SFRs

Table 3-9 — I/O Port SFRs

Table 3-10 — Serial I/O SFRs

Table 3-11 — USB Function SFRs

Table 3-12 — USB Hub SFRs

Table 3-13 — Timer/Counter and Watchdog Timer SFRs

Table 3-14 — Programmable Counter Array (PCA) SFRs

NOTE
SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.
3-15

8x930Ax, 8x930Hx USER’S MANUAL
Table 3-5. 8x930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH
00000000

CCAP0H
xxxxxxxx

CCAP1H
xxxxxxxx

CCAP2H
xxxxxxxx

CCAP3H
xxxxxxxx

CCAP4H
xxxxxxxx

FF

F0 B
00000000

EPINDEX
1xxxx000

TXSTAT
00000000

TXDAT
xxxxxxxx

TXCON
000x0100†

TXFLG
00xx1000

TXCNTL
00000000†

TXCNTH
xxxxxx00

F7

E8 CL
00000000

CCAP0L
xxxxxxxx

CCAP1L
xxxxxxxx

CCAP2L
xxxxxxxx

CCAP3L
xxxxxxxx

CCAP4L
xxxxxxxx

EF

E0 ACC
00000000

EPCON
00x10000†

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0x000100

RXFLG
00xx1000

RXCNTL
00000000†

RXCNTH
xxxxxx00

E7

D8 CCON
00x00000

CMOD
00xxx000

CCAPM0
x0000000

CCAPM1
x0000000

CCAPM2
x0000000

CCAPM3
x0000000

CCAPM4
x0000000

PCON1
xxx00000

DF

D0 PSW
00000000

PSW1
00000000

SOFL
00000000

SOFH
00000000

D7

C8 T2CON
00000000

T2MOD
xxxxxx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

CF

C0 FIFLG
00000000

FIFLG1
00000000

EPCONFIG
xxxxxxx0

C7

B8 IPL0
x0000000

SADEN
00000000

SPH
0000000

BF

B0 P3
11111111

IEN1
xxxx0000

IPL1
x0000000

IPH1
x0000000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

AF

A0 P2
11111111

FIE
00000000

FIE1
00000000

WDTRST
xxxxxxxx

WCON
xxxxxx00

A7

98 SCON
00000000

SBUF
xxxxxxxx

9F

90 P1
11111111

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

DPXL
00000001

PCON
00XX0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs Endpoint-indexed SFRs

† For EPCON, TXCON, TXCNTL, and RXCNTL, the reset value depends on the endpoint pair selected.
Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”
3-16

ADDRESS SPACES

Table 3-6. 8X930Hx SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH
00000000

CCAP0H
xxxxxxxx

CCAP1H
xxxxxxxx

CCAP2H
xxxxxxxx

CCAP3H
xxxxxxxx

CCAP4H
xxxxxxxx

FF

F0 B
00000000

EPINDEX
1xxxxx00

TXSTAT
00000000

TXDAT††

xxxxxxxx†
TXCON
000x0100†

TXFLG
00xx1000

TXCNTL
00000000†

TXCNTH
xxxxxx00

F7

E8 HIFLG
0xxxxx00

CL
00000000

CCAP0L
xxxxxxxx

CCAP1L
xxxxxxxx

CCAP2L
xxxxxxxx

CCAP3L
xxxxxxxx

CCAP4L
xxxxxxxx

EF

E0 ACC
00000000

EPCON
00x10000†

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0x000100

RXFLG
00xx1000

RXCNTL
00000000†

RXCNTH
xxxxxx00

E7

D8 CCON
00x00000

CMOD
00xxx000

CCAPM0
x0000000

CCAPM1
x0000000

CCAPM2
x0000000

CCAPM3
x0000000

CCAPM4
x0000000

PCON1
xxx00000

DF

D0 PSW
00000000

PSW1
00000000

SOFL
00000000

SOFH
00000000

HPINDEX
xxxxx000

HPSC
xxx00000

HPSTAT
0x000100

D7

C8 T2CON
00000000

T2MOD
xxxxxx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

HPCON
xxxxx000

CF

C0 FIFLG
00000000

C7

B8 IPL0
x0000000

SADEN
00000000

SPH
0000000

BF

B0 P3
11111111

IEN1
xxxxx000

IPL1
x0000000

IPH1
x0000000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

HSTAT
x0000000

AF

A0 P2
11111111

HIE
0xxxxx00

FIE
00000000

WDTRST
xxxxxxxx

WCON
xxxxxx00

A7

98 SCON
00000000

SBUF
xxxxxxxx

HPPWR
xxx1000x

9F

90 P1
11111111

HADDR
00000000

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

DPXL
00000001

PCON
00XX0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs Port-indexed SFRs

Endpoint-indexed SFRs

† For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

†† For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate
TXDAT register definition table is provided for this endpoint (see Chapter 8, “USB Hub.”)
3-17

8x930Ax, 8x930Hx USER’S MANUAL

Table 3-7. Core SFRs

Mnemonic Name Address

ACC† Accumulator S:E0H

B† B Register S:F0H

PSW Program Status Word S:D0H

PSW1 Program Status Word 1 S:D1H

SP† Stack Pointer – LSB of SPX S:81H

SPH† Stack Pointer High – MSB of SPX S:BEH

DPTR† Data Pointer (2 bytes) —

DPL† Low Byte of DPTR S:82H

DPH† High Byte of DPTR S:83H

DPXL† Data Pointer Extended, Low S:85H

PCON Power Control S:87H

PCON1 USB Power Control. S:DFH

WCON Wait State Control Register S:A7H

† These SFRs can also be accessed by their corresponding registers in the register
file (see Table 3-4).

Table 3-8. Interrupt System SFRs

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. S:A2H

FIE1 USB Function Interrupt Enable Register. S:A3H

FIFLG USB Function Interrupt Flag Register. S:C0H

FIFLG1 USB Function Interrupt Flag Register. S:C1H

HIE Hub Interrupt Enable Register. S:A1H

HIFLG Hub Interrupt Flag Register. S:E8H

IEN0 Interrupt Enable Register 0. S:A8H

IEN1 Interrupt Enable Register1. S:B1H

IPL0 Interrupt Priority Low Register 0. S:B8H

IPH0 Interrupt Priority High Register 0. S:B7H

IPL1 Interrupt Priority Low Register 1. S:B2H

IPH1 Interrupt Priority High Register 1. S:B3H

SOFH Start of Frame High Register. S:D3H

SOFL Start of Frame Low Register. S:D2H
3-18

ADDRESS SPACES

Table 3-9. I/O Port SFRs

Mnemonic Name Address

P0 Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:A0H

P3 Port 3 S:B0H

Table 3-10. Serial I/O SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SADDR Slave Address S:A9H

Table 3-11. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H

EPCONFIG Endpoint Configuration Register S:C7H

EPINDEX Endpoint Index Register. S:F1H

FADDR Function Address Register. S:8FH

RXCNTH Receive FIFO Byte-Count High Register. S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. S:E6H

RXCON Receive FIFO Control Register. S:E4H

RXDAT Receive FIFO Data Register. S:E3H

RXFLG Receive FIFO Flag Register. S:E5H

RXSTAT Endpoint Receive Status Register. S:E2H

TXCNTH Transmit Count High Register. S:F7H

TXCNTL Transmit Count Low Register. S:F6H

TXCON Transmit FIFO Control Register. S:F4H

TXDAT Transmit FIFO Data Register. S:F3H

TXFLG Transmit Flag Register. S:F5H

TXSTAT Endpoint Transmit Status Register. S:FAH
3-19

8x930Ax, 8x930Hx USER’S MANUAL

Table 3-12. USB Hub SFRs

Mnemonic Name Address

HADDR Hub Address Register. S:97H

HPCON Hub Port Control. S:CFH

HPINDEX Hub Port Index Register. S:D4H

HPPWR Hub Port Power Control. S:9AH

HPSC Hub Port Status Change. S:D5H

HPSTAT Hub Port Status. S:D7H

HSTAT Hub Status and Configuration. S:AEH

Table 3-13. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TL0 Timer/Counter 0 Low Byte S:8AH

TH0 Timer/Counter 0 High Byte S:8CH

TL1 Timer/Counter 1 Low Byte S:8BH

TH1 Timer/Counter 1 High Byte S:8DH

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:88H

TMOD Timer/Counter 0 and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:C8H

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H
3-20

ADDRESS SPACES
Table 3-14. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:D8H

CMOD PCA Timer/Counter Mode S:D9H

CCAPM0 PCA Timer/Counter Mode 0 S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAP0L PCA Compare/Capture Module 0 Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAP0H PCA Compare/Capture Module 0 High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH

CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH
3-21

4
Device Configuration

 re-

, and

ration

Mem-

d in
tes

ory
omer-

array

4-4.

tion is
ation
CHAPTER 4
DEVICE CONFIGURATION

The 8x930 provides design flexibility by configuring certain operating features during device
set. These features fall into the following categories:

• external memory interface (page mode, address bits, wait states, range for RD#, WR#
PSEN#)

• source mode/binary mode opcodes

• selection of bytes stored on the stack by an interrupt

• mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresses bus (256 Kbyte external address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of device configuration. It describes the configu
bytes and provides information to aid you in selecting a suitable configuration for your applica-
tion. It discusses the choices involved in configuring the external memory interface and shows
how the internal memory space maps into external memory. See “Configuring the External
ory Interface” on page 4-7. “Opcode Configurations (SRC)” on page 4-12 discusses the choice
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the 8x930 is established by the reset routine based on information store
configuration bytes. The 8x930 stores configuration information in two user configuration by
(UCONFIG0 and UCONFIG1) located in code memory. Devices with no on-chip code mem
fetch configuration data from external memory. Factory programmed ROM devices use cust
provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8x930 reserves the top eight bytes of the memory address space (FF:FFF8H–FF:FFFFH) for
an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration
are assigned to the two configuration bytes UCONFIG0 (FF:FFF8H) and UCONFIG1
(FF:FFF9H). Bit definitions of UCONFIG0 and UCONFIG1 are provided in Figures 4-3 and
The upper six bytes of the configuration array are reserved for future use.

When EA# = 1, the 8x930 obtains configuration information at reset from on-chip nonvolatile
memory at addresses FF:FFF8H and FF:FFF9H. For ROM devices, configuration informa
entered at these addresses during fabrication. The user can verify configuration inform
stored on-chip using the procedures presented in Chapter 17, “Verifying Nonvolatile Memory.”
4-1

8x930Ax, 8x930Hx USER’S MANUAL

xter-
n in an
l code

F9H.
For devices without on-chip program memory, configuration information is accessed from e
nal memory using these same addresses. The designer must store configuration informatio
eight-byte configuration array located at the highest addresses implemented in externa
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontroller obtains configuration
information at reset from external memory using internal addresses FF:FFF8H and FF:FF

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array

Size of External
Address Bus

(Bits)

Address of
Configuration Array on

External Bus (2)

Address of
Configuration Bytes
on External Bus (1)

16 FFF8H–FFFFH UCONFIG1: FFF9H
 UCONFIG0: FFF8H

17 1FFF8H–1FFFFH UCONFIG1: 1FFF9H
 UCONFIG0: 1FFF8H

18 3FFF8H–3FFFFH UCONFIG1: 3FFF9H
 UCONFIG0: 3FFF8H

NOTES:
1. When EA# = 0, the reset routine retrieves UCONFIG0 and UCONFIG1 from

external memory using the internal addresses FF:FFF8H and FF:FFF9H
which appear on the external address bus (A17, A16, A15:0) as shown in this
table. See Figure 4-2.

2. The upper six bytes of the configuration array are reserved for future use.

 A4393-01

16-Kbyte

Devices

For EA# = 1, configuration information is obtained from the

on-chip configuration array located in non-volatile memory

at addresses FF:FFF8H - FF:FFFFH.

8-Kbyte

Devices

FF:0000H FF:0000H

FF:FFFFH

FF:FFFEH

FF:FFFDH

FF:FFFCH

FF:FFFBH

FF:FFFAH

FF:FFF9H

FF:FFF8H

UCONFIG1

UCONFIG0

Reserved

Detail. On-chip configuration array.

FF:FF:
4-2

DEVICE CONFIGURATION

Figure 4-2. Configuration Array (External)

CAUTION
The eight highest addresses in the memory address space (FF:FFF8H–
FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external memory, so the same restrictions apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below the
configuration array, to continue execution in other areas of memory.

 A4394-01

1FF9H
1FF8H

8 Kbytes

3FF9H
3FF8H

16 Kbytes

7FF9H
7FF8H

32 Kbytes
FFF9H
FFF8H

64 Kbytes

1:FFF9H
1:FFF8H

128 Kbytes
3:FFF9H

256 Kbytes

3:FFF8H
x:xFFFH

x:xFFEH

x:xFFDH

x:xFFCH

x:xFFBH

x:xFFAH

x:xFF9H

x:xFF8H

UCONFIG1

UCONFIG0

Reserved

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIG0 in external memory for

several memory implementations. For EA# = 0, configuration information is obtained from configuration bytes

in external memory using internal addresses FF:FFF8H and FF:FFF9H. In external memory, the eight-byte

configuration array is located at the highest addresses implemented.

Detail.

Configuration array in external memory.
4-3

8x930Ax, 8x930Hx USER’S MANUAL

tes

#, WR,

e
4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration by
UCONFIG0 and UCONFIG1 (Figures 4-3 and 4-4):

• SRC. Selects source mode or binary mode opcode configuration.

• INTR. Selects the bytes pushed onto the stack by interrupts.

• EMAP#. Maps on-chip code memory (16 Kbyte devices only) to memory region 00:.

The following bits configure the external memory interface:

• PAGE#. Selects page/nonpage mode and specifies the data port.

• RD1:0. Selects the number of external address bus pins and the address range for RD
and PSEN#.

• XALE#. Extends the ALE pulse.

• WSA1:0#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01:.

• WSB1:0#. Selects 0, 1, 2, or 3 wait states for memory region 01:.

• EMAP#. Affects the external memory interface in that, when asserted, addresses in th
range 00:E000H–00:FFFFH access on-chip memory.
4-4

DEVICE CONFIGURATION

Figure 4-3. User Configuration Byte 0 (UCONFIG0)

UCONFIG0
(1), (3)

Address: FF:FFF8H (2)

7 0

— WSA1# WSA0# XALE# RD1 RD0 PAGE# SRC

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

Reserved for internal or future use. Set this bit when programming
UCONFIG0.

6:5 WSA1:0# Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSA1# WSA0#
0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = TOSC.
Clear this bit for ALE = 3TOSC (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on P0.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on P0.

0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51
microcontrollers).

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8x930.
2. Address. UCONFIG0 is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930

fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size
and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.
4-5

8x930Ax, 8x930Hx USER’S MANUAL

Figure 4-4. User Configuration Byte 1 (UCONFIG1)

UCONFIG1
(1),(3)

Address: FF:FFF9H (2)

7 0

— — — INTR — WSB1# WSB0# EMAP#

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Reserved for internal or future use. Set these bits when programming
UCONFIG1.

4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

3 — Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0#

External Wait State B (Region 01:):

WSB1# WSB0#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H–FF:3FFFH to 00:E000H–00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H–00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)” on page 14.

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8x930.
2. Address. UCONFIG1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the

8x930 fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory depends
on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.
4-6

DEVICE CONFIGURATION

. The

 deter-

.

cture
mes

rnal

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface
configuration bits described here determine the following interface features:

• page mode or nonpage mode (PAGE#)

• the number of external address pins — 16, 17, or 18 (RD1:0)

• the memory regions assigned to the read signals RD# and PSEN# (RD1:0)

• the external wait states (WSA1:0#, WSB1:0#, XALE#)

• mapping a portion of on-chip code memory to data memory (EMAP#)

4.4.1 Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIG0.1) selects page-mode or nonpage-mode code fetches and
mines whether data is transmitted on P2 or P0. See Figure 16-1 on page 16-1 and “Page Mode
Bus Cycles” on page 16-6 for a description of the bus structure and page mode operation

• Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 archite
with data D7:0 multiplexed with A7:0 on P0. External code fetches require two state ti
(4TOSC).

• Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, exte
code fetches require only one state time (2TOSC).

Table 4-2. Memory Signal Selections (RD1:0)

RD1:0 A17/P1.7/
CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features

0 0 A17 A16 Asserted for
all addresses

Asserted for writes to
all memory locations

256 Kbyte external
memory

0 1 P1.7/CEX4/
WCLK

A16 Asserted for
all addresses

Asserted for writes to
all memory locations

128 Kbyte external
memory

1 0 P1.7/CEX4/
WCLK

P3.7 only Asserted for
all addresses

Asserted for writes to
all memory locations

64 Kbyte external
memory. One
additional port pin.

1 1 P1.7/CEX4/
WCLK

RD# asserted
for addresses
≤ 7F:FFFFH

Asserted for
≥ 80:0000H

Asserted only for
writes to MCS® 51
microcontroller data
memory locations.

Compatible with MCS
51 microcontrollers.
Separate 64-Kbyte
external program
and data memories.

NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIG0 (Figure 4-3).
4-7

8x930Ax, 8x930Hx USER’S MANUAL

es
l WR#.

 Chap-
4.4.2 Configuration Bits RD1:0

The RD1:0 configuration bits (UCONFIG0.3:2) determine the number of external address lin
and the address ranges for asserting the read signals PSEN#/RD# and the write signa
These selections offer different ways of addressing external memory. Figures 4-5 and 4-6 show
how internal memory space maps into external memory space for the four values of RD1:0.
ter 16, “External Memory Interface,” provides examples of external memory designs for each
choice of RD1:0.

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

FF:

01:

PSEN#, WR#

PSEN#, WR#

A4218-02

FF:

FE:

01:

00:

RD1:0 = 00

18 external address bits:

P0, P2, A16, A17

PSEN#, WR#

PSEN#, WR#

01:, FF:

00:, FE:

01

FF:

FE:

00

256 Kbytes

128 Kbytes

Notes:

1. Maximum external

 memory

2. Single read signal

Note:

Single read signal

Internal Memory with

Read/Write Signals

External

Memory

A16

1

0

RD1:0 = 01

A17:16

1 1

1 0

0 1

0 0

Internal Memory with

Read/Write Signals

External

Memory

17 external address bits:

P0, P2, A16

FE:

00:
4-8

DEVICE CONFIGURATION

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)

FF:

01:

PSEN#

RD#, WR#

A4217-02

FF:

FE:

01:

00:

RD1:0 = 10

16 external address bits:

P0, P2

PSEN#, WR#

PSEN#, WR#

FE:, FF:

00:, 01:

00:, 01:, FE:, FF:

64 Kbytes

128 Kbytes

Notes:

1. Single read signal

2. P3.7/RD#/A16 functions

 only as P3.7

Note:

1. Compatible with MCS® 51

 microcontrollers

2. Cannot write to regions FC:–FF:

Internal Memory with

Read/Write Signals

External

Memory

RD1:0 = 11

Internal Memory with

Read/Write Signals

External

Memory

16 external address bits:

P0, P2

FE:

00:
4-9

8x930Ax, 8x930Hx USER’S MANUAL

xternal
ress
s that
xternal

00H

p into

 does
gured
cesses

ing lo-
Bus,

 (from
4
 the
l Flash

d A16
al of
to the
 FF:.

f pin
un-
em-

 Kbyte
-
17 is
 pins
A key to the memory interface is the relationship between internal memory addresses and e
memory addresses. While the 8x930 has 24 internal address bits, the number of external add
lines is less than 24 (i.e., 16, 17, or 18, depending on the values of RD1:0). This mean
reads/writes to different internal memory addresses can access the same location in e
memory.

For example, if the 8x930 is configured for 18 external address lines, a write to location 01:60
and a write to location FF:6000H accesses the same 18-bit external address (1:6000H) because
A16 = 1 and A17 = 1 for both internal addresses. In other words, regions 00: and FE: ma
the same 64 Kbyte region in external memory.

In some situations, however, a multiple mapping from internal memory to external memory
not preclude using more than one region. For example, for a device with on-chip ROM confi
for 17 address bits and with EA# = 1, an access to FF:0000H–FF:3FFFH (16 Kbytes) ac
the on-chip ROM, while an access to 01:0000H–01:3FFFH is to external memory. In this case,
you could execute code from these locations in region FF: and store data in the correspond
cations in region 01: without conflict. See Figure 4-5 and “Example 1: RD1:0 = 00, 18-bit
External Flash and RAM” on page 16-17.”

4.4.2.1 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports P0 and P2), A16
P3.7/RD#/A16), and A17 (from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four 6
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is
largest possible external memory space. See “Example 1: RD1:0 = 00, 18-bit Bus, Externa
and RAM” on page 16-17.

4.4.2.2 RD1:0 = 01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports P0 and P2) an
(from P3.7/RD#/A16). Bit A16 can select two 64 Kbyte regions of external memory for a tot
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map in
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: and

This selection provides a 128 Kbyte external address space. The advantage of this selection, in
comparison with the 256 Kbyte external memory space with RD1:0 = 00, is the availability o
P1.7/CEX4/A17/WCLK for general I/O, PCA I/O or real-time wait clock output. I/O P3.7 is
available. All four 64 Kbyte regions are stored by PSEN# and WR#. Chapter 16, “External M
ory Interface,” shows examples of memory designs with this option.

4.4.2.3 RD1:0 = 10 (16 External Address Bits)

For RD1:0 = 10, the 16 external address bits (A15:0 on ports P0 and P2) provide a single 64
region in external memory (top of Figure 4-6). This selection provides the smallest external mem
ory space; however, pin P3.7/RD#/A16 is available for general I/O and pin P1.7/CEX4/A
available for general I/O or PCA I/O. This selection is useful when the availability of these
is required and/or a small amount of external memory is sufficient.
4-10

DEVICE CONFIGURATION

d P2).
gions

ection

a

be ad-
arizes
s, see

ed by
:. The
by 1,

 page
4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports P0 an
However, PSEN# is the read signal for regions FE:–FF:, while RD# is the read signal for re
00:–01: (bottom of Figure 4-6). The two read signals effectively expand the external memory
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:–01:. This sel
provides compatibility with MCS 51 microcontrollers, which have separate external memory
spaces for code and data.

4.4.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD#/WR#/PSEN# pulse nd/or
extending the ALE pulse. Each additional wait state extends the pulse by 2TOSC. A separate wait
state specification for external accesses via region 01: permits a slow external device to
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summ
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait state
“External Bus Cycles With Configurable Wait States” on page 16-8.

4.4.3.1 Configuration Bits WSA1:0 #, WSB1:0#

The WSA1:0# wait state bits (UCONFIG0.6:5) permit RD#, WR#, and PSEN# to be extend
1, 2, or 3 wait states for accesses to external memory via all regions except region 01
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended
2, or 3 wait states for accesses to external memory via region 01:.

4.4.3.2 Configuration Bit XALE#

Clearing XALE# (UCONFIG0.4) extends the time ALE is asserted from TOSC to 3TOSC. This ac-
commodates an address latch that is too slow for the normal ALE signal. Figure 16-10 on
16-10 shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8x930

Regions
00: FE: FF:

WSA1# WSA0#
0 0
0 1
1 0
1 1

3 Wait States
2 Wait States
1 Wait State
0 Wait States

Region 01: WSB1# WSB0#
0 0
0 1
1 0
1 1

3 Wait States
2 Wait States
1 Wait State
0 Wait States
4-11

8x930Ax, 8x930Hx USER’S MANUAL

de ar-

t
 SRC
-

 for
d. De-

ting the

 in
ctions
served

 prefix

 (com-
scape

 shows

etter

ill be

od-
g the
hitec-
4.5 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIG0.0) selects the source mode or binary mode opco
rangement. Opcodes for the 8x930 architecture are listed in Table A-6 on page A-4 and Table A-7
on page A-5. Note that in Table A-6 every opcode (00H–FFH), is used for an instruction excep
A5H (ESC), which provides an alternative set of opcodes for columns 6H through FH. The
bit selects which set of opcodes is assigned to columns 6H through FH and which set is the alter
native.

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set
the 8x930 architecture. One of these modes must be selected when the chip is configure
pending on the application, binary mode or source mode may produce more efficient code. This
section describes the binary and source modes and provides some guidelines for selec
mode for your application.

The 8x930 architecture has two types of instructions:

• instructions that originate in the MCS® 51 architecture

• instructions that are common with the MCS® 251 architecture

Figure 4-7 shows the opcode map for binary mode. Area I (columns 1 through 5 in Table A-7)
and area II (columns 6 through F) make up the opcode map for the instructions that originate
the MCS 51 architecture. Area III in Figure 4-7 represents the opcode map for the instru
that are common with the MCS 251 architecture (Table A-7). Some of these opcodes are re
for future instructions. Note that the opcode values for areas II and III are identical (06H–FFH).
To distinguish between the two areas in binary mode, the opcodes in area III are given the
A5H. The area III opcodes are thus A506H–A5FFH.

Figure 4-8 shows the opcode map for source mode. Areas II and III have switched places
pare with Figure 4-7). In source mode, opcodes for instructions in area II require the A5F e
prefix while opcodes for instructions in area III do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4
the opcode assignments for three sample instructions.

4.5.1 Selecting Binary Mode or Source Mode

If a system was originally developed using an MCS 51 microcontroller, and if the new 8x930-
based system will run code written for the MCS 51 microcontroller, performance will be b
with the 8x930 running in binary mode. Object code written for the MCS 51 microcontroller runs
faster on the 8x930.

However, if most of the code is rewritten using the MCS 251 instruction set, performance w
better with the 8x930 running in source mode. In this case, the 8x930 can run significantly faster
than the MCS 51 microcontroller.

If you have code that was written for an MCS 51 microcontroller and you want to run it unm
ified on an 8x930, choose binary mode. You can use the object code without reassemblin
source code. You can also assemble the source code with an assembler for the MCS 251 arc
ture and have it produce object code that is binary-compatible with MCS 51 microcontrollers.
4-12

DEVICE CONFIGURATION
Figure 4-7. Binary Mode Opcode Map

Figure 4-8. Source Mode Opcode Map

A4131-01

I II

0H 5H FH6H
0H

FH

MCS® 51

Architecture

MCS 51

Architecture

III

6H FH
0H

FH

MCS 251

Architecture

A5H Prefix

A4130-01

I III

0H 5H FH6H
0H

FH

MCS® 51

Architecture

MCS 251

Architecture

II

6H FH
0H

FH

MCS 51

Architecture

A5H Prefix
4-13

8x930Ax, 8x930Hx USER’S MANUAL

 more
instruc-

e stor-
ed by

ides
s code
On-chip
ng to

rrupt

wing
d uses

k in the
bytes
ddress
If a program uses only instructions from the MCS 51 architecture, the binary-mode code is
efficient because it uses no prefixes. On the other hand, if a program uses many more new
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef-
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with a simulator.

For both architectures, an instruction with a prefixed opcode requires one more byte for cod
age, and if an additional fetch is required for the extra byte, the execution time is increas
one state. This means that using fewer prefixed opcodes produces more efficient code.

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For devices with 16 Kbytes of on-chip code memory, the EMAP# bit (UCONFIG1.0) prov
the option of accessing the upper half of on-chip code memory as data memory. This allow
constants to be accessed as data in region 00: using direct addressing. See “Accessing
Code Memory in Region 00:” on page 3-9 for the exact conditions required for this mappi
be effective.

EMAP# = 0. For the 83930AE and 83930HE, the upper eight Kbytes of on-chip code memory
(FF:2000–FF:3FFFH are mapped to locations 00:E000H–00:FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses in the
range 00:E000H–00:FFFFH access external RAM.

4.7 INTERRUPT MODE (INTR)

The INTR bit (UCONFIG1.4) determines what bytes are stored on the stack when an inte
occurs and how the RETI (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the follo
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order an
them as the 16-bit return address in region FF:.

For INTR = 1, an interrupt pushes the three PC bytes and the PSW1 register onto the stac
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte a
space.

Table 4-4. Examples of Opcodes in Binary and Source Modes

Instruction
Opcode

Binary Mode Source Mode

DEC A 14H 14H

SUBB A,R4 9CH A59CH

SUB R4,R4 A59CH 9CH
4-14

5
Programming
Considerations

 the in-
. The
on Set

 set
icient
onfigu-
 “Op-

the
t for
, 16-
cess-
gram-

ions.
; bit in-

(double
r-byte

 in
CHAPTER 5
PROGRAMMING CONSIDERATIONS

The instruction set for the architecture supports the instruction set for the MCS® 51 architecture
and MCS® 251 architecture. This chapter describes the addressing modes and summarizes
struction set, which is divided into data instructions, bit instructions, and control instructions
program status word registers PSW and PSW1 are also described. Appendix A, “Instructi
Reference,” contains an opcode map and a detailed description of each instruction.

NOTE
The instruction execution times given in Appendix A are for code executing
from external memory and for data that is read from and written to on-chip
RAM. Execution times are increased by accessing peripheral SFRs, accessing
data in external memory, using a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs (Px, x = 3:0) increases the
execution time. These cases are noted in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction
of the 8x930. Depending on the application, one mode or the other may produce more eff
code. The mode is established during device reset based on the value of the SRC bit in c
ration byte UCONFIG0. For information regarding the selection of the opcode mode, see
code Configurations (SRC)” on page 4-12.

5.2 PROGRAMMING FEATURES OF THE 8x930 ARCHITECTURE

The instruction set for 8x930 microcontrollers provides the user with instructions that exploit
features of the MCS 251 architecture while maintaining compatibility with the instruction se
MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8-bit
bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are ac
ed with fewer addressing modes.) This capability increases the ease and efficiency of pro
ming the 8x930 microcontroller in a high-level language such as C.

The instruction set is divided into data instructions, bit instructions, and control instruct
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data
structions manipulate bits; and control instructions manage program flow.

5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords
words) can be in stored memory starting at any byte address; alignment on two-byte or fou
boundaries is not required. Words and dwords are stored in memory and the register filebig
endien form.
5-1

8x930Ax, 8x930Hx USER’S MANUAL

n
f the

. W
ile, the
on of
 illus-

 in that
1, ...,
1, ...,
s.

 index

igure
tween
:0
ction.
5.2.1.1 Order of Byte Storage for Words and Double Words

The 8x930 microcontroller stores words (2 bytes) and double words (4 bytes) in memory and i
the register file in big endien form. In memory storage, the most significant byte (MSB) o
word or double word is stored in the memory byte specified in the instruction; the remaining bytes
are stored at higher addresses, with the least significant byte (LSB) at the highest addressords
and double words can be stored in memory starting at any byte address. In the register f
MSB is stored in the lowest byte of the register specified in the instruction. For a descripti
the register file, see “8x930 Register File” on page 3-9. The code fragment in Figure 5-1
trates the storage of words and double words in big endien form.

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of R0, R
R7; i.e., the range of n is 0–7. The instruction ADD Rm,#data uses “Rm” to denote R0, R
R15; i.e., the range of m is 0–15. Table 5-2 summarizes the notation used for the register indice
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the 8x930 architecture, memory addresses include a region number (00:, 01:, ..., FF:) (F
3-5 on page 3-7). SFR addresses have a prefix “S:” (S:000H–S:1FFH). The distinction be
memory addresses and SFR addresses is necessary because memory locations 00000H–
00:01FFH and SFR locations S:000H–S:1FFH can both be directly addressed in an instru

Table 5-1. Data Types

Data Type Number of Bits

Bit 1

Byte 8

Word 16

Dword (Double Word) 32
5-2

PROGRAMMING CONSIDERATIONS

ations
are ad-

 for

d the
d

Figure 5-1. Word and Double-word Storage in Big Endien Form

Instructions in the MCS 51 architecture use 80H–FFH as addresses for both memory loc
and SFRs, because memory locations are addressed only indirectly and SFR locations
dressed only directly. For compatibility, firmware tools for 8x930 microcontrollers recognize this
notation for instructions in the 8x930 architecture. No change is necessary in any code written
MCS 51 controllers.

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, ..., FF:) an
SFR prefix (S:) are required. Also, firmware tools for the 8x930 architecture permit 00: to be use
for memory addresses 00H–FFH and permit the prefix S: to be used for SFR addresses in instruc-
tions in the 8x930 architecture.

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers

Register
Type

Register
Symbol

Destination
Register

Source
Register Register Range

Byte

Ri — — R0, R1

Rn — — R0–R7

Rm Rmd Rms R0–R15

Word WRj WRjd WRjs WR0, WR2, WR4, ..., WR30

Dword DRk DRkd DRks DR0, DR4, DR8, ..., DR28, DR56, DR60

MOV WR0,#A3B6H

MOV 00:0201H,WR0

MOV DR4,#0000C4D7H

A3H B6H

2 3

WR0

4 5 60 1 7

00H 00H C4H D7H

DR4

Register File

Memory

Contents of register file and memory after execution

A4242-01

200H 201H 202H 203H

A3H B6H
5-3

8x930Ax, 8x930Hx USER’S MANUAL

d

 to

s” on

, and
ions.

ble 5-4
struc-
5.2.4 Addressing Modes

The 8x930 architecture supports the following addressing modes:

• register addressing: The instruction specifies the register that contains the operand.

• immediate addressing: The instruction contains the operand.

• direct addressing: The instruction contains the operand address.

• indirect addressing: The instruction specifies the register that contains the operand
address.

• displacement addressing: The instruction specifies a register and an offset. The operan
address is the sum of the register contents (the base address) and the offset.

• relative addressing: The instruction contains the signed offset from the next instruction
the target address (the address for transfer of control, e.g., the jump address).

• bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Mode
page 5-4, “Bit Addressing” on page 5-10, and “Addressing Modes for Control Instructions” on
page 5-12.

5.3 DATA INSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit
32-bit data. This section describes the data addressing modes and the set of data instruct

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Ta
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data in
tions in the MCS 251architecture.

NOTE
References to registers R0–R7, WR0–WR6, DR0, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status Words” on page 5-15). Registers in all banks (active and
inactive) can be accessed as memory locations in the range 00H–1FH.

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DR56 or the DPXL SFR (see “Dedicated Registers” on page 3-12).
5-4

PROGRAMMING CONSIDERATIONS

uction

 data
16-bit
ord,

4) that

) as
FRs

 in

 =
5.3.1.1 Register Addressing

Both architectures address registers directly:

• MCS 251 architecture. In the register addressing mode, the operand(s) in a data instr
are in byte registers (R0–R15), word registers (WR0, WR2, ..., WR30), or dword registers
(DR0, DR4, ..., DR28, DR56, DR60).

• MCS 51 architecture. Instructions address registers R0–R7 only.

5.3.1.2 Immediate

Both architectures use immediate addressing.

• MCS 251 architecture. In the immediate addressing mode, the instruction contains the
operand itself. Byte operations use 8-bit immediate data (#data); word operations use
immediate data (#data16). Dword operations use 16-bit immediate data in the lower w
and either zeros in the upper word (denoted by #0data16), or ones in the upper word
(denoted by #1data16). MOV instructions that place 16-bit immediate data into a dword
register (DRk), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sign extension or a zero extension.
The increment and decrement instructions contain immediate data (#short = 1, 2, or
specifies the amount of the increment/decrement.

• MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3 Direct

• MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = 00:0000H–
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H–S:1FFH
bytes only. (See the second note in “Data Addressing Modes” on page 5-4 regarding S
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words
memory (dir16 = 00:0000H–00:FFFFH).

• MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8
00H–7FH) as bytes only and the SFRs (dir8 = 80H–FFH) as bytes only.

Table 5-3. Addressing Modes for Data Instructions in the MCS ® 51 Architecture

Mode Address Range of
Operand

Assembly Language
Reference Comments

Register 00H–1FH R0–R7
(Bank selected by PSW)

Immediate Operand in Instruction #data = #00H–#FFH

Direct

00H–7FH dir8 = 00H–7FH On-chip RAM

SFRs dir8 = 80H–FFH
or SFR mnemonic. SFR address
5-5

8x930Ax, 8x930Hx USER’S MANUAL

ways a
address

 can
. (If
k

e

in the

ory

to
5.3.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is al
byte, and the destination is either the accumulator or a byte register (R0–R15). The source
is a byte, word, or dword. The two architectures do indirect addressing via different registers:

• MCS 251 architecture. Memory is indirectly addressed via word and dword registers:

— Word register (@WRj, j = 0, 2, 4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H–00:FFFFH.

— Dword register (@DRk, k = 0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0
you use DR60 as a general data pointer, be aware that DR60 is the extended stac
pointer register SPX.)

• MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, cod
memory, and external data RAM. (See the second note in “Data Addressing Modes” on
page 5-4 regarding the region of external data RAM that is addressed by instructions
MCS 51 architecture.)

— Byte register (@Ri, i = 1, 2). Registers R0 and R1 indirectly address on-chip mem
locations 00H–FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructions use
these indirect modes to access code memory and external data RAM.

— 16-bit program counter (@A+PC). The MOVC instruction uses this indirect mode
access code memory.

 Indirect

00H–FFH @R0, @R1
Accesses on-chip RAM or the
lowest 256 bytes of external
data memory (MOVX).

0000H–FFFFH @DPTR, @A+DPTR Accesses external data
memory (MOVX).

0000H–FFFFH @A+DPTR, @A+PC Accesses region FF: of code
memory (MOVC).

Table 5-3. Addressing Modes for Data Instructions in the MCS ® 51 Architecture (Continued)

Mode Address Range of
Operand

Assembly Language
Reference Comments
5-6

PROGRAMMING CONSIDERATIONS

Table 5-4. Addressing Modes for Data Instructions in the MCS ® 251 Architecture

Mode Address Range of
Operand

Assembly Language
Notation Comments

Register
00:0000H–00:001FH

(R0–R7, WR0–WR3,
DR0, DR2) (1)

R0–R15, WR0–WR30,
DR0–DR28, DR56, DR60

R0–R7, WR0–WR6, DR0, and
DR2 are in the register bank
currently selected by the
PSW and PSW1.

Immediate,
2 bits

N.A. (Operand is in the
instruction) #short = 1, 2, or 4 Used only in increment and

decrement instructions.

Immediate,
8 bits

N.A. (Operand is in the
instruction) #data8 = #00H–#FFH

Immediate,
16 bits

N.A. (Operand is in the
instruction) #data16 = #0000H–#FFFFH

Direct,
8 address bits

00:0000H–00:007FH dir8 = 00:0000H–00:007FH On-chip RAM

SFRs dir8 = S:080H–S:1FFH (2)
or SFR mnemonic SFR address

Direct,
16 address bits 00:0000H–00:FFFFH dir16 = 00:0000H–00:FFFFH

Indirect,
16 address bits 00:0000H–00:FFFFH @WR0–@WR30

Indirect,
24 address bits 00:0000H–FF:FFFFH @DR0–@DR30, @DR56,

@DR60
Upper 8 bits of DRk must be
00H.

Displacement,
16 address bits 00:0000H–00:FFFFH

@WRj + dis16 =

@WR0 + 0H through
@WR30 + FFFFH

Offset is signed; address
wraps around in region 00:.

Displacement,
24 address bits 00:0000H–FF:FFFFH

@DRk + dis24 =

@DR0 + 0H through
@DR28 + FFFFH,

@DR56 + (0H–FFFFH),
@DR60 + (0H–FFFFH)

Offset is signed, upper 8 bits
of DRk must be 00H.

NOTES:
1. These registers are accessible in the memory space as well as in the register file (see “8x930

Register File” on page 3-9).
2. The MCS 251 architecture supports SFRs in locations S:000H–S:1FFH; however, in the 8x930 all

SFRs are in the range S:080H–S:0FFH.
5-7

8x930Ax, 8x930Hx USER’S MANUAL

urce to
lowest
ntains
m are
 exceeds
comes
e com-

byte
0. The

D and
 in

ol-

e dif-
uent use

e in-
 byte,
rt).

ed
 user
5.3.1.5 Displacement

Several move instructions use displacement addressing to move bytes or words from a so
a destination. Sixteen-bit displacement addressing (@WRj+dis16) accesses indirectly the
64 Kbytes in memory. The base address can be in any word register WRj. The instruction co
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the su
used to compute the operand address. If the sum of the base address and a positive offset
FFFFH, the computed address wraps around within region 00: (e.g. F000H + 2005H be
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, th
puted address wraps around the top of region 00: (e.g., 2005H + F000H becomes 1005H).

Twenty-four-bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16-M
address space. The base address must be in DR0, DR4, ..., DR24, DR28, DR56, or DR6
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The AD
SUB instructions (Table A-19 on page A-13) operate on byte and word data that is accessed
several ways:

• as the contents of the accumulator, a byte register (Rn), or a word register (WRj)

• in the instruction itself (immediate data)

• in memory via direct or indirect addressing

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontr
lers.

The CMP (compare) instruction (Table A-20 on page A-14) calculates the difference of two bytes
or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. Th
ference is not stored. The operands can be addressed in a variety of modes. The most freq
of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-14 lists the INC (increment) and DEC (decrement) instructions. Th
structions for MCS 51 microcontrollers are supplemented by instructions that can address
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #sho
These instructions are supplied primarily for register-based address pointers and loop counters.

The 8x930 architecture provides the MUL (multiply) and DIV (divide) instructions for unsign
8-bit and 16-bit data (Table A-22 on page A-15). Signed multiply and divide are left for the
to manage through a conversion process. The following operations are implemented:

• eight-bit multiplication: 8 bits × 8 bits → 16 bits

• sixteen-bit multiplication: 16 bits × 16 bits → 32 bits

• eight-bit division: 8 bits ÷ 8 bits → 16 bits (8-bit quotient, 8-bit remainder)

• sixteen-bit division: 16 bits ÷ 16 bits → 32 bits (16-bit quotient, 16-bit remainder)
5-8

PROGRAMMING CONSIDERATIONS

js), or

 stored
 is
i-
gless.

NL,
 on

mme-
and N

s that

se in-
h, and

in the

PXL,

ccu-

nts
n bit
These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WR
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in theword
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword
register that contains the first operand register. For example, the product from the instruction
MUL WR6,WR18 is stored in DR4.

For 8-bit divides, the operands are byte registers. The result is stored in the word register that con-
tains the first operand register. The quotient is stored in the lower byte, and the remainder is
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result
stored in the double word register that contains that word register. If the second operand (the d
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meanin

5.3.3 Logical Instructions

The 8x930 architecture provides a set of instructions that perform logical operations. The A
ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate
bytes and words that are accessed via several addressing modes (Table A-23 on page A-16). A
byte register, word register, or the accumulator can be logically combined with a register, i
diate data, or data that is addressed directly or indirectly. These instructions affect the Z
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instruction
operate on the accumulator, 8x930 microcontroller has three shift commands for byte and word
registers:

• SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0

• SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0

• SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

5.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. The
structions include the move instructions (Table A-24 on page A-18) and the exchange, pus
pop instructions (Table A-25 on page A-21). Instructions that move only a single bit are listed
with the other bit instructions in Table A-26 on page A-22.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded
8x930 architecture. MOV can transfer a byte, word, or dword between any two registers or be-
tween a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory is in the region specified by D
whose reset value is 01H (see “Dedicated Registers” on page 3-12).

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the a
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the conte
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sig
5-9

8x930Ax, 8x930Hx USER’S MANUAL

di-

ter or
f the
ary

ng it
 imme-

o a reg-

gories

bit

a.

bed

 5-5).
 of bits

bits. In
ithin

ion with-
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit imme
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a regis
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble o
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (bin
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrievi
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack t
ister or to memory.

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four cate
of bit instructions:

• SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set,
clear or complement any addressable bit.

• ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement). These instructions allow ANDing and ORing of any addressable
or its complement with the CY flag.

• MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice vers

• Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are descri
in “Conditional Jumps” on page 5-13.

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table
The bit instructions that are unique to the MCS 251 architecture can address a wider range
than the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location w
a certain register, or it can be specified by a bit address in the range 00H–7FH. The 8x930 archi-
tecture does not have bit addresses as such. A bit can be addressed by name or by its locat
in a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

• RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG” are
assumed to be defined in user code.

• IT1 is bit 2 in TCON, which is an SFR at location 88H.
5-10

PROGRAMMING CONSIDERATIONS

 251
hitec-

ondi-
xt in-
ovides
Table 5-7 lists the addressing modes for bit instructions and Table A-26 on page A-22 summa-
rizes the bit instructions. “Bit” denotes a bit that is addressed by an instruction in the MCS
architecture and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 arc
ture.

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and c
tional and unconditional jumps (see Table A-27 on page A-23). Instead of executing the ne
struction in the queue, the processor executes a target instruction. The control instruction pr

Table 5-5. Bit-addressable Locations

Architecture
Bit-addressable Locations

On-chip RAM SFRs

MCS® 251 Architecture 20H–7FH All defined SFRs

MCS 51 Architecture 20H–2FH SFRs with addresses ending in 0H or 8H:
80H, 88H, 90H, 98H, ..., F8H

Table 5-6. Addressing Two Sample Bits

Location Addressing
Mode

MCS® 51
Architecture

MCS 251
Architecture

On-chip RAM

Register Name RAMREG.5 RAMREG.5

Register Address 23H.5 23H.5

Bit Name RAMBIT RAMBIT

Bit Address 1DH NA

SFR

Register Name TCON.2 TCON.2

Register Address 88.2H S:88.2H

Bit Name IT1 IT1

Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Architecture Variants Bit Address Memory/SFR Address Comments

MCS® 251
Architecture
(bit)

Memory NA 20H.0–7FH.7

SFR NA All defined SFRs

MCS 51
Architecture
(bit51)

Memory 00H–7FH 20H.0–7FH.7

SFR 80H–F8H XXH.0–XXH.7, where XX = 80,
88, 90, 98, ..., F0, F8.

SFRs are not defined
at all bit-addressable
locations.
5-11

8x930Ax, 8x930Hx USER’S MANUAL

here
uctions
e

ned

1 bits
.

t be in

 in
ext

:

f the
t

d in
icts
the address of a target instruction either implicitly, as in a return from a subroutine, or explicitly,
in the form of a relative, direct, or indirect address.

The 8x930 has a 24-bit program counter (PC), which allows a target instruction to be anyw
in the 16-Mbyte address space. However, as discussed in this section, some control instr
restrict the target address to the current 2-Kbyte or 64-Kbyte address range by allowing only th
lowest 11 or lowest 16 bits of the program counter to change.

5.5.1 Addressing Modes for Control Instructions

Table 5-8 lists the addressing modes for the control instructions.

• Relative addressing: The control instruction provides the target address as an 8-bit sig
offset (rel) from the address of the next instruction.

• Direct addressing: The control instruction provides a target address, which can have 1
(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC

— addr11: Only the lower 11 bits of the PC are changed; i.e., the target address mus
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addr16: Only the lower 16 bits of the PC are changed; i.e., the target address must be
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the n
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.

• Indirect addressing: There are two types of indirect addressing for control instructions

— For the instructions LCALL @WRj and LJMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits o
PC. The upper eight bits of the PC remain unchanged from the address of the nex
instruction.

— For the instruction JMP @A+DPTR, the sum of the accumulator and DPTR is place
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restr
the target address to the code memory space of the MCS 51 architecture.
5-12

PROGRAMMING CONSIDERATIONS

mps
it. In a
tional

hat is
1 reg-

ion.
d that

s:

d
5.5.2 Conditional Jumps

The 8x930 architecture supports bit-conditional jumps, compare-conditional jumps, and ju
based on the value of the accumulator. A bit-conditional jump is based on the state of a b
compare-conditional jump, the jump is based on a comparison of two operands. All condi
jumps are relative, and the target address (rel) must be in the current 256-byte block of code. The
instruction set includes three kinds of bit-conditional jumps:

• JB (Jump on Bit): Jump if the bit is set.

• JNB (Jump on Not Bit): Jump if the bit is clear.

• JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

“Bit Addressing” on page 5-10 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction t
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruct
Actually, the state of each flag is determined by the last instruction that could have affecte
flag.

The condition flags are used to test one of the following six relations between the operand

• equal (=), not equal (≠)

• greater than (>), less than (<)

• greater than or equal (≥), less than or equal (≤)

For each relation there are two instructions, one for signed operands and one for unsigneoper-
ands (Table 5-9).

Table 5-8. Addressing Modes for Control Instructions

Description Address Bits
Provided Address Range

Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction

Direct, 11-bit target address (addr11) 11 Current 2 Kbytes

Direct, 16-bit target address (addr16) 16 Current 64 Kbytes

Direct, 24-bit target address (addr24)† 24 00:0000H–FF:FFFFH

Indirect (@WRj)† 16 Current 64 Kbytes

Indirect (@A+DPTR) 16 64-Kbyte region specified by DPXL (reset
value = 01H)

†These modes are not used by instructions in the MCS® 51 architecture.
5-13

8x930Ax, 8x930Hx USER’S MANUAL

ogram

 the

te

stack
uction.

k and
n. The
uction.

d then
s to an

5.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SJMP jump to addresses relative to the pr
counter. AJMP, LJMP, and EJMP jump to direct or indirect addresses.

• NOP (No Operation) is an unconditional jump to the next instruction.

• SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

• AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within
current 2-Kbyte block of memory. The address can be direct or indirect.

• LJMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

• EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mby
address space. The address can be direct or indirect.

5.5.4 Calls and Returns

The 8x930 architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instr
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stac
then changes the lower 16 bits of the PC to the 16-bit address specified by the instructio
call is to an address in the same 64-Kbyte block of memory as the address of the next instr

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack an
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call i
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction following asub-
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address following
a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

Table 5-9. Compare-conditional Jump Instructions

Operand
Type

Relation

= ¼ > < Š £

Unsigned
JE JNE

JG JL JGE JLE

Signed JSG JSL JSGE JSLE
5-14

PROGRAMMING CONSIDERATIONS

ion

 them
ept

our

le 5-8

)

 is not
ress-
truc-

gister
tical
le
RETI (Return from Interrupt) provides a return from an interrupt service routine. The operat
of RETI depends on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

• For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to acc
additional interrupts at the same priority level as the one just processed.

• For INTR = 1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these f
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETI also clears the interrupt request line. (See the note in Tab
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations of an 8x930 microcontroller.

5.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register (Figure 5-2) and the Program Status Word 1 (PSW1
register (Figure 5-3) contain four types of bits:

• CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.

• The P bit indicates the parity of the accumulator.

• Bits RS0 and RS1 are programmed by firmware to select the active register bank for
registers R0–R7.

• F0 and UD are available to the user as general-purpose flags.

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW
affected by a write. Individual bits can be addressed with the bit instructions (see “Bit Add
ing” on page 5-10). The PSW and PSW1 bits are used implicitly in the conditional jump ins
tions (see “Conditional Jumps” on page 5-13).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 re
exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are iden
to the corresponding bits in PSW; i.e., the same bit can be accessed in either register. Tab5-10
lists the instructions that affect the CY, AC, OV, N, and Z bits.
5-15

8x930Ax, 8x930Hx USER’S MANUAL
Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

Instruction Type Instruction
Flags Affected (1), (5)

CY OV AC (2) N Z

Arithmetic

ADD, ADDC, SUB,
SUBB, CMP

X X X X X

INC, DEC X X

MUL, DIV (3) 0 X X X

DA X X X

Logical

ANL, ORL, XRL, CLR A,
CPL A, RL, RR, SWAP

X X

RLC, RRC, SRL, SLL,
SRA (4)

X X X

Program Control
CJNE X X X

DJNE X X

NOTES:
1. X = the flag can be affected by the instruction.

0 = the flag is cleared by the instruction.
2. The AC flag is affected only by operations on 8-bit operands.
3. If the divisor is zero, the OV flag is set, and the other bits are meaningless.
4. For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
5. The parity bit (PSW.0) is set or cleared by instructions that change the contents of the

accumulator (ACC, Register R11).
5-16

PROGRAMMING CONSIDERATIONS
.

Figure 5-2. Program Status Word Register

PSW Address: S:D0H
Reset State: 0000 0000B

7 0

CY AC F0 RS1 RS0 OV UD P

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 F0 Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0–R7).

RS1 RS0 Bank Address

0 0 0 00H–07H
0 1 1 08H–0FH
1 0 2 10H–17H
1 1 3 18H–1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).
5-17

8x930Ax, 8x930Hx USER’S MANUAL
.

Figure 5-3. Program Status Word 1 Register

PSW1 Address: S:D1H
Reset State: 0000 0000B

7 0

CY AC N RS1 RS0 OV Z —

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

Identical to the CY bit in the PSW register.

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4–3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.

2 OV Overflow Flag:

Identical to the OV bit in the PSW register.

1 Z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.
5-18

6
Interrupt System

onse to
t

tion).
riority
en of
ted dy-

inter-
 sam-

2) is
s the
ontext
n unit

es as-
is in-
loads
CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The 8x930, like other control-oriented microcontroller architectures†, employs a program inter-
rupt method. This operation branches to a subroutine and performs some service in resp
the interrupt. When the subroutine completes, execution resumes at the point where the interrup
occurred. Interrupts may occur as a result of internal 8x930 activity (e.g., timer overflow) or at
the initiation of electrical signals external to the microcontroller (e.g., serial port communica
In all cases, interrupt operation is programmed by the system designer, who determines p
of interrupt service relative to normal code execution and other interrupt service routines. T
the eleven interrupts are enabled or disabled by the system designer and may be manipula
namically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically
pled by the 8x930, latches the event into a flag buffer. The priority of the flag (see Table 6-
compared to the priority of other interrupts by the interrupt handler. A high priority cause
handler to set an interrupt flag. This signals the instruction execution unit to execute a c
switch. This context switch breaks the current flow of instruction sequences. The executio
completes the current instruction prior to a save of the program counter (PC) and reloads the PC
with the start address of a firmware service routine. The firmware service routine execut
signed tasks and as a final activity performs a RETI (return from interrupt instruction). Th
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and re
the program counter. Program operation then continues from the original point of interruption.

† A non-maskable interrupt (NMI#) is not included on the 8x930.

Table 6-1. Interrupt System Input Signals

Signal
Name Type Description Multiplexed

With

INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the
TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INT0#. If bits
IT1:0 are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

P3.3:2

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”
6-1

8x930Ax, 8x930Hx USER’S MANUAL

Figure 6-1. Interrupt Control System

IE0

0

1

INT0#

Timer 0

IE1

0

1

INT1#

Timer 1

0

1

0

1

ECF

(CMOD.0)

ECCFx

(CCAPMx.0)

IT0

(TCON.0)

IT1

(TCON.2)

5

IPH0/IPL0
Interrupt Enable Priority Select

EX0

ET0

EX1

ET1

EC

ES

ET2

TF0

CF

CCFx

RI

TI

TF2

EXF2

TF1

PCA

Counter

Overflow

PCA

Match or

Capture

Receive

Transmit

Timer 2

T2EX

In
te

rr
up

t P
ol

lin
g

S
eq

ue
nc

e

Highest

Priority

Interrupt

EA

A5042-02

IEN0

External

External

TCON.7

TCON.3

TCON.5

TCON.1

CCON.4:0

CCON.7

Serial Port

SCON.0

T2CON.7

SCON.1

T2CON.6
6-2

INTERRUPT SYSTEM

-
rces in-
, one
rrupts
t

rrupts,
st flag
6.2 8x930 INTERRUPT SOURCES

Figures 6-1 and 6-2 illustrate the interrupt control system. The 8x930 has eleven interrupt sourc
es; ten maskable sources and the TRAP instruction (always enabled). The maskable sou
clude two external interrupts (INT0# and INT1#), three timer interrupts (timers 0, 1, and 2)
programmable counter array (PCA) interrupt, one serial port interrupt, and three USB inte
(one of which doubles as a hub interrupt). Each interrupt (except TRAP) has an interrupt reques
flag, which can be set by firmware as well as by hardware (see Table 6-3). For some inte
hardware clears the request flag when it grants an interrupt. Firmware can clear any reque
to cancel an impending interrupt.

Figure 6-2. USB/Hub Interrupt Control System

SOFH.6

ASOF
Any Start

of Frame SOFIE

HRXD0

HTXD0Transmit

Receive

0

HIFLG

SOFH.5

0

1

IPH1/IPL1IEN1

Interrupt Enable Priority Select

Lowest Priority Interrupt

A5100-02

0

1

0

1

FRXIEx

FTXIEx

FRXDx

FTXDx

USB Endpoint Done

Transmit

Receive
1

EF

1

GRSM

URSTUSB

Reset

PCON1.3

GSUS
USB

Suspend

USB

Resume

ESR

2

1

PCON1.0

PCON1.1

USB Hub

FIFLG,

FIFLG1

0

1

0

1

HRXE0

HTXE0

11

ESOF/Hub

FIE,

FIE1

HIE

EA

8X930Ax Only

PCON1.4

URDIS
6-3

8x930Ax, 8x930Hx USER’S MANUAL
Table 6-2. Interrupt System Special Function Regist ers

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. Enables and disables the receive
and transmit done interrupts for the four function endpoints.

S:A2H

FIE1 USB Function Interrupt Enable Register. Available on the 8x930Ax only,
this register enables and disables the receive and transmit done interrupts for
the function endpoints 4 and 5.

S:A3H

FIFLG USB Function Interrupt Flag Register. Contains the USB function’s transmit
and receive done interrupt flags for non-isochronous endpoints.

S:C0H

FIFLG1 USB Function Interrupt Flag Register. Contains the USB function’s transmit
and receive done interrupt flags for non-isochronous endpoints. This register,
available in the 8x930Ax only, contains the function interrupt flags for
endpoints 4 and 5.

S:C1H

HIE Hub Interrupt Enable Register. Contains the hub interrupt enable bits. S:A1H

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt status flags. S:E8H

IEN0 Interrupt Enable Register 0. Enables individual programmable interrupts.
Also provides a global enable for the programmable interrupts. The reset value
for this register is zero (interrupts disabled).

S:A8H

IEN1 Interrupt Enable Register1 . Enables individual programmable interrupts for
the USB interrupts. The reset value of this register is zero (interrupts disabled).

S:B1H

IPL0 Interrupt Priority Low Register 0 . Establishes relative priority for
programmable interrupts. Used in conjunction with IPH0.

S:B8H

IPH0 Interrupt Priority High Register 0 . Establishes relative priority for
programmable interrupts. Used in conjunction with IPL0.

S:B7H

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for
programmable interrupts. Used in conjunction with IPH1.

S:B2H

IPH1 Interrupt Priority High Register 1. Establishes relative priority for
programmable interrupts. Used in conjunction with IPL1.

S:B3H

PCON1 USB Power Control. Contains USB global suspend and resume interrupt bits.
Also contains the USB reset separation enable and interrupt bits for the
8x930Ax. See Figure 15-2 on page 15-4.

S:DFH

SOFH Start of Frame High Register. Contains isochronous data transfer enable
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

S:D3H

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit time
stamp received from the host.

S:D2H

NOTE: Other SFRs are described in their respective chapters and in Appendix C, “Registers.”
6-4

INTERRUPT SYSTEM

g-
e 11-6

t
only if
rvice
ce

tees
 state
6.2.1 External Interrupts

External interrupts INT0# and INT1# (INTx#) pins may each be programmed to be level-tri
gered or edge-triggered, dependent upon bits IT0 and IT1 in the TCON register (see Figur
on page 11-8). If ITx = 0, INTx# is triggered by a detected low at the pin. If ITx = 1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXx) in the
IEN0 register (see Figure 6-12). Events on the external interrupt pins set the interrupt reques
flags IEx in TCON. These request bits are cleared by hardware vectors to service routines
the interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt se
routine must clear the request bit. External hardware must deassert INTx# before the servirou-
tine completes, or an additional interrupt is requested. External interrupt pins must be deasserted
for at least four state times prior to a request.

External interrupt pins are sampled once every four state times (a frame length of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guaran
detection. Edge-triggered external interrupts must hold the request pin low for at least five
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Additional interrupts specific to USB and USB hub operation appear in Table 6-4.

Table 6-3. Interrupt Control Matrix

Interrupt Name † Global
Enable PCA Timer

2
Serial
Port

Timer
1 INT1# Timer

0 INT0#

Bit Name in IEN0
Register EA EC ET2 ES ET1 EX1 ET0 EX0

Interrupt Priority-
Within-Level
(10 = Low Priority,
1 = High Priority)

NA 7 6 5 4 3 2 1

Bit Names in:
IPH0
IPL0

Reserved
Reserved

IPH0.6
IPL0.6

IPH0.5
IPL0.5

IPH0.4
IPL0.4

IPH0.3
IPL0.3

IPH0.2
IPL0.2

IPH0.1
IPL0.1

IPH0.0
IPL0.0

Programmable for
Negative-edge
Triggered or Level-
triggered Detect?

NA Edge No No No Yes No Yes

Interrupt Request
Flag in CCON,
T2CON, SCON, or
TCON Register

NA
CCON:

CF,
CCFx

T2CON:
TF2,
EXF2

SCON:
RI, TI

TCON:
TF1

TCON:
IE1

TCON:
TF0

TCON:
IE0

Interrupt Request
Flag Cleared by
Hardware?

No No No No Yes
Edge
Yes,

Level No
Yes

Edge
Yes,

Level No

ISR Vector Address NA FF:
0033H

FF:
002BH

FF:
0023H

FF:
001BH

FF:
0013H

FF:
000BH

FF:
0003H

† The 8x930 also contains a TRAP interrupt, not cleared by hardware, with a vector address of FF007BH.
For a discussion of TRAP and other interrupt sources, see “8x930 Interrupt Sources” on page 6-3.
6-5

8x930Ax, 8x930Hx USER’S MANUAL

8) are
When
pt ser-
r (see

 (see
ine. In
d then
6.2.2 Timer Interrupts

Two timer-interrupt request bits TF0 and TF1 (see TCON register, Figure 11-6 on page 11-
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 11-4 on page 11-6).
a timer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interru
vice routine. Timer interrupts are enabled by bits ET0, ET1, and ET2 in the IEN0 registe
Figure 6-12).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON
Figure 11-12 on page 11-17). Neither flag is cleared by a hardware vector to a service rout
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, an
clear the bit. Timer 2 interrupt is enabled by ET2 in register IEN0.

Table 6-4. USB/Hub Interrupt Control Matrix

Interrupt Name
USB Global

Suspend/Resume
 and USB Reset †

USB Function
[Non-Isochronous

Endpoint]

USB Hub/SOF
[Isochronous

Endpoint]

Bit Name in IEN1
Register ESR EF ESOF

Interrupt Priority-
Within-Level
(10 = Low Priority,
1 = High Priority)

10 9 8

Bit Names in:
IPH1
IPL1

IPH1.2
IPL1.2

IPH1.1
IPL1.1

IPH1.0
IPL1.0

Programmable for
Negative-edge
Triggered or Level-
triggered Detect?

N/A N/A N/A

Interrupt Request
Flag in PCON1,
FIFLG, HIFLG, or
SOFH Register

PCON1:
GSUS
GRSM
URST†

FIFLG:
FTXDx, FRXDx

x=0,1,2,3

SOFH:ASOF,
HIFLG:

HTXD0, HRXD0

Interrupt Request
Flag Cleared by
Hardware?

No No No

ISR Vector Address FF:0053H FF:004BH FF:0043H

† USB Reset interrupt applies to the 8x930Ax only.
6-6

INTERRUPT SYSTEM

event

uests
upts.

e CF

r (see
e. The

nction
rrupt

 global

us da-
rupts

inter-
6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five
flags (CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 12-8 on
page 12-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hard-
ware vectors to service routines. Normally, interrupt service routines resolve interrupt req
and clear flag bits. This allows the user to define the relative priorities of the five PCA interr

The PCA interrupt is enabled by bit EC in the IEN0 register (see Figure 6-1). In addition, th
flag and each of the CCFx flags must also be individually enabled by bits ECF and ECCFx in reg-
isters CMOD and CCAPMx, respectively, for the flag to generate an interrupt (see Figure 12-7
on page 12-13 and Figure 12-9 on page 12-16).

NOTE
CCFx refers to five separate bits, one for each PCA module (CCF0, CCF1,
CCF2, CCF3, CCF4). CCAPMx refers to 5 separate registers, one for each
PCA module (CCAPM0, CCAPM1, CCAPM2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON registe
Figure 13-2 on page 13-4). Neither flag is cleared by a hardware vector to the service routin
service routine resolves RI or TI interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the IEN0 register (see Figure 6-12).

6.5 USB INTERRUPTS

There are three types of USB interrupts, as shown in Figure 6-2 on page 6-3: The USB fu
interrupt, used to control the flow of non-isochronous data; the hub/any start-of-frame inte
(SOF), used to signal a hub interrupt or to monitor the transfer of isochronous data; and the
suspend/resume interrupt, used to allow USB power control and, for the 8x930Ax only, to provide
a separate USB interrupt. These interrupts are enabled using the IEN1 register. See Table 6-4 and
Figure 6-13.

6.5.1 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochrono
ta: the receive done interrupt and the transmit done interrupt. Individual USB function inter
in the 8x930 are enabled by setting the corresponding bits in the FIE register (Figure 6-3). The
8x930Ax, with its six function endpoints, also uses the FIE1 register (Figure 6-4) to enable
rupts for endpoints 4 and 5.

NOTE
In order to use any of the USB function interrupts, the EF bit in the IEN1
register must be enabled.
6-7

8x930Ax, 8x930Hx USER’S MANUAL

icate

ll bits
 ‘0’
The USB Function Interrupt Flag register (FIFLG, as shown in Figure 6-5) is used to ind
pending function interrupts for a given endpoint. The 8x930Ax, with its six function endpoints,
also uses the FIFLG1 register (Figure 6-6) to indicate interrupts for endpoints 4 and 5. For a
in FIFLG or FIFLG1, a ‘1’ indicates that an interrupt is actively pending for that endpoint; a
indicates that the interrupt is not active. The interrupt status is shown in the FIFLG or FIFLG1
register regardless of the state of the corresponding interrupt enable bit in the FIE or FIE1 register
(Figures 6-3 and 6-4).

Figure 6-3. FIE: USB Function Interrupt Enable Register

FIE Address: S:A2H
Reset State: 0000 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0

FRXIE3 FTXIE3 FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

Bit
Number

Bit
Mnemonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).

6 FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIE0 Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXD0).

0 FTXIE0 Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint 0 (FTXD0).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value is still reflected in the FIFLG register.
6-8

INTERRUPT SYSTEM

ans-

s

Figure 6-4. FIE1: USB Function Interrupt Enable Register

The USB function generates a receive done interrupt for an endpoint x (x = 0–3) by setting the
FRXDx bit in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6). Only non-isochronous tr
fer can cause a receive done interrupt. Receive done interrupts are generated only when all of the
following are true:

1. A valid SETUP or OUT token is received to function endpoint x, and

2. Endpoint x is enabled for reception (RXEPEN in EPCON = ‘1’), and

3. Receive is enabled (RXIE = ‘1’) and STALL is disabled (RXSTL = ‘0’) for OUT token
(or the token received is a SETUP token), and

4. A data packet is received with no time-out — regardless of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underrun), and

5. There is no data sequence PID error.

FIE1 Address: S:A3H
Reset State: 0000 0000B

Function Interrupt Enable Register 1. Available on the 8x930Ax only, this register enables and
disables the receive and transmit done interrupts for function endpoints four and five.

7 0

— — — — FRXIE5 FTXIE5 FRXIE4 FTXIE4

Bit
Number

Bit
Mnemonic Function

7:4 — Reserved:

3 FRXIE5 Function Receive Done Interrupt Enable 5:

Enables receive done interrupt for endpoint 5 (FTXD5).

2 FTXIE5 Function Transmit Interrupt Enable 5:

Enables the transmit done interrupt for endpoint 5 (FTXD5).

1 FRXIE4 Function Receive Interrupt Enable 4:

Enables the receive done interrupt for endpoint 4 (FRXD4).

0 FTXIE4 Function Transmit Interrupt Enable 4:

Enables the transmit done interrupt for endpoint 4 (FTXD4).

NOTE: When the FRXIE.5:4 or FTXIE.5:4 is set, the interrupt is enabled and it will cause an
interrupt to the CPU, when a transmit of receive done flag is set. If the FRXIE.5:4 and
FTXIE.5:4 is cleared, the interrupt is disabled. All these bits can be read/write by firmware.
6-9

8x930Ax, 8x930Hx USER’S MANUAL

ission

heck

sfer

 in

ission

o

s
Because the FRXDx bit is set and a receive done interrupt is generated regardless of transm
errors, this condition means either:

1. Valid data is waiting to be serviced in the receive FIFO for function endpoint x and that
the data was received without error and has been acknowledged; or

2. Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must c
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endpoint x (x = 0–3†) by setting the
FTXDx bit in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6). Only non-isochronous tran
can cause a transmit done interrupt. Transmit done interrupts are generated only when all of the
following are true:

1. A valid IN token is received to function endpoint x, and

2. Endpoint x is enabled for transmission (TXEPEN = ‘1’), and

3. Transmit is enabled (TXIE = ‘1’) and STALL is disabled (TXSTL = ‘0’), and

4. A data packet/byte count has been loaded in the transmit FIFO and was transmitted
response to the IN token — regardless of whether or not a FIFO error occurs, and

5. An ACK is received from the host or there was a time-out in the SIE.

Because the FTXDx bit is set and a transmit done interrupt is generated regardless of transm
errors, this condition means either:

1. The transmit data has been transmitted and the host has sent an acknowledgment t
indicate that is was successfully received; or

2. A transmit data error occurred during transmission of the data packet, which require
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

NOTE
Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE or FIE1, as shown in Figures 6-3 and 6-4) means that the interrupt is
enabled and will cause an interrupt to be signaled to the microcontroller.
Clearing a bit in the FIE register disables the associated interrupt source,
which can no longer cause an interrupt even though its value will still be
reflected in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6).

† The 8x930Ax can be configured for up to six endpoints, 0-5.
6-10

INTERRUPT SYSTEM

Figure 6-5. FIFLG: USB Function Interrupt Flag Register

FIFLG Address: S:C0H
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0

FRXD3 FTXD3 FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

Bit
Number

Bit
Mnemonic Function

7 FRXD3 Function Receive Done Flag, Endpoint 3

6 FTXD3 Function Transmit Done Flag, Endpoint 3

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXD0 Function Receive Done Flag, Endpoint 0

0 FTXD0 Function Transmit Done Flag, Endpoint 0

NOTES:
1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.
6-11

8x930Ax, 8x930Hx USER’S MANUAL

. The
 timer
nable

d from
rtificial
hen a
he

Figure 6-6. FIFLG1: USB Function Interrupt Flag Register

6.5.2 USB Start-of-frame Interrupt

The USB start-of-frame interrupt (SOF) is used to control the transfer of isochronous data
8x930 frame timer attempts to synchronize to the frame time automatically. When the frame
is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure 6-7). To e
the start-of-frame interrupt, set the SOFIE bit in SOFH.

The 8x930 generates a start-of-frame interrupt whenever a start-of-frame packet is receive
the USB lines, or whenever a start-of-frame packet should have been received (i.e., an a
SOF). The 8x930 generates an SOF interrupt by setting the ASOF bit in the SOFH SFR. W
start-of-frame interrupt occurs, the 8x930 loads the current value of the frame timer into t
SOFH/SOFL registers (Figures 6-7 and 6-8).

FIFLG1 Address: S:C1H
Reset State: 0000 0000B

Function Interrupt Flag Register 1. Available on the 8x930Ax only, this register contains the USB
Function’s Transmit and Receive Done interrupt flags for non-isochronous endpoints.

7 0

— — — — FRXD5 FTXD5 FRXD4 FTXD4

Bit
Number

Bit
Mnemonic Function

7:4 — Reserved:

Write zeros to these bits.

3 FTXD5 Function Receive Done Flag, Endpoint 5:

2 FTXD5 Function Transmit Done Flag, Endpoint 5:

1 FRXD4 Function Receive Done Flag, Endpoint 4:

0 FTXD4 Function Transmit Done Flag, Endpoint 4:

NOTES:
1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.
6-12

INTERRUPT SYSTEM
NOTE
The start-of-frame interrupt shares an interrupt vector with the hub interrupt.
When this interrupt is triggered, firmware must examine the ASOF bit in the
SOFH SFR to determine that it was the start-of-frame interrupt that was
triggered, and not the hub interrupt.

SOFH Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TCLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

Figure 6-7. SOFH: Start of Frame High Register
6-13

8x930Ax, 8x930Hx USER’S MANUAL

Figure 6-8. SOFL: Start of Frame Low Register

3 SOFODIS SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight TCLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0

TS7:0

Bit
Number

Bit
Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

SOFH (Continued) Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

Figure 6-7. SOFH: Start of Frame High Register (Continued)
6-14

INTERRUPT SYSTEM

mory
r

d

ould be
is
hin the
ch
 timer

sfer,

r

0.
The 8x930 uses the start-of-frame interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from me
and loaded into the transmit FIFO in preparation for transmission in the next frame; o

2. When receiving: An isochronous packet has been received in the previous frame an
needs to be retrieved from the receive FIFO.

Since the start-of-frame packet could be corrupted, there is a chance that a new frame c
started without successful reception of the SOF packet. For this reason, an artificial SOF pro-
vided. The frame timer signals a time-out when an SOF packet has not been received wit
allotted amount of time. In this fashion, the 8x930 generates an SOF interrupt reliably once ea
frame within 1 µs of accuracy, except when this interrupt is suspended or when the frame
gets out-of-sync with the USB bus frame time.

In summary, in order to utilize the USB start-of-frame functionality for isochronous data tran
the following must all be true:

1. The global enable bit must be set. That is, the EA bit must be set in the IEN0 registe
(Figure 6-12).

2. The isochronous endpoint any SOF interrupt must be enabled. That is, the ESOF bit must
be set in the IEN1 register (Figure 6-13).

3. The start-of-frame interrupt must be enabled. That is, the SOFIE bit must be set in the
SOFH Register (Figure 6-7).

NOTE
The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a 1 ms pulse, subject to the accuracy of the USB start-of-frame. This pin is
enabled by clearing the SOFODIS bit in the SOFH register.

6.5.3 USB Hub Interrupt

The USB hub interrupt is used to signal a receive done or transmit done for hub endpoint

To enable the hub interrupt:

1. Set the global enable bit (EA) in the IEN0 register (Figure 6-12)

2. Enable the hub endpoint 0 transmit done and receive done interrupts individually:

a. To enable the receive done interrupt, set the HRXE0 bit in the Hub Interrupt Enable
SFR (HIE, as shown in Figure 6-9)

b. To enable the transmit done interrupt, set the HTXE0 bit in HIE
6-15

8x930Ax, 8x930Hx USER’S MANUAL

g; a

Figure 6-9. HIE: Hub Interrupt Enable Register

The USB Hub Interrupt Flag Register (HIFLG, as shown in Figure 6-10) is used to indicate pend-
ing hub interrupts. For all bits in HIFLG, a ‘1’ indicates that an interrupt is actively pendin
‘0’ indicates that the interrupt is not active. The interrupt status is shown in the HIFLG register
regardless of the state of the corresponding interrupt enable bit in the HIE Register (Figure 6-9).

NOTE
The hub interrupt shares an interrupt vector with the start-of-frame interrupt.
When this interrupt is triggered, firmware must examine the HIFLG SFR to
determine that it was the hub interrupt that was triggered and not the start-of-
frame interrupt.

HIE Address: S:A1H
Reset State: 0xxx xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0

— — — — — HRXE0 HTXE0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXE0 HRXE0:

Enable the hub endpoint 0 receive done interrupt (HRXD0).†

0 HTXE0 HTXE0:

Enable the hub endpoint 0 transmit done interrupt (HTXD0).†

† For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.
6-16

INTERRUPT SYSTEM

Figure 6-10. HIFLG: Hub Interrupt Status Register

HIFLG Address: S:E8H
Reset State: 0xxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0

— — — — — HRXD0 HTXD0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXD0 Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXD0 Hub Transmit Done, Endpoint 0:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:
1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits

are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXD0 and HTXD0, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.
6-17

8x930Ax, 8x930Hx USER’S MANUAL

r

activity
e” on

et
ected on
e, the
pt. For

f the
-up
 has to
nd/re-

U in

mode
ake-

.
 when
 it
erates
hub.
6.5.4 USB Global Suspend/Resume Interrupt

The 8x930 supports USB power control through firmware. The USB power control registe
(PCON1, as shown in Figure 15-2 on page 15-4) facilitates USB power control of the 8x930, in-
cluding global suspend/resume and USB function resume.

NOTE
On the 8x930Ax only, the global suspend/resume interrupt shares an interrupt
vector with the USB reset interrupt. When this interrupt is triggered, firmware
must examine the GSUS and GRSM bits in the PCON1 SFR (Figure 15-2 on
page 15-4) to determine that it was the global suspend/resume interrupt that
was triggered, and not the USB reset interrupt.

6.5.4.1 Global Sus pend

When a global suspend is detected by the 8x930, the global suspend bit (GSUS of PCON1) is set
and the global suspend/resume interrupt is generated. Global suspend is defined as bus in
for more than 3 ms on the USB lines. For additional information, see “Global Suspend Mod
page 15-8.

6.5.4.2 Global Resume

When a global resume is detected by the 8x930, the global resume bit (GRSM of PCON1) is s
and the global suspend/resume interrupt is generated. As soon as resume signaling is det
the USB lines, the oscillator is restarted. After executing the resume interrupt service routin
8x930 resumes operation from where it was when it was interrupted by the suspend interru
additional information, see “Global Resume Mode” on page 15-10.

6.5.4.3 USB Remote Wake-up

The 8x930 can also initiate resume signaling to the USB lines through remote wake-up o
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wake
has to be initiated through assertion of an enabled external interrupt. The external interrupt
be enabled and it must be configured with level trigger and with higher priority than a suspe
sume interrupt. An external interrupt restarts the clocks to the 8x930 and program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RW
PCON1) to drive resume signaling on the USB lines to the host or upstream hub. After executing
the external ISR, the program continues execution from where it was put into powerdown
and the 8x930 resumes normal operation. For additional information, see “USB Remote W
up” on page 15-10.

6.5.5 8x930Ax USB Reset Separation

The 8x930Ax features an optional USB reset that functions independently from the chip reset
When the PCON1 SFR’s URDIS bit is set, the MCS 251 core and peripherals will not reset
a USB reset signal is detected. After an 8x930Ax with URDIS set detects a USB reset signal,
resets all the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and gen
a USB reset interrupt. USB reset signals can originate only from the host PC or upstream
6-18

INTERRUPT SYSTEM

 gen-
 reset
 15-3)
ing

lock

e out-

rm the

NOTE
The use of a separate USB reset is recommended only for applications where
the device is required to be operated continually, even when the PC is
powered-off. All other applications are advised against using the separate USB
reset. Leaving the URDIS bit clear will ensure a robust, chip-level reset.

The USB reset must be implemented partially in firmware, including an
initialization routine as part of chip start-up. To ensure compliance with USB-
specified timing constraints and minimize the potential for data corruption,
you must implement flag checking as part of your main routine, subroutines,
and ISRs. These requirements increase the complexity of your firmware code.

If the 8x930Ax is in powerdown or suspend mode when the separate USB reset interrupt is
erated, the device will wake up from powerdown or suspend mode upon receiving the USB
signal. The ISR of a bus-powered device must set the LC bit of PCON (Figure 15-1 on page
in order to operate at 3 MHz. This ensures that the device meets the 100 mA current limit dur
enumeration, as required by the Universal Serial Bus Specification. Self-powered devices (i.e.,
devices drawing less than 100mA from the USB wires) may choose not to switch to Low C
mode after detecting the USB reset.

NOTE
If desired, your firmware can handle the separate USB reset without using an
ISR. To do this, you must clear the ESR bit in the IEN1 SFR. The USB reset
hardware operations will still take place, but the ISR will not be called. That is,
step 1 and step 2 under “USB Reset Hardware Operations” on page 6-22 will
still occur, but step 3 will not. Your firmware must poll the URST flag
periodically to detect the USB reset and take the appropriate action.

Since the global suspend and global resume interrupts share the same interrupt
vector as USB reset, your firmware must also poll the GRSM and GSUS bits
in PCON1 to detect global suspend or resume.

If, instead, you choose to implement a separate USB reset using an ISR, follow the procedur
lined in the following subsections and shown in Figure 6-11.

6.5.5.1 Initialization Required for USB Reset

Because USB reset implementation depends heavily on firmware, your code must perfo
following initialization prior to execution of the main routine (See Figure 6-11):

1. To enable the USB reset interrupt on the 8x930Ax, your initialization routine must set the
following bits to ‘1’:

a. the EA bit of IEN0 (Figure 6-12)

b. the ESR bit of IEN1 (Figure 6-13)

c. the URDIS bit of PCON1 (Figure 15-2 on page 15-4)
6-19

8x930Ax, 8x930Hx USER’S MANUAL

n

ts in
2. Use bit 2 of IPH1/IPL1 to set the priority of the USB reset interrupt (See “Interrupt
Priorities” on page 6-27).

NOTE
It is recommended that you set the USB reset interrupt to the highest priority.

3. After enabling the USB reset interrupt and assigning it a priority, your initialization
routine should clear the USB_RST_FLG flag. This flag is a global variable declared i
your firmware, not a bit in an SFR.

This flag, an indicator that a USB reset has occurred, will be examined at various poin
your main routine, subroutines, and ISRs.
6-20

INTERRUPT SYSTEM
Figure 6-11. USB Reset Separation Operating Model

No

Initialization Routine:

Set IEN0.EA;

Set EN1.ESR;

Set PCON1.URDIS;

Set Interrupt Priority;

USB_RST_FLG = 0;

USB_RST_FLG

= 1?

Periodically Test

USB_RST_FLG

Yes

Main Routine:

(normal processing

until interrupt occurs)

Continue with

Main Routine

Continue with

Main Routine

Clear USB_RST_FLG;

Initialize USB-related SFRs;

Flush USB FIFOs;

USB

Initialization Routine

Check

PCON1.URST

USB Reset,

Global Suspend,

Resume ISR

Clear PCON1.URST;

USB_RST_FLG = 1

(Bus Powered?–

Set PCON.LC)

Perform Global

Suspend/Resume

ISR

ISR

Complete

= 0= 1

U
S

B
 r

es
et

 tr
ig

ge
re

d

Lo
op

 c
on

tin
uo

us
ly

USB Reset

Hardware

Reset all USB blocks;

Set PCON.URST;

Generate USB Reset

Interrupt;

A5206-01
6-21

8x930Ax, 8x930Hx USER’S MANUAL

y the

,

. This

IS

 a

resume

 must
 page

e.

 this
 that

er to

n be
6.5.5.2 USB Reset Hardware Operations

When the host initiates a USB reset signal, the following series of events is performed b
8x930Ax hardware (See Figure 6-11):

1. Upon detecting a USB reset signal, the 8x930Ax hardware resets all the USB blocks (i.e.
the FIFOs, the SIU, the SIE, and the USB transceiver).

As a result of this process, all USB-related SFRs are reset to their default reset states
includes EPINDEX, EPCON, SOFL, SOFH, FIE, FIFLG, FADDR, TXSTAT, TXDAT,
TXCON, TXFLG, TXCNTL, TXCNTH, RXSTAT, RXDAT, RXCON, RXFLG,
RXCNTL, RXCNTH, and PCON1. Note that PCON1 is only partially reset — the URD
and URST bits retain their original values.

Because of this hardware reset, any USB-related operations (e.g., MOV TXDAT,A) will
not provide valid data.

2. The 8x930Ax sets the PCON1.URST bit to indicate a USB reset to the ISR.

3. If the ESR bit in IEN1 is set, the 8x930Ax generates a USB reset interrupt, which causes
branch to the interrupt service routine whose vector is located at FF:0053H. This ISR
services both the USB reset interrupt and the global suspend/resume interrupt.

6.5.5.3 USB Reset ISR

Because the USB reset interrupt shares an interrupt vector with the USB global suspend/
interrupt, the interrupt service routine must play a dual role. The ISR must first check PCON1’s
URST bit to ensure that this interrupt is indeed a USB reset interrupt.

If URST = ‘0’, then this interrupt must be a global suspend/resume interrupt and the ISR
branch to service that type of interrupt. See “USB Global Suspend/Resume Interrupt” on
6-18 for a description of this portion of the ISR.

If the URST bit is set to ‘1’, then this interrupt is a USB reset interrupt. The ISR must perform
the following procedure (See Figure 6-11):

1. Clear PCON1’s URST bit — to indicate that the USB reset interrupt has been serviced.

2. Set the user flag USB_RST_FLG that was cleared as part of your initialization routin

This flag is discussed in “Initialization Required for USB Reset” on page 6-19. Setting
flag is necessary to inform your firmware routines that a USB reset has occurred and
USB initialization must be performed.

3. Bus-powered devices must set the LC bit of PCON (Figure 15-1 on page 15-3) in ord
operate at 3 MHz. This ensures that the device meets the Universal Serial Bus
Specification’s 100 mA current limit during enumeration.

4. Restore any register values and return from interrupt.

The rest of the USB reset procedure will be initiated by a USB initialization routine that ca
called from the main routine, subroutines, or other ISRs.
6-22

INTERRUPT SYSTEM

ialized
rrupt
 is to

 which

n

trans-

e
our

code
point,
plete
e

6.5.5.4 Main Routine Considerations

Although the USB-related SFRs were reset by the USB reset ISR, they must also be init
by a special USB initialization routine called by the main routine. Since the USB reset inte
can occur at any time, the only way the main routine will know that a USB reset occurred
periodically check the USB reset flag (USB_RST_FLG). This is the firmware flag that was set in
Step 2 of the “USB Reset ISR” on page 6-22.

When a set reset flag is detected, the main routine branches to a USB initialization routine,
performs the following tasks (See Figure 6-11):

1. Clear the user flag USB_RST_FLG.

Clearing this flag indicates that USB initialization is not required. Clear this flag first i
case a second USB reset occurs during this initialization routine, rendering this
initialization invalid.

2. Initialize the USB-related SFRs to the values required by your program.

If your application requires any other SFRs to be initialized upon USB reset (e.g., SCON),
now is the time to do so.

3. Restore any USB-related user flags specific to your application.

4. Flush all USB FIFOs. This is done by setting RXCLR in RXCON and TXCLR in
TXCON. This must be done for each function endpoint.

5. Return to the calling routine.

At this point, the main routine can resume normal processing. Eventually, the host PC will
mit a SETUP token. This will trigger an interrupt that will perform USB enumeration.

NOTE
USB specifications require that all devices must be able to accept a device
address via a SET_ADDRESS command no later than 10 ms after the reset is
removed.

It is recommended that you ensure that the total time required for the following is less than 10ms:

1. The time to complete and exit from the USB reset ISR (accounting for latency — see
“Interrupt Processing” on page 6-32)

2. The time for the maximum number of instructions that could execute before your cod
recognizes that a USB reset has occurred (by checking USB_RST_FLG) and calls y
USB initialization routine

3. The time to execute your USB initialization routine

This time constraint may require you to check USB_RST_FLG at multiple points in your
(and within any ISRs that may take longer than 10ms to perform). By inserting this check
your program can branch from a routine (or ISR) after the USB reset without having to com
the routine (or ISR). Your program can continue the interrupted routine after ensuring that th
device is ready for USB enumeration.
6-23

8x930Ax, 8x930Hx USER’S MANUAL

, the
ween

d by

r, all
CAUTION
If a USB reset interrupt occurs during execution of a USB receive ISR (e.g.,
receive done or start-of-frame), the 8x930Ax will reset the USB hardware.
This will render invalid any data received during the USB transfer. If this is
not detected by your firmware, misprocessing can occur.

The risk of USB reset-related misprocessing can be reduced if your USB receive/transmit ISRs
check USB_RST_FLG before returning. If this flag is set, your code should branch to the USB
initialization routine to initialize the USB-related SFRs and flush the FIFOs. If this is done
only potential opportunity for misprocessing would be if the USB reset interrupt occurs bet
the test of USB_RST_FLG and the branch to the USB initialization routine.

NOTE
Because of the risk of misprocessing, however slight, it is recommended that
applications that will not substantially benefit from a separate USB reset
disable this option (by leaving the URDIS bit in PCON1 cleared) to simplify
firmware coding and ensure a robust, chip-level reset.

6.6 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disable
the appropriate interrupt enable bit in the IEN0 register at S:A8H (see Figure 6-12) or the IEN1
register at S:B1H (see Figure 6-13). Note IEN0 also contains a global disable bit (EA). If EA is
set, interrupts are individually enabled or disabled by bits in IEN0 and IEN1. If EA is clea
interrupts are disabled.
6-24

INTERRUPT SYSTEM

Figure 6-12. IEN0: Interrupt Enable Register 0

IEN0 Address: S:A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IEN0 contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

7 0

EA EC ET2 ES ET1 EX1 ET0 EX0

Bit
Number

Bit
Mnemonic Function

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0–6 of this register, as well as the interrupts enabled by the bits in the
IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which
is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ET0 Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EX0 External Interrupt 0 Enable:

Setting this bit enables external interrupt 0.
6-25

8x930Ax, 8x930Hx USER’S MANUAL

Figure 6-13. IEN1: USB Interrupt Enable Register

IEN1 Address: S:B1H
Reset State: xxxx x000H

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.

7 0

— — — — — ESR EF ESOF

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 ESR Enable Suspend/Resume:

USB global suspend/resume interrupt enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.
6-26

INTERRUPT SYSTEM

d to

 in-
ther
e re-

6-6).
6.7 INTERRUPT PRIORITIES

Ten of the eleven 8x930 interrupt sources (TRAP excluded) may be individually programme
one of four priority levels. This is accomplished with the IPHX.x/IPLX.x bit pairs in the interrupt
priority high (IPH1/IPH0 in Figure 6-14 and 6-16) and interrupt priority low (IPL1/IPL0) regis-
ters (Figures 6-15 and 6-17). Specify the priority level as shown in Table 6-5 using IPH0.x (or
IPH1.x) as the MSB and IPL0.x (or IPL1.x) as the LSB.

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any o
interrupt source. Higher priority interrupts are serviced before lower priority interrupts. Th
sponse to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same four-
state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table

Table 6-5. Level of Priority

Priority Level IPH1. x, IPL1.x IPH0.x, IPL0.x

0 Lowest Priority 00 00

1 01 01

2 10 10

3 Highest Priority 11 11

Table 6-6. Interrupt Priority Within Level

Priority Number Interrupt Name

1 (Highest Priority) INT0#

2 Timer 0

3 INT1#

4 Timer 1

5 Serial Port

6 Timer 2

7 PCA

8 USB Hub / SOF

9 USB Function

10 USB Global Suspend/Resume
6-27

8x930Ax, 8x930Hx USER’S MANUAL

Figure 6-14. IPH0: Interrupt Priority High Register 0

IPH0 Address: S:B7H
Reset State: x000 0000B

Interrupt Priority High Control Register 0. IPH0, together with IPL0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0.x IPL0.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPH0.6 IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPH0.6 PCA Interrupt Priority Bit High

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPH0.4 Serial I/O Port Interrupt Priority Bit High

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPH0.2 External Interrupt 1 Priority Bit High

1 IPH0.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPH0.0 External Interrupt 0 Priority Bit High
6-28

INTERRUPT SYSTEM

Figure 6-15. IPL0: Interrupt Priority Low Register 0

IPL0 Address: S:B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPL0, together with IPH0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0.x IPL0.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPL0.6 IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPL0.6 PCA Interrupt Priority Bit Low

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPL0.4 Serial I/O Port Interrupt Priority Bit Low

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPL0.2 External Interrupt 1 Priority Bit Low

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPL0.0 External Interrupt 0 Priority Bit Low
6-29

8x930Ax, 8x930Hx USER’S MANUAL

Figure 6-16. IPH1: Interrupt Priority High Register 1

IPH1 Address: S:B3H
Reset State: x000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — — — — IPH1.2 IPH1.1 IPH1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High

1 IPH1.1 USB Function Interrupt Priority Bit High

0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High
6-30

INTERRUPT SYSTEM

Figure 6-17. IPL1: Interrupt Priority Low Register 1

IPL1 Address: S:B2H
Reset State: x000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — — — — IPL1.2 IPL1.1 IPL1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low

1 IPL1.1 USB Function Interrupt Priority Bit Low

0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low
6-31

8x930Ax, 8x930Hx USER’S MANUAL

upt and

in the
the
c due
ditions

quence
are not
ource
s, page-
6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interr
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-18).
Response time is the amount of time between the interrupt request and the resulting break
current instruction stream. Latency is the amount of time between the interrupt request and
execution of the first instruction in the interrupt service routine. These periods are dynami
to the presence of both fixed-time sequences and several variable conditions. These con
contribute to total elapsed time.

Figure 6-18. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed se
comprises the interrupt sample, poll, and request operations. The variables consist of (but
limited to): specific instructions in use at request time, internal versus external interrupt s
requests, internal versus external program operation, stack location, presence of wait state
mode operation, and branch pointer length.

NOTE
In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meet VIH and VIL specifications prior to any state time
under discussion. This setup state time is not included in examples or
calculations for either response or latency.

OSC

Ending Instructions Push PC

A4153-01

State

Time

External

Interrupt

Request

ISR

Latency

Response Time

Call ISR
6-32

INTERRUPT SYSTEM

inter-
e ad-
ations

4 poll

r

time,

efini-
vari-
rrupt
hitec-
).

 before

nterrupt
8). Re-
-
e

6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-18). Two of eight
rupts are latched and polled per state time within any given window of four state-times. On
ditional state time is required for a context switch request. For code branches to jump loc
in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context
switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (
states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

• The source request is an internal interrupt with high enough priority to take precedence ove
other potential interrupts,

• The request is coincident with internal execution and needs no instruction completion

• The program uses an internal stack location, and

• The ISR is in on-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By d
tion, it is often difficult to predict exact timing calculations for real-time requests. One large
able is the completion time of an instruction cycle coincident with the occurrence of an inte
request. Worst-case predictions typically use the longest-executing instruction in an arc
ture’s code set. In the case of the 8x930, the longest-executing instruction is a 16-bit divide (DIV
However, even this 21- state instruction may have only 1 or 2 remaining states to complete
the interrupt system injects a context switch. This uncertainty affects both response time and la-
tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an i
and lasts until a break in the current instruction execution stream occurs (see Figure 6-1
sponse time (and therefore latency) is affected by two primary factors: the incidence of the re
quest relative to the four-state-time sample window and the completion time of instructions in th
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE
External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency
time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).
6-33

8x930Ax, 8x930Hx USER’S MANUAL

led for
zed, the
ime to
unit. If
he total
-state

le, re-
uests
 time
). The
rtinent
If the external interrupt goes active one state after the sample state, the pin is not resamp
another three states. After the second sample is taken and the interrupt request is recogni
interrupt controller requests the context switch. The programmer must also consider the t
complete the instruction at the moment the context switch request is sent to the execution
9 states of a 10-state instruction have completed when the context switch is requested, t
response time is 6 states, with a context switch immediately after the final state of the 10
instruction (see Figure 6-19).

Figure 6-19. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next samp
sponse is much quicker. One state asserts the request, one state samples, and one state req
the context switch. If at that point the same instruction conditions exist, one additional state
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-20
total response time in this case is four state times. The programmer must evaluate all pe
conditions for accurate predictability.

OSC

State Time

INT0#

Sample INT0#

Response Time = 6

Ten State

Instruction

Request

Push PC

A4155-02
6-34

INTERRUPT SYSTEM

 one
 DIV is
riable
tency

Figure 6-20. Response Time Example #2

6.8.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the longest 8x930 instruction used in the program
must fully execute prior to a context switch. The instruction execution time is reduced by
state with the assumption the instruction state overlaps the request state (therefore, 16-bit
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and va
interrupt times (see Table 6-7) to this instruction time to predict latency. The worst-case la
(both fixed and variable times included) is expressed by a pseudo-formula:

Table 6-7. Interrupt Latency Variables

Variable
INT0#,
INT1#,
T2EX

External
Execution

Page
Mode

>64K
Jump to
ISR (1)

External
Memory

Wait
State

External
Stack

<64K (1)

External
Stack

>64K (1)

External
Stack

Wait State

Number
of

States
Added

1 2 1 8 1 per
bus cycle 4 8 1 per

bus cycle

NOTES:
1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte. — Internal execution

— <64K jump to ISR — Internal stack

— Internal peripheral interrupt

OSC

State Time

INT0#

Sample INT0#

Response Time = 4

Ten State

Instruction

Request

Push PC

A4154-02

FIXED_TIME VARIABLES LONGEST_INSTRUCTION+ + MAXIMUM LATENCY PREDICTION=
6-35

8x930Ax, 8x930Hx USER’S MANUAL

nd the
ps for
ent 21-
est one

 occur.
 state

es are
latency
(less

t at a
endix
ware-

int

r

he in-
es at

om-
6.8.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, a
stack are located within the same 64-Kbyte memory region (compatible with memory ma
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the curr
state DIV instruction when INT0# requests service. Also assume INT0# has made the requ
state prior to the sample state (as in Figure 6-20). Unlike Figure 6-20, the response time for this
assumption is three state times as the current instruction completes in time for the branch to
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-7, one
is added for an INT0# request from external hardware; two states are added for external execu-
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three stat
added for the current instruction to complete. The actual latency is 26 states. Worst-case
calculations predict 43 states for this example due to inclusion of total DIV instruction time
one state).

6.8.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt reques
time generates a vector cycle to an interrupt service routine (see CALL instructions in App
A, “Instruction Set Reference”). There are three causes of blocking conditions with hard
generated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any po
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction in progress is RETI or any write to the IEN0, IEN1, IPH0, IPH1, IPL0 o
IPL1 registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures t
struction in progress completes before the system vectors to the ISR. Condition three ensur
least one more instruction executes before the system vectors to additional interrupts if the in-
struction in progress is a RETI or any write to IEN0, IEN1, IPH0, IPH1, IPL0 or IPL1. The c
plete polling cycle is repeated every four state-times.

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted

Base Case Minimum Fixed Time 16 16

INT0# External Request 1 1

External Execution 2 2

<64K Byte Stack Location 4 4

Execution Time for Current DIV Instruction 3 20

TOTAL 26 43
6-36

INTERRUPT SYSTEM

-

ber of
e 4-6)
e is il-

orms

spend-

e eight
1), the
e

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the
stack. The CPU then reloads the PC with a start address for the appropriate ISR. The num
bytes pushed to the stack depends upon the INTR bit in the UCONFIG1 (Figure 4-4 on pag
configuration byte. The complete sample, poll, request and context switch vector sequenc
lustrated in the interrupt latency timing diagram (Figure 6-18).

NOTE
If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked
interrupt requests are not buffered for retention.

6.8.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction inf
the processor that the interrupt routine is completed. The RETI instruction in the ISR pops PC
address bytes off the stack (as well as PSW1 for INTR = 1) and execution resumes at the su
ed instruction stream.

NOTE
Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In the 8x930, this causes a compatibility
problem if INTR = 1 in configuration byte CONFIG1. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routine is called and pops the same four bytes when the RETI is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8x930 with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines ar
bytes apart. If consecutive interrupts are used (IE0 and TF0, for example, or TF0 and IE
first interrupt routine (if more than seven bytes long) must execute a jump to some other mmory
location. This prevents overlap of the start address of the following interrupt routine.

CAUTION
It is recommended that programmers set the contents of EPINDEX and/or
HPINDEX once, at the start of each routine, instead of writing to the
EPINDEX register prior to each access of an endpoint-indexed SFR and to
HPINDEX prior to each access of a port-indexed SFR.

This means that interrupt service routines must save the contents of the
EPINDEX and HPINDEX registers at the start of the routine and restore the
contents at the end of the routine to prevent the EPINDEX and HPINDEX
registers from being corrupted.
6-37

7
USB Function

e USB
er 9,

ers of
de-
ation.

for the

appear

com-
 inter-

rial
s of

r
 7-5).
ution.

 data

-1 on

be
CHAPTER 7
USB FUNCTION

This chapter describes the FIFOs and special function registers (SFRs) associated with th
function interface. This chapter, along with Chapter 2, “Architectural Overview” and Chapt
“USB Programming Models,” describes the operation of function interface on the 8x930Ax and
8x930Hx USB microcontrollers.

A data flow model for USB transactions, intended to bridge the hardware and firmware lay
the 8x930, is presented in truth table form in Appendix D, “Data Flow Model.” The model
scribes 8x930 behavior in response to a particular USB event, given a known state/configur

The USB signals discussed in this chapter are described in Table 7-1. Pinout diagrams
8x930Ax and 8x930Hx appear in Appendix B, “Signal Descriptions.”

The SFRs described in this chapter are listed in Table 7-2. The SFR definition tables that
in this chapter also appear in alphabetical order in Appendix C, “Registers.”

7.1 FUNCTION INTERFACE

The function interface provides a USB interface capability for one USB function. The main
ponents of the function interface are the serial bus interface engine (SIE) and the function
face unit (FIU). Refer to the block diagrams in Figure 2-3 on page 2-6 (8x930Ax) and Figure 2-4
on page 2-7 (8x930Hx). The operation of the function interface is discussed in “Universal Se
Bus Module” on page 2-12. On the 8x930Hx, the hub accesses the function interface by mean
the internal downstream port.

7.1.1 Function Endpoint Pairs

The endpoint pairs implemented on the 8x930Ax and 8x930Hx. are listed in Tables 2-5. The
EPINDEX register selects the endpoint pair for any given data transaction.

The 8x930Ax can be programmed to support either four function endpoint pairs (4EPP, 0-3) o
six function endpoint pairs (6EPP, 0-5). See the EPCONFIG register (Figure 7-1 on page
The selection is made during initialization and should not be changed during program exec
Endpoint 0 handles and only control data transfers. Endpoints 1 through 4 handle all four data
transfer types: control, isochronous (ISO), interrupt, and bulk. Endpoint 5 handles three
transfer types: control, interrupt, and bulk.

The 8x930Hx supports four function endpoint pairs (identical to the four-endpoint pair option on
the 8x930Ax) and two hub endpoint pairs. See “USB Hub Endpoints” on page 8-10.

7.1.2 Function FIFOs

The 8x930 provides a transmit/receive FIFO pair in support of each endpoint pair. Figure 7
page 7-5 shows the byte capacities of the 8x930 FIFOs. For the 8x930Ax (with the four-endpoint
pair option selected) and the 8x930Hx, the function endpoint 1 transmit/receive FIFO pair can
7-1

8x930Ax, 8x930Hx USER’S MANUAL

his is

 USB.
y the
 archi-

 the
. Table
Rs are
7

FH,
re 6-8
programmed for capacities of 256/256, 512/512, 1024/0, or 0/1024 bytes respectively. T
done with the FFSZ1:0 bits in the TXCON register associated with function endpoint1.

For the 8x930Ax with the six-endpoint option selected, program the endpoint 1 transmit/receive
FIFOs for 256/256 bytes (FFSZ1:0 = 00).

Transmit FIFOs are written by the CPU and then read by the FIU for transmission on the
Receive FIFOs are written by the FIU following reception from the host PC, then read b
CPU. All transmit FIFOs have the same architecture, and all receive FIFOs have the same
tecture.

7.1.3 Special Function Registers (SFRs)

The FIU controls operations through the use of four sets of special functions registers (SFRs):
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs
7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SF
described in Chapter 6, “Interrupt System.” Table 3-5 on page 3-16 and Table 3-6 on page 3-1
memory maps of all the 8x930 SFRs.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SO
and FADDR. The SOFH and SOFL SFRs are defined in Figure 6-7 on page 6-13 and Figu
on page 6-14. The remaining registers are defined in Figures 7-1 through 7-6.

Table 7-1. Non-hub USB Signal Descr iptions

Signal
Name Type Description Alternate

Function

PLLSEL2:0 I Phase-locked Loop Select. Three-bit code selects the USB
data rate (see Table 2-4 on page 2-10).

—

SOF# O Start of Frame. The SOF# pin is asserted for eight states when
an SOF token is received.

—

DP0, DM0 I/O USB Port 0 . DP0 and DM0 are the data plus and data minus
lines of differential USB upstream port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KΩ pullup resistor at DM0. For full-speed
devices, provide an external 1.5 KΩ pullup resistor at DP0.
NOTE: For the 8x930Ax, either DP0 or DM0 must be pulled

high. Otherwise a continuous SE0 (USB reset) will be
applied to these inputs causing the 8x930Ax to stay in
reset.
For the 8x930Hx, provide an external 1.5 KΩ pullup
resistor at DP0 so the device indicates to the host that
it is a full-speed device.

—

ECAP I External Capacitor . Must be connected to a 1 µF capacitor (or
larger) to ensure proper operation of the differential line driver.
The other lead of the capacitor must be connected to VSS.

—

7-2

USB FUNCTION

nd

and
27.

nt-in-

ed as

e E

 TX-
d.

point 1

that

he
oint
o spec-

 7-2.

 SFR.
r at the
X reg-
The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, a
TXCNTH. These registers are defined in Figures 7-8 through 7-11 beginning on page 7-18.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL,
RXCNTH. These registers are defined in Figures 7-13 through 7-16 beginning on page 7-

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoi
dexed

CAUTION
Unless otherwise noted in the bit definition, SFRs can be read and written by
firmware. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.
These instructions are listed in “Read-Modify-Write Instructions” on page
10-5.

7.1.3.1 Endpoint-inde xed SFRs

As indicated in the SFR memory maps in Table 3-5 on page 3-16 (8x930Ax) and Table 3-6 on
page 3-17 (8x930Hx), certain USB SFRs are endpoint-indexed. These SFRs are implement
banks of registers similar to register file locations R0-R7 (Figure 3-7 on page 3-11). Endpoint-
indexed SFRs are accessed by means of the SFR address and the current contents of thPIN-
DEX register (which selects the appropriate bank).

With the exception of hub endpoint 1, there is a bank of SFRs (TXDAT, TXCON, TXFLG, etc.)
for each hub and function endpoint pair. Thus the 8x930Ax, with four-endpoint pair option se-
lected, has four TXCON registers. When EPINDEX = 0000 0001, the function endpoint 1
CON is accessed. When EPINDEX = 0000 0010, the function endpoint 2 TXCON is accesse
The contents of a given SFR are retained when other endpoints are selected.

Only SFRs necessary for device operation are implemented. For example, since hub end
is transmit only, RXDAT for that endpoint is not implemented. The high-order byte count regis-
ters (TXCNTH and RXCNTH) are implemented only for function endpoint 1, since only
endpoint pair has FIFOs larger than 32 bytes.

7.1.3.2 Endpoint Selection

The most significant bit of the endpoint index register (EPINDEX) selects hub or function.T
low-order bits (EPINX2:0 for the six-endpoint pair option and EPINX1:0 for the four-endp
pair option) indicate the endpoint and serve as an index value for selecting the SFR bank. T
ify the endpoint pair, write a value of the form Zxxx xYYYB or Zxxx xxYYB to EPINDEX,
where Z specifies hub or function and YYY and YY specify the endpoint number. See Figure

It is recommended that programmers set the contents of EPINDEX once, at the start of each rou-
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed
This means that interrupt service routines must save the contents of the EPINDEX registe
start of the routine and restore the contents at the end of the routine to prevent the EPINDE
ister from being corrupted.
7-3

8x930Ax, 8x930Hx USER’S MANUAL

Table 7-2. USB Function SFRs

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint
specified by EPINDEX.

S:E1H

EPCONFIG Endpoint Configuration Register. Selects the four-endpoint pair or six-
endpoint pair configuration for function endpoint 1 (8X930Ax only).

S:C7H

EPINDEX Endpoint Index Register. Selects the appropriate endpoint pair. S:F1H

FADDR Function Address Register. Stores the USB function address for the
device. The host PC assigns the address and informs the device via
endpoint 0.

S:8FH

RXCNTH Receive FIFO Byte-Count High Register. High register in a two-register
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

S:E6H

RXCON Receive FIFO Control Register. Controls the receive FIFO specified by
EPINDEX.

S:E4H

RXDAT Receive FIFO Data Register. Receive FIFO data is read from this register
(specified by EPINDEX).

S:E3H

RXFLG Receive FIFO Flag Register. These flags indicate the status of data
packets in the receive FIFO specified by EPINDEX.

S:E5H

RXSTAT Endpoint Receive Status Register. Contains the endpoint status of the
receive FIFO specified by EPINDEX.

S:E2H

TXCNTH Transmit Count High Register. High register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

S:F7H

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

S:F6H

TXCON Transmit FIFO Control Register. Controls the transmit FIFO specified by
EPINDEX.

S:F4H

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register
(specified by EPINDEX).

S:F3H

TXFLG Transmit Flag Register. These flags indicate the status of data packets in
the transmit FIFO specified by EPINDEX.

S:F5H

TXSTAT Endpoint Transmit Status Register. Contains the endpoint status of the
transmit FIFO specified by EPINDEX.

S:FAH
7-4

USB FUNCTION

EPCONFIG† Address: S:C7H
Reset State: xxxx xxx0B

Endpoint Configuration Register. Selects the six-endpoint pair option or four-endpoint pair option as
the 8x930Ax function endpoint pair configuration.

7 0

— — — — — — — SIXEPPEN

Bit
Number

Bit
Mnemonic Function

7:1 — Reserved:

Write zeroes to these bits.

0 SIXEPPEN Six-endpoint pair enable:††

Set this bit to select the six-endpoint pair (6EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0

0xxx x000 xx
0xxx x001 00†††

0xxx x010 xx
0xxx x011 xx
0xxx x100 xx
0xxx x101 xx

Transmit
FIFO

16
256
32
32
32
16

Receive
FIFO

16
256
32
32
32
16

Clear this bit to select the four-endpoint pair (4EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0

0xxx xx00 xx
0xxx xx01 00

01
10
11

0xxx xx10 xx
0xxx xx11 xx

Transmit
FIFO

16
256
512
1024

0
16
16

Receive
FIFO

16
256
512
0

1024
16
16

† 8x930Ax only. Early sample devices did not have this SFR.
†† Select the endpoint configuration during initialization and do not change during program execution.
††† When using function endpoint 1 in the six-endpoint pair configuration, clear the FFSZ1:0 bits in

TXCON to select the 256-byte size for the transmit and receive FIFOs.

Figure 7-1. EPCONFIG: Endpoint Conf iguration Register
7-5

8x930Ax, 8x930Hx USER’S MANUAL

EPINDEX Address: S:F1H
Reset State: 1xxx x000B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0

8X930Hx HORF — — — — — EPINX1 EPINX0

7 0

8X930Ax
4 EPP

— — — — — — EPINX1 EPINX0

7 0

8X930Ax
6 EPP

— — — — — EPINX2 EPINX1 EPINX0

Bit
Number

Bit
Mnemonic Function

7 HORF

(8X930Hx)

Hub/function Bit:

1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

—
(8X930Ax)

Reserved:

Although the reset state for this bit is “1”, always write a zero to this bit for
8X930Ax applications.

6:3 — Reserved:

Write zeros to these bits.

2 —

8X930Hx or
8X930Ax
(4 EPP)

Reserved:

Write a zero to this bit. 8x930Hx

1:0 EPINX1:0

8X930Hx
or

8X930Ax
(4 EPP)

Endpoint Index:

EPINDEX†

0xxx xx00 Function Endpoint 0
0xxx xx01 Function Endpoint 1
0xxx xx10 Function Endpoint 2
0xxx xx11 Function Endpoint 3

EPINDEX† (8x930Hx only)
1xxx xx00 Hub Endpoint 0
1xxx xx01 Hub Endpoint 1

2:0 EPINX2:0

8X930Ax
(6 EPP)

Endpoint Index:

EPINDEX†

0xxx x000 Function Endpoint 0
0xxx x001 Function Endpoint 1
0xxx x010 Function Endpoint 2
0xxx x011 Function Endpoint 3
0xxx x100 Function Endpoint 4
0xxx x101 Function Endpoint 5

† The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive
FIFO pair. The value in this register plus SFR addresses select the associated bank of endpoint-
indexed SFRs (TXDAT, TXCON, TXFLG, TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L,
EPCON, TXSTAT, and RXSTAT).

Figure 7-2. EPINDEX: Endpoint Index Register
7-6

USB FUNCTION

EPCON
(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2, 3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK

5 CTLEP Control Endpoint:†
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:†

Set this bit to configure the receive endpoint for single data packet operation.
When enabled, only a single data packet is allowed to reside in the receive
FIFO.
NOTE: For control endpoints (CTLEP=1), this bit should be set for single

packet mode operation as the recommended firmware model.
However, it is possible to have a control endpoint configured in dual
packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet overrides this bit if it is cleared, and
place the receive data in the FIFO.

† For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

Figure 7-3. EPCON: Endpoint Cont rol Register
7-7

8x930Ax, 8x930Hx USER’S MANUAL
2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the endpoint
does not respond to a valid IN token. This bit is hardware read only. Note
that endpoint 0 is enabled for transmission upon reset.

EPCON (Continued)
(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2, 3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

† For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

Figure 7-3. EPCON: Endpoint Control Register (Continued)
7-8

USB FUNCTION

TXSTAT
(Endpoint-indexed)

Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): †

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:

Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW Transmit Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. ††

2 TXVOID Transmit Void (read-only): †††

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 7-4. TXSTAT: Transmit FIFO Status Register
7-9

8x930Ax, 8x930Hx USER’S MANUAL
1 TXERR Transmit Error (read-only):††

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax
with 6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXACK bit at the end of the data
transmission (this bit is mutually exclusive with TXACK). For isochronous
transactions, this bit is not updated until the next SOF.

0 TXACK Transmit Acknowledge (read-only):††

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax with
6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXERR bit at the end of data
transmission (this bit is mutually exclusive with TXERR). For isochronous
transactions, this bit is not updated until the next SOF.

TXSTAT (Continued)
(Endpoint-indexed)

Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”

Figure 7-4. TXSTAT: Transmit FIFO Status Register (Continued)
7-10

USB FUNCTION

RXSTAT
(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): †

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
along with the new RXSEQ value.
NOTE: Always verify this bit after writing to ensure that there is no conflict

with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.

Figure 7-5. RXSTAT: Receive FIFO Status Register
7-11

8x930Ax, 8x930Hx USER’S MANUAL
4 EDOVW End Overwrite Flag:† This flag is set by hardware during the handshake
phase of a SETUP stage. It is set after every SETUP packet is received and
must be cleared prior to reading the contents of the FIFO. When set, the
FIFO state (FIF and read pointer) remains locked for this endpoint until this
bit is cleared. This prevents a prior, ongoing firmware read from corrupting
the read pointer after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
NOTE: Make sure the EDOVW bit is cleared prior to reading the contents

of the FIFO.

3 RXSOVW Receive Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read. †††

2 RXVOID Receive Void Condition (read-only):††

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked

2. The EPCON register’s RXSTL bit is set

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

RXSTAT (Continued)
(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.

Figure 7-5. RXSTAT: Receive FIFO Status Register (Continued)
7-12

USB FUNCTION
1 RXERR Receive Error (read-only):††

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXACK bit at the end of data
reception and is mutually exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):††

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXERR bit at the end of data
reception and is mutually exclusive with RXERR.

RXSTAT (Continued)
(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.

Figure 7-5. RXSTAT: Receive FIFO Status Register (Continued)
7-13

8x930Ax, 8x930Hx USER’S MANUAL

Figure 7-6. FADDR: Function Address Register

FADDR Address: S:8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0

— A6:0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is hardware read-only.
7-14

USB FUNCTION

smit
the

ciated
ave two

t,
The
7.2 TRANSMIT FIFOS

The 8x930 has a transmit FIFO for each function endpoint pair. In this manual, the term “tran
FIFO” refers to the transmit FIFO associated with the current endpoint pair specified by
EPINDEX register. 8x930 FIFOs are listed in Table 2-5 and Table 2-6 on page 2-13.

7.2.1 Transmit FIFO Overview

The transmit FIFOs are circulating data buffers with the following features:

• support for up to two separate data sets of variable sizes†

• a byte count register to store the number of bytes in the data sets

• protection against overwriting data in a full FIFO

• capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 7-7). The transmit FIFO and its asso
logic can manage up to two data sets, data set 0 (ds0) and data set 1 (ds1). The ability to h
data sets in the FIFO supports back-to-back transmissions.

Figure 7-7. Transmit FIFO Outline

The CPU writes to the FIFO location specified by the write pointer, which automatically incre-
ments by one after a write. The read marker points to the first byte of data written to a data se
and the read pointer points to the next FIFO location to be read by the function interface.
read pointer automatically increments by one after a read.

† When operating in dual packet mode, the maximum packet size should be at most half the FIFO size to ensure that
both packets will simultaneously fit in the FIFO (see the Endpoint description in the Universal Serial Bus
Specification).

A4258-02

Write Pointer

Data Set 0

Data Set 1

Read Marker

Read Pointer

REVRP ADVRM

FIU Reads FIFO

8X930 CPU

Writes to FIFO

TXCNTH

TXCNTL

To USB Interface

From CPU

Byte Count

Registers
7-15

8x930Ax, 8x930Hx USER’S MANUAL

n of the
ted, the
face to
rsal can
d by

n of the
gures
f-

range-

 two
sets as-

o
When a good transmission is completed, the read marker can be advanced to the positio
read pointer to set up for reading the next data set. When a bad transmission is comple
read pointer can be reversed to the position of the read marker to enable the function inter
re-read the last data set for retransmission. The read marker advance and read pointer reve
be accomplished two ways: explicitly by firmware or automatically by hardware, as specifie
bits in the transmit FIFO control register (TXCON).

7.2.2 Transmit FIFO Registers

There are five registers directly involved in the operation of the transmit FIFOs:

• TXDAT, the transmit FIFO data register

• TXCNTH and TXCNTL, the transmit FIFO byte count registers referred to jointly as
TXCNT

• TXCON, the transmit FIFO control register

• TXFLG, the transmit FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operatio
transmit FIFO associated with the current endpoint specified by the EPINDEX register. Fi
7-8 through 7-11 beginning on page 7-18 describe the transmit FIFO registers and provide bit de
initions.

7.2.3 Transmit Data Register (TXDAT)

Bytes are written to the transmit FIFO via TXDAT, the transmit FIFO data register (Figure 7-8
on page 7-18).

7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)

The format of the transmit byte count register depends on the endpoint. For endpoint 1, registers
TXCNTH and TXCNTL form a two-register, ten-bit ring buffer. For endpoints 0, 2, and 3 (and
for the 8x930Ax, endpoints 4 and 5), TXCNTL is used alone as a five-bit ring buffer. These for-
mats are shown in Figure 7-9 on page 7-19. The term TXCNT refers to either of these ar
ments.

The transmit FIFO byte count register (TXCNT) stores the number of bytes in either of the
data sets, data set 0 (ds0) and data set 1 (ds1). The FIFO logic for maintaining the data
sumes that data is written to the FIFO in the following sequence:

1. The CPU first writes data bytes to TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNT. TXCNT must be written after the write to TXDAT to guarantee data
integrity. For function endpoint 1, TXCNTL should be written after TXCNTH. Writing t
TXCNTH does not affect the TXFIF bits, however writing to TXCNTHL does set the
associated TXFIF bits.
7-16

USB FUNCTION

e set.

the left
et,
next.
 In this

ite to

set

er is
NOTE
TXCNTH does not need to be written if it is always 00H, as the reset value is
00H. However, if TXCNTH is not 00H, it should always be written even
though the value does not change from the previous cycle; this is because the
byte count registers are 2-byte circular buffers and not “static” registers.

For all endpoints except function endpoint 1, TXCNTH is not available and
TXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and should
always be written with ‘0’.

The function interface reads the byte count register to determine the number of bytes in th

7.2.5 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which data sets(ds0
and/or ds1) have been written into the FIFO and are armed (ready for transmission). See
side of Table 7-3. FIFx = 1 indicates that data set x has been written and is armed. Following res
FIF1:0 = 00, signifying an empty FIFO. FIF1:0 also determine which data set is written
Note that FIF0 specifies the next data set to be written, except for the case of FIF1:0 = 11.
case further writes to TXDAT or TXCNT are ignored.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

Two events cause the data set index bits to be updated:

• A new data set is written to the FIFO: the 8x930 writes bytes to the FIFO via TXDAT and
writes the number of bytes to TXCNT. The data set index bits are updated after the wr
TXCNT. This process is illustrated in Table 7-3.

• A data set in the FIFO is successfully transmitted: the function interface reads a data
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read mark
advanced. Note that in ISO mode, this happens at the next SOF.

Table 7-3. Writing to the Byte Count Register

FIF1:0
 Data Sets Written Set for Next Write

to TXCNT
Write bytes
to TXDAT.

FIF1:0
ds1 ds0

0 0 No No (Empty) ds0 —> Write byte
count to
TXCNT

—> 0 1

0 1 No Yes (1 set) ds1 1 1

1 0 Yes No (1 set) ds0 1 1

1 1 Yes Yes (2 sets) Write ignored 1 1
7-17

8x930Ax, 8x930Hx USER’S MANUAL

it, the
Table 7-4 summarizes how the actions following a transmission depend on the TXISO b
ATM bit, the TXACK bit, and the TXERR bit.

NOTE
For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF
bits.

Figure 7-8. TXDAT: Transmit FIFO Data Register

Table 7-4. Truth Table for Transmit FIFO Management

TXISO
(TXCON.3)

ATM
(TXCON.2)

TXERR
(TXSTAT.1)

TXACK
(TXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.

TXDAT
(Endpoint-indexed)†

Address: S:F3H
Reset State: xxxx xxxxB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 TXDAT.7:0 Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

† For hub endpoint 1, TXDAT is used in a different manner. See Figure 8-6 on page 8-12.
7-18

USB FUNCTION

Figure 7-9. TXCNTH/TXCNTL Transmit FIFO Byte Count Registers

NOTE
To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNT.

TXCNTH,
TXCNTL
(Endpoint-indexed)

Address: S:F7H
S:F6H

Reset States: Endpoint 1 TXCNTH xxxx xx00B
TXCNTL 0000 0000B

Other
Endpoints† TXCNTL xxx0 0000B

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints.

15 (TXCNTH) Endpoint 1 8

— — — — — — BC9 BC8

7 (TXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (TXCNTL) Other Endpoints 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Function Endpoint 1

15:10 — Reserved.

Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count. (write, conditional read††)
Ten-bit, ring buffer. Stores transmit byte count (TXCNT). Implemented for
function endpoint 1 only.

Other Endpoints†

7:0 — Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read††)
Five-bit, ring buffer. Stores transmit byte count (TXCNT) for endpoints 0, 2,
and 3.

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.

†† Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.
7-19

8x930Ax, 8x930Hx USER’S MANUAL

TXCON
(Endpoint-indexed)

Address: S:F4H
Reset State: Function Endpoint 1 000x 0100B

Other Endpoints† 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

Function
Endpoint 1

TXCLR FFSZ1 FFSZ0 — TXISO ATM ADVRM REVRP

7 0

Other
Endpoints †

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT
register.

6:5 FFSZ1:0

Function
Endpoint 1
only

FIFO Size:

For function endpoint 1 only (EPINDEX = 0000 0001B), these bits select
the sizes of both the transmit and receive FIFOs. (There are no FFSZ bits
in the corresponding RXCON.) These bits are not reset when the TXCLR
bit is set in the TXCON register.

FFSZ1:0 Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

—

Other End-
points †

Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

4 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and
must be cleared by firmware.

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8x930Ax
only).

†† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer
when ATM = 0, are used for test purposes,

Figure 7-10. TXCON: Transmit FIFO Control Register
7-20

USB FUNCTION
2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISOTX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)

1. to origin of next data set 2. to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

1 ADVRM Advance Read Marker Control (non-ATM mode only)††:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This
bit is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)††:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the
FIU can reread the last set for retransmission. Hardware clears this bit
after the read pointer is reversed. This bit is effective only when the
ADVRM, ATM, and TXCLR bits are all clear.

TXCON (Continued)
(Endpoint-indexed)

Address: S:F4H
Reset State: Function Endpoint 1 000x 0100B

Other Endpoints† 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

Function
Endpoint 1

TXCLR FFSZ1 FFSZ0 — TXISO ATM ADVRM REVRP

7 0

Other
Endpoints †

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8x930Ax
only).

†† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read pointer
when ATM = 0, are used for test purposes,

Figure 7-10. TXCON: Transmit FIFO Control Register (Continued)
7-21

8x930Ax, 8x930Hx USER’S MANUAL

TXFLG
(Endpoint-indexed)

Address: S:F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIF0 are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
firmware (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF = 1

00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNT for traceability. See
the TXFLUSH bit in TXSTST.
NOTE: To simplify firmware development, configure control endpoints in

single-packet mode.

5:4 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

† When set, all transmissions are NAKed.

Figure 7-11. TXFLG: Transmit FIFO Flag Register
7-22

USB FUNCTION
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag (read, clear only)†:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through firmware. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the TXCNT doesn’t agree with the data, hardware sets TXURF. This
indicates that the transmitted data was corrupted by a bit-stuffing or CRC
error.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag†:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

TXFLG (Continued)
(Endpoint-indexed)

Address: S:F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.

Figure 7-11. TXFLG: Transmit FIFO Flag Register (Continued)
7-23

8x930Ax, 8x930Hx USER’S MANUAL

ceive
EPIN-

e up to

FIFO
.

ti-
7.3 RECEIVE FIFOs

The 8x930 has a receive FIFO for each function endpoint pair. In this manual, the term “re
FIFO” refers to the receive FIFO associated with the current endpoint pair specified by the
DEX register. 8x930 FIFOs are listed in Table 2-5 and Table 2-6 on page 2-13.

7.3.1 Receive FIFO Overview

The receive FIFOs are circulating data buffers with the following features:

• support for up to two separate data sets of variable sizes†

• a byte count register that accesses the number of bytes in the data sets

• flags to signal a full FIFO and an empty FIFO

• capability to re-receive the last data set

Figure 7-12 illustrates a receive FIFO. A receive FIFO and its associated logic can manag
two data sets, data set 0 (ds0) and data set 1 (ds1). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways the receive FIFO is symmetrical to the transmit FIFO. The FIU writes to the
location specified by the write pointer, which increments by one automatically following a write
The write marker points to the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8x930. The read pointer increments by one automa
cally following a read.

Figure 7-12. Receive FIFO

† When operating in dual packet mode, the maximum packet size should not exceed one half the FIFO size to ensure
that both packets will simultaneously fit in the FIFO (see the endpoint descriptor in the Universal Serial Bus
Specification).

A4259-02

Read Pointer

Data Set 0

Data Set 1

Write Marker

Write Pointer

FIU Writes to FIFO

8X930 CPU

Reads FIFO

From USB Interface

To CPU

RXCNTH

RXCNTL

Byte Count

Registers
7-24

USB FUNCTION

write
ointer

ata set
ccom-
 the

ccess-

in

f the re-

i-

DAT).

gisters
0 to
com-

e two
sets as-

IFO
When a good reception is completed, the write marker can be advanced to the position of the
pointer to set up for writing the next data set. When a bad reception is completed, the write p
can be reversed to the position of the write marker to enable the FIU to rewrite the last d
after receiving the data again. The write marker advance and write pointer reversal can be a
plished two ways: explicitly by firmware or automatically by hardware, as specified by bits in
receive FIFO control register.

The 8x930 should not read data from the receive FIFO before all bytes are received and su
fully acknowledged because the reception may be bad.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data
the receive FIFO. In the single packet mode, 8x930 can monitor the FIFO empty flag (RXEMP
bit in RXFLG) to avoid reading a byte when the FIFO is empty.

7.3.2 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:

• RXDAT, the receive FIFO data register

• RXCNTH and RXCNTL, the receive FIFO byte count registers referred to jointly as
RXCNT

• RXCON, the receive FIFO control register

• RXFLG, the receive FIFO flag register

These registers are endpoint indexed, i.e., they are used as set to control the operation o
ceive FIFO associated with the current endpoint specified by the EPINDEX register. Figures7-13
through 7-11 beginning on page 7-27 describe the receive FIFO registers and provide bit defin
tions.

7.3.2.1 Receive Data Register (RXDAT)

Received data bytes are written to the receive FIFO via the receive FIFO data register (RX

7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)

The format of the receive byte count register depends on the endpoint. For endpoint 1, re
RXCNTH and RXCNTL form a ten-bit ring buffer which accommodates packet sizes of
1023 bytes. For endpoints 0, 2, and 3, RXCNTL is used alone as five-bit ring buffer to ac
modate packet sizes of 0 to 16 bytes. These formats are shown in Table 7-14 on page 7-28. The
term RXCNT refers to either of these arrangements.

The receive FIFO byte count register (RXCNT) stores the number of bytes in either of th
data sets, data set 0 (ds0) and data set 1 (ds1). The FIFO logic for maintaining the data
sumes that data is written to the FIFO in the following sequence:

1. The USB interface first writes the received data packet into the receive FIFO.

2. The USB interface then writes the number of bytes that were written into the receive F
to the byte count register RXCNT.
7-25

8x930Ax, 8x930Hx USER’S MANUAL

r
gister.

ines

IF1:0

r) to

 ARM
NOTE
For all endpoints except function endpoint 1, RXCNTH is not available and
RXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and will
always be read as ‘0’.

The CPU reads the byte count register to determine the number of bytes in the set.

The receive byte count register has a read/write index to allow it to access the byte count for eithe
of the two data sets. This is similar to the methodology used for the transmit byte count re
After reset, the read/write index points to data set 0. Thereafter, the following logic determ
the position of the read/write index:

• After a read of RXCNT, the read/write index (RXFIF) is unchanged

• After a write of RXCNT, the read/write index (RXFIF) is toggled

The position of the read/write index can also be determined from the data set index bits, F
(see “Receive FIFO Data Set Management” on page 7-26).

CAUTION
Do not read RXCNT to determine if data is present in the receive FIFO. A read
attempt to RXCNT during the time the receive FIFO is empty causes the
RXURF flag in RXFLG to be set. Always read the RXFIF bits in RXFLG to
determine if data is present in the receive FIFO. The RXFIF bits are updated
after RXCNT is written (at the end of the receive operation, and at the SOF for
ISO data).

7.3.3 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG registe
indicate which data sets are present in the receive FIFO (see Table 7-5).

Table 7-6 summarizes how the actions following a reception depend on the RXISO bit, the
bit, and the handshake issued by the 8x930.

Table 7-5. Status of the Receive FIFO Data Sets

FIF1:0
 Data Sets Written

ds1 ds0

0 0 No No (Empty)

0 1 No Yes (1 set)

1 0 Yes No (1 set)

1 1 Yes Yes (2 sets)
7-26

USB FUNCTION
NOTE
For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF
bits.

Figure 7-13. RXDAT: Receive FIFO Data Register

Table 7-6. Truth Table for Receive FIFO Management

RXISO
(RXCON.3)

ARM
(RXCON.2)

RXERR
(RXSTAT.1)

RXACK
(RXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by firmware.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically.The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data
was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

RXDAT
(Endpoint-indexed)

Address: S:E3H
Reset: xxxx xxxxB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

RXDAT.7:0

Bit
Number

Bit
Mnemonic Function

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8x930 reads from this register. The write
pointer and read pointer are incremented automatically after a write and
read, respectively.
7-27

8x930Ax, 8x930Hx USER’S MANUAL

Figure 7-14. RXCNTH/RXCNTL: Receive FIFO Byte Count Registers

CAUTION
Do not read RXCNT to determine if data is present in the receive FIFO.
Always read the FIF bits in the RXFLG register. RXCNT contains random
data during a receive operation. A read attempt to RXCNT during the time the
receive FIFO is empty causes the RXURF flag in RXFLG to be set. Always
read the FIF bits to determine if data is present in the receive FIFO. The
RXFLG FIF bits are updated after RXCNT is written (at the end of the receive
operation).

RXCNTH,
RXCNTL
(Endpoint-indexed)

Address: S:E7H
 S:E6H

Reset States:
Endpoint 1 RXCNTH xxxx xx00B

RXCNTL 0000 0000B
Other

Endpoints† RXCNTL xxx0 0000B

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8

— — — — — — BC9 BC8

7 (RXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (RXCNTL) Other Endpoints† 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Endpoint 1

15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte. Stores receive byte count (RXCNT). Implemented
for function endpoint 1 only.

Other Endpoints†

7:0 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count (RXCNT). 3.

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.
7-28

USB FUNCTION

RXCON
(Endpoint-indexed)

Address: S:E4H
Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

6 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

5 RXWS Receive FIFO Wait-state Read:

At the 8x930 core frequency of 12 MHz, not all instructions that access the
receive FIFO are guaranteed to work due to critical paths inherent in the
8x930 architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:†

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:†

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

Figure 7-15. RXCON: Receive FIFO Cont rol Register
7-29

8x930Ax, 8x930Hx USER’S MANUAL
2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker

X ACK Unchanged Advanced

0 NAK Reversed Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.
NOTE: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker: †

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: †

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

RXCON (Continued)
(Endpoint-indexed)

Address: S:E4H
Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,

Figure 7-15. RXCON: Receive FIFO Control Register (Continued)
7-30

USB FUNCTION

RXFLG
(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

7:6 RXFIF1:0 Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-5 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements” RXFIF
immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you

utilize control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

† When set, all transmissions are NAKed.

Figure 7-16. RXFLG: Receive FIFO Flag Regi ster
7-31

8x930Ax, 8x930Hx USER’S MANUAL
2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals the
read pointer. Hardware clears the bit when the full condition no longer exists.
This is not a sticky bit and always tracks the current status of the receive
FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag†:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.
NOTE: When this bit is set, the FIFO is in an unknown state. It is

recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag†:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through firmware, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.†

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.†

RXFLG (Continued)
(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.

Figure 7-16. RXFLG: Receive FIFO Flag Register (Continued)
7-32

USB FUNCTION

ical”
-
 re-
efer to

yed by
onsult
-

nd so
 LSB
er

ol Lay-
d
tion,”

is not
TAT
VW

e re-
acket,
OVW,

bit of

 and

eived,
lear

 = 1
 This
7.4 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electr
chapter of Universal Serial Bus Specification. The specification defines: differential’1’, differen
tial’0’, idle (’J’ state), non-idle (’K’ state), start-of-packet, end-of-packet, disconnect, connect,
set, and resume. The USB employs NRZI data encoding when transmitting packets. R
“Data Encoding/Decoding” in the Universal Serial Bus Specification for a description of NRZI
data encoding and decoding. To ensure adequate signal transitions, bit stuffing is emplo
the SIE when transmitting data. The SIE also does bit unstuffing when receiving data. C
the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrical” chap
ter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, a
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next
and so on. The SIE ensures that the LSb is first, but the 8x930 programmer must ensure the ord
of the bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protoc
er” chapter of Universal Serial Bus Specification. The FIU communicates data information an
handshaking instructions to the SIE. Programmers should consult the “Interconnect Descrip
“USB Devices,” and “USB Host” chapters of Universal Serial Bus Specification for detailed in-
formation on how the host and function communicate.

7.5 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even if the receive FIFO
empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXS
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STO
indicates a SETUP-initiated over-write (flush) is in progress. After the SETUP transaction is
completed (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating th
ceive FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP p
regardless of whether the receive FIFO is full or empty always sequences through the ST
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of an 8x930 CPU data read cycle (from
a previous USB transaction), the receive FIFO could underrun, thus setting the RXURF
RXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW resets
and locks the read pointer. The read pointer will remain locked until both the STOVW
EDOVW bits are cleared.

CAUTION
For SETUP packets only, firmware must clear EDOVW prior to reading data
from the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a SETUP packet, firmware should always check the STOVW and EDOVW
flags before setting the RXFFRC bit. When a SETUP packet either has been or is being rec
setting of RXFFRC has no effect if either STOVW or EDOVW is set. It is up to the user to c
EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP
condition causes IN and OUT tokens to be NAKed automatically until RXSETUP is cleared.
7-33

8x930Ax, 8x930Hx USER’S MANUAL

nd is

e
rame
able to
 FIFO

 token.
ccord-

chro-
ed by
n this
-mark-
-
e first
rs.

thers

ange at

ly.

e,
is true even if the transmit and/or receive endpoint is stalled (TXSTL = 1, RXSTL = 1), a
done to allow the clearing of a stall condition on a control endpoint.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

7.6 ISO DATA MANAGEMENT

ISO data management must always be performed in dual-packet mode. Interrupts are not gener-
ated when an ISO transmit or receive cycle is completed; ISO protocols should always bsyn-
chronized to the SOF interrupt. When transmitting, data written into the transmit FIFO at f
n is pre-buffered to be transmitted in frame n+1. This guarantees that data is always avail
the host when requested anytime in a frame. When receiving, data written into the receive
at frame n is pre-buffered to be read-out in frame n+1. This guarantees that data from the host is
always available to the function every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokens from the host are not cor-
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the
Function firmware needs to recognize this error condition and reconfigure the endpoints a
ingly.

7.6.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an iso
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handl
hardware. This error condition can be detected by checking TXFIF1:0 = 11 at SOF. Whe
occurs, the oldest data packet will be flushed and the transmit FIFO read-pointers and read
ers will be advanced to the start “address” of the second data packet. The TXFIF will also be up
dated. Therefore, the second packet will be ready to be transmitted for the next frame. Th
data packet is lost. The transmit flush bit, TXFLUSH in TXSTAT, is also set when this occu

For firmware traceability of FIFO status flags, some flags are updated immediately while o
are updated only at SOF. TXOVF, TXURF, and TXFIF are handled using the following rule:
firmware events cause status change immediately while USB events only cause status ch
SOF. For example:

• TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediate

• TXURF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

• TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefor
writes to TXCNT will “increment” TXFIF immediately. However, a successful USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.

The following bits do not follow the above rule:

• TXEMP/TXFULL: These always reflect the current status of the FIFO.

• TXFLUSH: Firmware can detect a flush by monitoring this bit.
7-34

USB FUNCTION

thers

ange at

tely.

re,
7.6.2 Receive FIFO ISO Data Management

For firmware traceability of FIFO status flags, some flags are updated immediately while o
are updated only at SOF. RXOVF, RXURF, and RXFIF are handled using the following rule:
firmware events cause status change immediately while USB events only cause status ch
SOF. For example:

• RXURF: Since underrun can only be caused by firmware, RXURF is updated immedia

• RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

• RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefo
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

• RXEMP/RXFULL: The rule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.
7-35

8
USB Hub

s im-
ma-
end

apply
l

ports.
te USB
rts, the

ter

n-
 dia-
CHAPTER 8
USB HUB

This chapter describes the operation of the Intel Universal Serial Bus (USB) on-chip hub, a
plemented in the 8x930Hx. This chapter introduces on-chip hub operation and includes infor
tion on bus enumeration, hub endpoint status and configuration, hub port control, hub susp
and resume, and hub power control.

The 8x930Ax microcontroller does not include a hub feature. Hence, this chapter does not
to the 8x930Ax. To see how the hub fits in the 8x930Hx architecture, see Chapter 2, “Architectura
Overview.”

8.1 HUB FUNCTIONAL OVERVIEW

The on-chip hub provides an electrical interface between the USB host and the downstream
In many cases, this relationship exists as an interface between a USB host and other discre
devices. Besides serving as a control interface between the host and the downstream po
hub is also a USB device and must respond to the standard USB requests (described in Chapter
9 of Universal Serial Bus Specification) as well as hub class-specific requests (defined in Chap
11 of Universal Serial Bus Specification).

The functionality between the PC host and the downstream ports that is handled by the hub in-
cludes:

• Connectivity management

• Downstream device connect/disconnect detection

• Power management, including suspend and resume functions

• Bus fault detection and recovery

• Full and low-speed device support

The hub functionality can be divided into two sub-functions: the hub repeater and the hub co
troller. The hub architecture is described in “The 8x930Hx USB Module” on page 2-14. A
gram of the hub architecture is shown in Figure 2-4 on page 2-7.

The hub controller function is split between four modules:

• Hub interface unit (HIU)

• Serial bus interface engine (SIE)

• Transmit and receive FIFOs for hub endpoint 0 and endpoint 1

• 8x930Hx CPU
8-1

8x930Ax, 8x930Hx USER’S MANUAL

e root
nnec-
ost
SB

 port,

” and

rical
A functional diagram of the hub is shown in Figure 8-1 on page 8-2. The diagram shows th
port, which is the upstream port (port 0); the repeater, which is responsible for managing co
tivity on a per packet basis; the hub controller, which provides status and control and permits h
access to the hub; three external downstream ports, which provide a means of expanding the U
by permitting the connection of additional PC peripherals; and the internal downstream
which provides an interface to the embedded function.

Figure 8-1. 8X930Hx Hub Functional Diagram

Refer to chapter 11 of Universal Serial Bus Specification for a more detailed description of the
hub and its functionality. For a description of the transceiver see the “Driver Characteristics
“Receiver Characteristics” sections of the “Electrical” chapter of the Universal Serial Bus Spec-
ification. For electrical characteristics and data signal timing, see the “Bus Timing/Elect
Characteristics” and “Timing Diagram” sections of the same chapter.

Table 8-1. USB Hub SFRs

Mnemonic Name Address

HADDR Hub Address Register. Used by the HIU to perform
token address decoding.

S:97H

HIE Hub Interrupt Enable Register. Contains the hub
interrupt enable bits. See “USB Hub Interrupt” on page
6-15.

S:A1H

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt
status flags. See “USB Hub Interrupt” on page 6-15.

S:E8H

HPCON Hub Port Control. Enables, disables, resets, suspends,
and resumes the four hub ports. USB port-indexed using
HPINDEX.

S:CFH

 A5116-01

Hub

Controller HADDR

Port 0

Port 2 Port 3

CPU

Hub Repeater

Port 1

Function Interface

Function Endpoints

Root Port

Hub Endpoint 0, Endpoint 1

External Downstream Ports
P

or
t 4

F
A

D
D

R

Internal

Downstream Port

8X930Hx
8-2

USB HUB

orts 1

 to

et
ut will
d.

 idle-
8.1.1 Port Connectivity States

In addition to the root port (port 0) the hub contains three external downstream ports, p
through 3 and one internal downstream port, port 4.

Hub downstream ports may be in one of five possible states:

• powered off — Power-switched ports are a USB option supported by the 8x930Hx. A
powered off port supplies no power downstream, ignores all upstream-directed bus activity
on the port, and its signal output buffers are placed in the Hi-Z state.

• disconnected — Initial state upon power-up or reset, the port cannot propagate any
upstream or downstream signaling. The port can detect a connect event, which causes it
transition to the disabled state.

• disabled — Port can only propagate downstream-directed signaling arising from a res
request. A disabled port does not propagate upstream signaling if the hub is awake, b
detect disconnects and initiate resume signaling to the root port if the hub is suspende

• enabled — Port propagates all downstream and upstream signaling.

• suspended — When suspended, the port will not stop propagating in the middle of a
transaction. If hub is awake, no upstream or downstream connectivity can propagate
through the port, except for downstream-directed reset signaling. If hub is suspended,
to-resume is propagated.

The transitions between these states are shown in Figure 8-2.

HPINDEX Hub Port Index Register. Provides port indexing into
the HPSC, HPSTAT, and HPCON registers. See “Hub
Port Indexing Using HPINDEX” on page 8-23 for details.

S:D4H

HPPWR Hub Port Power Control. Controls power to the three
downstream ports.

S:9AH

HPSC Hub Port Status Change. Indicates a change in reset,
suspend, enable, disable, or connect status. USB port-
indexed using HPINDEX.

S:D5H

HPSTAT Hub Port Status. Provides DP, DM, low-speed device,
power, reset, suspend, enable, and disable status for the
four hub ports. USB port-indexed using HPINDEX.

S:D7H

HSTAT Hub Status and Configuration. Used to examine or
enable remote wake-up, stall feature, endpoint 1, over-
current status, and local power status

S:AEH

Table 8-1. USB Hub SFRs (Continued)

Mnemonic Name Address
8-3

8x930Ax, 8x930Hx USER’S MANUAL

nts (e.g.,
 com-

ost
o p
n and
t

Figure 8-2. Hub State Flow

These port states are tracked and managed in the hub repeater based on hardware eve
physical connection/disconnection of a device on a port) and firmware execution of host
mands. Normal packet traffic is allowed to propagate through ports that are in the “enabled” state
only, as described in “Per-packet Signaling Connectivity” on page 8-5.

The root port is the only upstream port; it is permanently powered on and enabled. Ports 1 through
3 are external downstream ports. They are power-switched ports that must be powered-on by h
command, detect a device connection and then become enabled via host command prior trop-
agating USB packet traffic. Port 4 is an internal downstream port that is always powered o
always physically connected. It functionally supports port enabling. That is, the downstream por
connectivity will not be enabled unless a port enable has been received from the host.

ElseSuspended

ElseEnabled

Else

Disconnect Detect

Disabled

Else

Else

PORT_POWER = OFF or

Reset on root port

 A5121-01

Powered Off

Disconnected

Connect Detect

PORT_POWER = ON

Disconnect Detect

Disconnect Detect

PORT_ENABLE or PORT_RESET
PORT_DISABLE

or Frame error

PORT_SUSPEND

PORT_RESUME or

PORT_RESET or

Remote wakeup
8-4

USB HUB

affic on
c is il-
ulta-

t can
n of

on.

peed or

ater us-

d on
e from
,
eed
ity, re-

 down-
port by
 allow

p-
8.1.2 Per-packet Signaling Connectivity

The hub repeater establishes connectivity between ports for upstream and downstream tr
a per-packet basis. Packet signaling connectivity for downstream, upstream, and idle traffi
lustrated in Figure 8-3. While the host can communicate with all the downstream ports sim
neously, as shown in the “downstream connectivity” illustration in Figure 8-3, only one por
communicate with the host at one time, as shown in the “Upstream Connectivity” illustratio
the same figure. The host selects one of the downstream ports for upstream communicati

Figure 8-3. Packet Signaling Connectivity

Connections made by the repeater also depend on whether the port is attached to a full-s
low-speed device and whether the USB packet is a full-speed or low-speed packet (with low-
speed packets being identified by a PREamble token). Connections are made by the repe
ing asynchronous control logic in order to meet the USB signal propagation requirements.

8.1.2.1 Connect ivity to Downstream Ports Attached With Full-sp eed Devices

Downstream connectivity is established upon detection of a start of packet (SOP) transmitte
the root or upstream port by the USB host. As shown in Figure 8-3, the connection is mad
the root port (port 0) to all enabled downstream ports attached with full-speed devices (ports 1
2, & 3 in this case). Connectivity is not established to any enabled ports attached with low-sp
devices. Upon detection of the end-of-packet (EOP), the repeater terminates the connectiv
verting to the idle state, as shown in Figure 8-3.

Upstream connectivity is established upon detection of a SOP transmitted on any enabled
stream port. The connection is only made between a single downstream port and the root
the repeater, as shown in “upstream connectivity” in Figure 8-3. The USB protocol does not
packets to be transmitted by more than one downstream port simultaneously, but in an error sce-
nario where this happens, the repeater would choose only one downstream port to connect u
stream. Once again, upon detection of an EOP, the connectivity is terminated.

A5137-01

Port 3Port 2Port 1

(Disabled)

Port 4

(Internal)

Root Port

Port 3Port 2Port 1

(Disabled)

Port 4

(Internal)

Root Port

Downstream

Connectivity

Upstream

Connectivity

Port 3Port 2Port 1

(Disabled)

Port 4

(Internal)

Root Port

Idle
8-5

8x930Ax, 8x930Hx USER’S MANUAL

hed

nized
 to all

 and

-speed
he root

ce is at-
ed
er-
During
evice.

vided

xcept

ection

thin the
parts,
8.1.2.2 Connect ivity to Downstream Ports attached with Low-speed Devices

Downstream connectivity is established in the same fashion for low-speed packets as for full-
speed packets, with the following exceptions:

1. Downstream low-speed packets are routed to all enabled ports, including ports attac
with low-speed and full-speed devices.

2. Downstream low-speed packets contain a low-speed PREamble field which is recog
by the SIE. Upon detection of the PREamble, the repeater establishes the connection
enabled low-speed downstream ports.

3. Packet data is inverted at the ports attached to low-speed devices for both upstream
downstream traffic.

Upstream connectivity is established in the same fashion for low-speed packets as for full
packets, with the exception that no PREamble is propagated prior to low-speed packets. T
port propagates low-speed packets upstream using full-speed signaling (edge rates).

8.2 BUS ENUMERATION

The USB host manages bus enumeration at system start-up or whenever a new USB devi
tached to the host or to a hub’s downstream port. Initially, the USB hub is in the unenumerat
state and the hub address register (HADDR) contains the default value 00H. The host PC p
forms bus enumeration in which it identifies and addresses devices attached to the bus.
enumeration, a unique address assigned by the host is written to the HADDR of every hub d
The steps of the bus enumeration process are given in “Bus Enumeration” on page 9-16.

Information on descriptors and the HADDR register, required for bus enumeration, is pro
in the following subsections.

8.2.1 Hub Descriptors

The 8x930Hx has five descriptors, as shown in Table 8-2. All are standard USB descriptors e
the hub descriptor, which is class-specific. There is no descriptor for endpoint 0. A hub has only
one valid configuration and interface. The actual descriptor field values are given in the s
of Universal Serial Bus Specification referenced in the table.

The host reads the hub descriptors during bus enumeration. The host uses the values wi
descriptors to determine device configuration. The hub descriptor is divided into several
which are shown in Table 8-3.
8-6

USB HUB

Table 8-2. 8x930Hx Descript ors

Descriptor Size Universal Serial Bus
Specification Reference

Device 18 bytes Section 9.7.1

Configuration 9 bytes Section 9.7.2

Interface 9 bytes Section 9.7.3

Endpoint 7 bytes Section 9.7.4

Hub 9 bytes Section 11.11.2

Table 8-3. Hub Descriptors

Field Size Offset Description

bDescLength 1 byte 0 Number of bytes in this descriptor, including this byte.

bDescriptorType 1 byte 1 Descriptor Type

bNbrPorts 1 byte 2 Number of downstream ports this hub supports.

wHubCharacteristics 2 bytes 3 Determines power switching mode, identifies device as a
compound device, and describes the over-current protection
mode used by the device.

bPwrOn2PwrGood 1 byte 5 Time elapsed from when the power on sequence begins on a
port until power is good on that port.

bHubContrCurrent 1 byte 6 Maximum current requirements of the hub controller.

DeviceRemovable 1 byte 7 Indicates if a port has a removable device attached.

PortPwrCtrlMask 1 byte Variable Indicates if a port is affected by a gang-mode power control
request.
8-7

8x930Ax, 8x930Hx USER’S MANUAL

gh hub

tlined

 class-
he status
 Status

is pow-
rently
rts

 8-5).
ns.
8.2.2 The Hub Address Register (HADDR)

During bus enumeration, the host PC communicates a unique address for the hub throu
endpoint 0 using the set address command. Device firmware must interpret and write this hub ad-
dress to the Hub Address register (HADDR, as shown in Figure 8-4). This procedure is ou
in “Bus Enumeration” on page 9-16.

8.3 HUB STATUS

Status and configuration of the USB hub function is performed by both standard and hub
specific USB requests. These requests, generated by the host PC, manage and configure t
of the hub and its downstream ports. These USB requests are listed and explained in “Hub
and Configuration” on page 9-17.

The hub has an internal downstream port (port 4) which operates differently than the external
downstream ports. Because port 4 is physically connected to the embedded function and
ered-on at all times, USB requests intended for internal downstream port 4 are handled diffe
than similar requests to the other downstream ports. The management of the individual hub po
is discussed in “USB Hub Ports” on page 8-14.

The host PC may request that firmware check and change bits of the HSTAT SFR (Figure
See Table 9-1 on page 9-17 for a list of USB requests and their associated firmware actio

HADDR Address: S:97H
Reset State: 0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0

— Hub Address

Bit
Number Function

7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

Figure 8-4. HADDR: Hub Address Register
8-8

USB HUB
HSTAT Address: S:AEH
Reset State: x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

— HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 HRWUPE Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit
is modified through the SetFeature and ClearFeature requests using the
DEVICE_REMOTE_WAKEUP feature selector. When ‘0,’ the hub blocks
resume signaling for connect/disconnect and resume events detected on
downstream ports.
NOTE: Do not set this bit until after the hub is enumerated and the host

issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

5 EP1STL Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1,’ will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of
0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon
receipt of configuration value other than 0001H or a system or USB
reset.
NOTE: This bit must be set in order for the UPWEN# pin to enable

power to the downstream ports. Downstream power cannot be
applied until this is done.

3 OVISC Hub Over-current Indicator Status Change (read/clear-only): †

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

2 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

† Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

Figure 8-5. HSTAT: Hub Status and Configuration Register
8-9

8x930Ax, 8x930Hx USER’S MANUAL

 control

 single
1 op-
8.4 USB HUB ENDPOINTS

Table 8-4 gives the packet size, transfer type and implementation of the 8x930Hx hub endpoints.
Bulk and isochronous transfers are not supported by the hub endpoints. The hub handles
transfers using endpoint 0 with a maximum packet size of eight bytes.

Hub endpoint 1 supports interrupt transfers only and has no endpoint receive buffer. Endpoint 1
is used to inform the host of a hub or port status change. Figure 8-7 on page 8-13 illustrates the
format used to transmit status change information to the host. Since endpoint 1 transmits a
byte of information, TXDAT (Figure 8-6 on page 8-12) serves as the data buffer. Endpoint
erations are primarily controlled by hardware and do not involve firmware, except for the
EP1STL and EP1EN bits in HSTAT (Figure 8-5).

1 OVI Latest Over-current Indicator (read-only): †

Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

Table 8-4. Hub Endpoint Configuration

Hub
Endpoint

Max Packet
Size Transfer Type Implementation

0 8 bytes Control Firmware-
controlled

1 1 byte Status Change
Interrupt

Hardware-
controlled

HSTAT (Continued) Address: S:AEH
Reset State: x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

— HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

† Bits 1 and 3 are returned in response to a Get Hub Status request from the USB host. This response is
a four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.

Figure 8-5. HSTAT: Hub Status and Configuration Register (Continued)
8-10

USB HUB

TX-
d
 reg-

EX.
s of
to con-

.

also

n
denti-
ntrol
hard-

 sta-
cted in

oring
s with
8.4.1 Hub Endpoint Indexing Using EPINDEX

The 8x930Hx hub endpoint 0 uses the same communication registers (TXCNTL, RXCNTL,
DAT, RXDAT, TXFLG, RXFLG, TXSTAT, RXSTAT, TXCON, and RXCON) as the embedde
USB function endpoints. The EPINDEX register (Figure 7-2 on page 7-6), used to access the
isters of the USB function endpoints, is also used to access the registers for hub endpoints.

To access the communication SFRs for the hub endpoints, first write a ‘1’ to bit 7 of EPIND
To access the internal USB function’s registers, write ‘0’ to EPINDEX’ bit 7. Regardles
whether you are accessing the hub or function endpoints, the LSbs of EPINDEX are used
trol which endpoint’s registers are accessed.

For additional information on how to use EPINDEX, see “Endpoint Selection” on page 7-3

8.4.2 Hub Endpoint Control

Hub endpoint 1 of the 8x930Hx is controlled primarily by hardware, with these exceptions:

• Firmware can read endpoint 1’s TXDAT SFR

• Firmware can stall hub endpoint 1 in response to a Set_Feature (ENDPOINT_STALL)
request from the host by setting the EP1STL bit in HSTAT (Figure 8-5). Firmware can
clear this bit in response to a Clear_Feature request.

• Firmware can enable hub endpoint 1 in response to a Set_Configuration request from the
host by setting the EP1EN bit in HSTAT (Figure 8-5 on page 8-9)

Firmware can control hub endpoint 0 through its EPCON register (Figure 7-3 on page 7-7) whe
EPINDEX has previously been set to 80H. Hub endpoint control for endpoint 0 behaves i
cally to function endpoint control, except that hub endpoint 0 is always a single-packet, co
endpoint. Therefore, the corresponding bits (CTLEP and RXSPM) of its EPCON SFR are
wired to ‘1’.

8.4.3 Hub Endpoint Transmit and Receive Operations

The 8x930Hx hardware uses hub endpoint 1’s TXDAT register (Figure 8-6) to transmit a port
tus change interrupt to the host. Figure 8-7 shows how a hub or port status change is refle
TXDAT.

TXDAT is cleared by firmware upon a ClearPortFeature request from the host. See “Monit
Port Status Change Using HPSC” on page 8-20 for a description of how firmware interact
the host to communicate a change in port status.

NOTE
Although the bits of hub endpoint 1’s TXDAT SFR are firmware read-only,
bits 4:0 of TXDAT can be cleared indirectly by writing to a port’s HPSC SFR.
Clearing all bits in a port’s HPSC causes hardware to clear the bit associated
with that port in hub endpoint 1’s TXDAT.
8-11

8x930Ax, 8x930Hx USER’S MANUAL

Figure 8-6. TXDAT: Hub Transmit Data Buffer (Endpoint 1)

TXDAT (For hub endpoint 1 only) EPINDEX=81H† Address: S:F3H
Reset State: 0000 0000B

7 0

— — — TXDAT.4 TXDAT.3 TXDAT.2 TXDAT.1 TXDAT.0

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Values read from these bits are indeterminate.

4:0 TXDAT.4:0 Hub Endpoint 1 Status Change (read-only††):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDAT.0 hub status change
TXDAT.1 port 1 status change
TXDAT.2 port 2 status change
TXDAT.3 port 3 status change
TXDAT.4 port 4 status change

A ‘1’ indicates a status change and ‘0’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bit is a ‘1’. If all bits are zero, a NAK handshake is returned.

† TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 7-8 on page 7-18.

†† Bits 4-0 can be set indirectly by firmware by writing to port x’s HPSC SFR. Setting any bit in port x’s
HPSC results in the hardware setting bit x in TXDAT. Bits can be cleared indirectly in firmware by
clearing the condition that caused the status change.
8-12

USB HUB

en the

func-
Figure 8-7. Status Change Communication To Host

The remaining hub transmit and receive registers communicate control information betwe
host and either the internal function or the downstream ports. The 8x930Hx communicates this
control information through endpoint 0 using procedures identical to those outlined for the
tion control endpoint (function endpoint 0) in “Transmit FIFOs” on page 7-15 and “Receive
FIFOs” on page 7-24.

NOTE
Hub endpoint 0’s TX SFRs (e.g., TXDAT, TXCNTL, TXFLG, and TXSTAT)
behave identically to their function counterparts. For example, when firmware
writes to endpoint 0’s TXDAT, hardware automatically transfers the byte into
the transmit FIFO before the next write to TXDAT. Placing the byte count into
hub endpoint 0’s TXCNTL prepares the bytes to be transmitted from the FIFO
through hub endpoint 0 at the next IN token.

 A5170-01

34 12 067 5

Host PC

Hub Endpoint 1

TXDAT

PCSC

PESC

PSSC

POVSC

RSTSC

OVI

OVISC

HPSC

(Port 1)

HSTAT

ORed HPSC

(Ports 2, 3, 4)

.

.

.

.

.

.

.

.

.

8-13

8x930Ax, 8x930Hx USER’S MANUAL

b con-

ON

 of
nly be

in the
 that is
r applied.

t is ig-
r which
e HP-

will be
trans-
 in “Port
8.5 USB HUB PORTS

In addition to the root port (port 0) and the embedded function addressed by port 4, the hu
tains three external downstream ports, ports 1 through 3.

8.5.1 Controlling a Port Using HPCON

You can change a port’s status by writing an encoded hub port control command to the hub port
control register (HPCON, as shown in Figure 8-8). All four ports can be controlled by HPC
using the HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 8-23
for a description of how port indexing works. Table 8-6 on page 8-16 gives a complete description
of the encoded hub port control commands. The 8x930Hx hardware can also change the status
a port, and some port features (i.e., low-speed/full-speed and connect/disconnect) can o
changed by hardware.

8x930Hx hardware ignores certain USB port requests if the request has no meaning with
context of the current port state. For example, there is no need to activate power to a port
enabled, disabled, or suspended, because a port in one of these states already has powe
An activate power request (SetPortFeature with a port power feature selector) is supported for a
given port only when that port is in the powered-off state. For all other states, the reques
nored by hardware. Table 8-5 depicts the state-related USB requests and the port states fo
they are ignored. Upon receipt of a state-related USB request, firmware must examine th
STAT SFR to determine the current port state. If the port is in a state where the request
ignored by hardware, firmware must respond to the host by sending a STALL during the
action status stage to indicate the command was not completed. Port states are discussed
Connectivity States” on page 8-3 and shown in Figure 8-2 on page 8-4.

Table 8-5. USB Requests Ignored by Hardware (by Port State)

USB Request

Response by Port State [indicated by bit in HPSTAT]

Powered-Off
[PPSTAT = 0]

Disconnected
[PCSTAT = 0]

Disabled
[PESTAT = 0]

Enabled
[PESTAT = 1]

Suspended
[PSSTAT = 1]

SetPortFeature
(Port Power) Ignored Ignored Ignored Ignored

ClearPortFeature
(Port Power) Ignored

SetPortFeature
(Port Enable) Ignored Ignored Ignored Ignored

ClearPortFeature
(Port Enable) Ignored Ignored Ignored Ignored

SetPortFeature
(Port Reset) Ignored Ignored

SetPortFeature
(Port Suspend) Ignored Ignored Ignored Ignored

ClearPortFeature
(Port Suspend) Ignored Ignored Ignored Ignored
8-14

USB HUB

urrent
, as de-

ts. The
ntrol
rts, as
After you request a port status change through HPCON, it may take the 8x930Hx hardware a pe-
riod of time to affect the change, depending on the current state of the hub port and its c
operation. You can check the HPSC SFR to see that your latest change has taken effect
scribed in “Monitoring Port Status Change Using HPSC” on page 8-20.

NOTE
Port connect status cannot be changed through HPCON. This port feature is
controlled by physically connecting or disconnecting a device from the port.

Port 4 represents the internal downstream port and differs from the three downstream por
internal downstream port is always connected (and cannot be disconnected). Hub port co
commands have a different effect on port 4 than they do on the external downstream po
shown in Table 8-6.

HPCON Address: S:CFH
Reset State: xxxx x000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

7 0

— — — — — HPCON2 HPCON1 HPCON0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPCON.2:0 Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port
001 — Enable port
010 — Reset and enable port
011 — Suspend port
100 — Resume port

See Table 8-6 for a complete description of the encoded hub port control
commands.

Figure 8-8. HPCON: Hub Port Control Register
8-15

8x930Ax, 8x930Hx USER’S MANUAL
Table 8-6. Encoded Hub Port Control Commands

Code Command Condition Results [Port x
(x=1,2,3)] Results [Port 4]

000 Disable
port

Firmware should
write ‘000’ to
HPCON upon
receipt of a
ClearPortFeature
with a
PORT_ENABLE
feature selector.

Places port in the
disabled state the next
time the bus is idle.

Same

001 Enable
port

Firmware should
write ‘001’ to
HPCON upon
receipt of a
SetPortFeature with
a PORT_ENABLE
feature selector.

Places port in the
enabled state the next
time the bus is idle.

Same

010 Reset and
enable
port

Firmware should
write ‘010’ to
HPCON upon
receipt of
SetPortFeature with
PORT_RESET
feature selector.

Causes port x to
immediately drive an
SE0 downstream for at
least 15 msec and then
places the port in the
enabled state.

Causes an internal hardware reset of
the FIU and FIFO circuitry relating to
the embedded function. Certain
embedded function SFRs are reset
to their default values (as listed in
“Embedded Function Reset” on page
8-24). After at least 15 ms, hardware
automatically places the port in the
enabled state. Firmware should
handle reset of any other firmware
and hardware features relating to the
embedded function immediately after
initiating the reset and enable
through this SFR (must be complete
by 15 ms from start of reset).

011 Suspend
port

Firmware should
write ‘011’ to
HPCON upon
receipt of
SetPortFeature with
PORT_SUSPEND
feature selector.

Places the port in an
idle “J” state the next
time the bus is idle and
prevents the port from
propagating USB traffic.

Suspends the embedded function’s
port the next time the bus is idle,
preventing port 4 from generating
any USB traffic. Firmware should
suspend port 4 only after doing any
necessary processing (i.e., putting
any external components in a low-
power state) to place the embedded
function into a suspended state.

100 Resume
port

Firmware should
write ‘100’ to
HPCON upon
receipt of
ClearPortFeature
with
PORT_SUSPEND
feature selector.

Causes port x to
immediately drive a “K”
state downstream for
at least 20 msec
followed by a low-
speed EOP, and then
places the port back in
the enabled state.

Places port 4 into the enabled state
after 20 ms. Firmware should
resume port 4 only after doing any
necessary processing to take the
embedded function out of the
suspended (low-power) state.
8-16

USB HUB

 de-

us

T also
-

irectly
ome

8.5.2 Examining a Port’s Status Using HPSTAT

You can examine a port’s status using the hub port status register (HPSTAT, as shown in Figure
8-9 on page 8-18). The HPSTAT SFR can show the status for any of the four ports by using the
HPINDEX SFR for indexing. See “Hub Port Indexing Using HPINDEX” on page 8-23 for a
scription of how this indexing works.

HPSTAT gives the current DP and DM values for the selected port; these implement the Get B
State diagnostic aid to facilitate system debug (See the Universal Serial Bus Specification). HP-
STAT contains a bit that indicates when a low-speed device is attached to a port. HPSTA
shows a given port’s reset status, and whether the port is powered on or off, connected or discon
nected, enabled or disabled, or suspended.

NOTE
Firmware-initiated port status changes are not reflected in HPSTAT until the
next end-of-frame.

The HPSTAT SFR is read-only. To change the status of a port feature, you must do so ind
using the HPCON SFR. The 8x930Hx hardware can also change the status of a port, and s
features can only be changed by hardware. See “Controlling a Port Using HPCON” on page8-14.
8-17

8x930Ax, 8x930Hx USER’S MANUAL
HPSTAT Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

7 DPSTAT DP Status (read-only):

Value of DP for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to ’1’, since there is no DP signal for the embedded port

6 DMSTAT DM Status (read-only):

Value of DM for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to ’0’, since there is no DM signal for the embedded port.

4 PPSTAT Port Power Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 4: Hard-wired to ’1’, since the internal function is always powered-on.

5 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 4: Hard-wired to ’0’ (full-speed), since port 4 is permanently attached to
the embedded USB function.

NOTES:

Firmware returns the bits of this register in the first word of the 8x930Hx’ response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8x930Hx supports ganged power
control and overcurrent indication.

Figure 8-9. HPSTAT: Hub Port Status Register
8-18

USB HUB
3 PRSTAT Port Reset Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as a result of initiating a port x
reset by writing to HPCON. ‘1’ = reset signaling is currently asserted for port
x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2 point near
end of frame.

Port 4: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently suspended. ‘0’ = not suspended. Sampled
only at the EOF2 point near end of frame.

Port 4: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled only
at the EOF2 point near end of frame.

Port 4: Same as port x.

0 PCSTAT Port Connect Status (read-only):

Port x connect status from previous frame time.

Port x (x=1,2,3): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 4: Hard-wired to ‘1’, since the internal function is permanently
connected.

HPSTAT (Continued) Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

NOTES:

Firmware returns the bits of this register in the first word of the 8x930Hx’ response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8x930Hx supports ganged power
control and overcurrent indication.

Figure 8-9. HPSTAT: Hub Port Status Register (Continued)
8-19

8x930Ax, 8x930Hx USER’S MANUAL

are re-
 Using
ause

(Figure

 port

st ad-

AT and
us Re-

res
t.
8.5.3 Monitoring Port Status Change Using HPSC

When firmware changes the status of a port, there may be a delay between the time firmw
quests the status change (using the HPCON register, as described in “Controlling a Port
HPCON” on page 8-14) and the time hardware actually changes the state. This occurs bec
some port changes require hardware to perform auxiliary functions (such as driving a statedown-
stream for up to 20ms). Additionally, some status changes are initiated by hardware. Firmware
can determine when a port status change has occurred by monitoring the HPSC register
8-10 on page 8-21).

NOTE
Firmware-initiated port status changes are not reflected in HPSC until the next
end-of-frame.

The 8x930Hx uses the 1-byte TXDAT register associated with endpoint 1 to communicate a
status change to the host (Figure 8-6 on page 8-12). Bits in this register are set by the 8x930Hx
hardware to indicate which ports (or the hub itself) have changed status.

After receiving notification of a port status change through endpoint 1, the host may reque
ditional information regarding the status change using a GetPortStatus request. 8x930Hx firm-
ware must respond to the GetPortStatus request by transmitting the contents of the HPST
HPSC registers to the host in a two-word format. This process is described in “GetPortStat
quest Firmware” on page 9-24.

The HPSC register (Figure 8-10) indicates which port feature has changed status. Port featu
whose status changes are reflected by HPSC include reset, suspend, enable, and connec
8-20

USB HUB

HPSC Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 4: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:

Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=1,2,3): This bit is set by hardware upon completion of the firmware-
initiated resume process.

Port 4: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)

Figure 8-10. HPSC: Hub Port Status Change Register
8-21

8x930Ax, 8x930Hx USER’S MANUAL
NOTE
While the HPSC register indicates which port features have changed status, it
does not show the current status of any feature. Firmware must examine the
HPSTAT register to determine if a given port is currently reset, suspended,
powered on or off, connected or disconnected, enabled or disabled. See
“Examining a Port’s Status Using HPSTAT” on page 8-17 for details.

1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 4: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware at the EOF2 point near the end
of a frame due to hardware connects and disconnects.

Port 4: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

HPSC (Continued) Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)

Figure 8-10. HPSC: Hub Port Status Change Register (Continued)
8-22

USB HUB

bed in
 been

 Port
ecific
8.5.4 Hub Port Indexing Using HPINDEX

A port indexing scheme is used for port-specific SFRs for reasons similar to those descri
“Endpoint Selection” on page 7-3 for endpoint-specific registers. Three sets of SFRs have
mapped into the port-indexed scheme: HPSC, HPSTAT, and HPCON.

Ports 1-4 are indexed by the binary value of the two lower bits of HPINDEX (Figure 8-11).
0 is reserved for the root port, but it is not indexed by HPINDEX since there are no port-sp
SFRs for the root port.

CAUTION
Firmware writers may choose to set the contents of HPINDEX once at the start
of each routine instead of writing to HPINDEX prior to each access of a port-
indexed SFR. Because of this, interrupt service routines must save the contents
of the HPINDEX register at the start of the routine and restore the contents at
the end of the ISR. This will prevent HPINDEX from being corrupted.

HPINDEX Address S:D4H
Reset State xxxx x000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

7 0

— — — — — HPIDX2 HPIDX1 HPIDX0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPID.2:0 bit combinations:

Port 1 = “001”
Port 2 = “010”
Port 3 = “011”
Port 4 = “100” (internal port)

NOTE: Port 0 = “000” (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.

Figure 8-11. HPINDEX: Hub Port Index Register
8-23

8x930Ax, 8x930Hx USER’S MANUAL

 inter-
di-

IFLG,

X
PCON,
s time

t. This

ream
 must
an ini-

 page

e em-
.0 msec
e

ontroller

s
 USB
8.5.5 Embedded Function

The following subsections discuss considerations involved with the embedded function on
nal downstream port 4. See “Embedded Function Suspend and Resume” on page 8-26 for ad
tional embedded function information.

8.5.5.1 Embedded Function Reset

The USB host can generate an embedded port reset command to the hub to reset the 8x930Hx’
embedded function. When this command is received, the embedded function’s EPCON, F
FIE, TXSTAT, RXSTAT, TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their de-
fault values, as are the SOFACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPINDE
and SOFL SFRs remain unchanged. These SFRs are reset immediately after the write to H
however bus traffic to the embedded function remains inactive for 15 ms. You may use thi
frame to initialize the embedded function.

After an embedded function reset, the internal function must be re-enumerated by the hos
procedure is given in “Unenumerated State” on page 9-2.

8.5.5.2 Embedded Function Remote Wake-up

The HRWUPE bit in HSTAT (Figure 8-5 on page 8-9) must be set in order for any downst
port to initiate resume signaling. This includes port 4, the internal downstream port. Port 4
be suspended and the HRWUPE bit in HSTAT must be set before the embedded function c
tiate a remote wake-up. This is done by setting the RWU bit in PCON1 (Figure 15-2 on
15-4).

8.6 SUSPEND AND RESUME

8.6.1 Hub Global Suspend and Resume

USB requirements state that a USB device must be capable of being placed in a low-power sus-
pend mode in which the device draws less than 500 µA from the USB lines. The hub and th
bedded function are placed in suspend mode when a continuous idle state of more than 3
is detected on the hub root port. For an in-depth discussion of 8x930 suspend and resume, se
“USB Power Control” on page 15-8.

Once the suspend has been detected, the GSUS bit in the PCON1 SFR is set and a microc
interrupt is generated (See “USB Global Suspend/Resume Interrupt” on page 6-18).

Firmware services the global suspend interrupt by setting the PD bit of the PCON SFR. This shut
off the device’s clocks and crystal oscillator, placing the hub and embedded function in a
suspend mode.
8-24

USB HUB

r a

in

al
is sig-

t
t, the
 wake-
e Figure

e root

d
 the
A resume event can be signaled in any of three ways:

1. The hub repeater asynchronously detects a resume state due to resume signaling o
connect/disconnect on the bus

2. The hub repeater detects a reset state on the bus’ root port

3. An external interrupt powers-up the entire device, with a resume sequence initiated
firmware by setting the RWU bit in the PCON1 SFR (Figure 15-2 on page 15-4)

NOTE
Do not initiate a remote wake-up (by setting the RWU bit in PCON1) prior to
5ms after the last bus activity is detected (2ms after the 8x930Hx is
suspended).

8.6.2 Remote Connectivity

During the suspend state of the hub, logical connectivity can also be established if a physiccon-
nection/disconnection is made on one of the downstream ports, or if a resume condition
naled on a port, as shown in Figure 8-12 on page 8-26.

8.6.2.1 Resume Connect ivity

The HRWUPE bit must be set in the HSTAT register (Figure 8-5 on page 8-9) before the connec
or disconnect of a downstream device can initiate a remote wake-up. If this bit is not se
downstream connect or disconnect will be ignored as a remote wake-up event. If a remote
up device signals a resume on a downstream port when the hub is in the suspend state (se
8-12), the following process occurs:

1. The resume signaling causes the hub to wake up.

2. The repeater then establishes a connection from the port with the resume signal to th
port and all other enabled downstream ports.

3. The connectivity is then changed to downstream-only from the root port to all enable
downstream ports. This allows the host to drive the resume signaling downstream to
rest of the USB bus.

NOTE
The 8x930Hx hub cannot request a remote wake-up, although its embedded
function can. For this to happen, the HRWUPE bit must be set in HSTAT and
the embedded function must be enabled. The embedded function triggers the
remote wake-up by setting the RWU bit in PCON1.
8-25

8x930Ax, 8x930Hx USER’S MANUAL

me state

d
an be
r to

the

etPort-
e hard-
 with

nnected
ction
w

ntil the
T) re-

xternal
Figure 8-12. Resume Connect ivity

8.6.2.2 Connect ivity Due to Physical Connect/Disconnect

If a disconnect is made to a disabled port and the hub is in a global suspend state, a resu
is signaled as described in “Resume Connectivity” on page 8-25.

8.6.3 Embedded Function Suspend and Resume

Selective suspend is initiated on a downstream port when a SetPortFeature (suspend) comman
is received from the host via the USB bus. Individual external ports or the internal port c
suspended by USB command; however, the hub cannot be suspended by command. Refe
Universal Serial Bus Specification for more detail on the behavior of selective suspend in
USB system.

USB requirements state that the host can suspend the embedded function by issuing a S
Feature (PORT_SUSPEND) request to the hub’s port 4. Since the hub and function shar
ware such as the SIE, it is not possible to simply shut-off the clock to all circuitry associated
the function when the hub is to remain operational.

When placed into the suspended state, the embedded function must behave as if it were co
to a hub whose actual downstream port was suspended. This means that the embedded fun
must not respond to SOFs or any normal bus traffic. This is done automatically by hardare.
Firmware should place any external circuitry associated with the embedded function in alow-
power state, if one exists. The embedded function should remain in this suspended state u
host initiates a ClearPortFeature (PORT_SUSPEND) or a SetPortFeature (PORT_RESE
quest to the hub, or until a remote wake-up is signaled by the embedded function via an e
interrupt.

A5136-01

Port 3Port 2Port 1

(Disabled)

Port 4

(Internal)

Root Port

Port 3Port 2Port 1

(Disabled)

Port 4

(Internal)

Root Port

Port 3Port 2Port 1

(Disabled)

Port 4

(Internal)

Root Port

Downstream

Connectivity

Resume

Connectivity (Port 1)

Suspended Hub

with Resume (Port 1)
8-26

USB HUB

e-

 made
 be in-

ired to
 reset

power

in

is active

r. The
riate
rt

ing on
8.7 HUB POWER DISTRIBUTION

USB hubs can supply a specified amount of power to their downstream components and are r
sponsible for reporting their power distribution capabilities to the host during enumeration. Hubs
may be either locally powered, bus powered, or a combination of the two. The distinction is
depending on how the user implements the power scheme at the board level, which should
dicated in the value of the bmAttributes field of the configuration descriptor.

A hub can only supply power in a downstream direction and must never drive power upstream.
Bus-powered hubs must have port power switching for the downstream ports and are requ
power off all downstream ports when the hub comes out of power-up or when it receives a
on its root port. Port power can also be switched on or off under control of the host PC. Port
switching is optional for self-powered devices.

NOTE
Port power switching and over-current detection (discussed in the following
subsections) are mutually exclusive. Over-current detection is required only
for self-powered hubs, while port power switching is required only for bus-
powered hubs.

8.7.1 Port Power Switching

Port power switching is only supported on a ganged basis, therefore there is only one output p
used to enable power to the downstream devices.

From a USB perspective, power can be enabled on a per-port basis, but the power enable
if any of the three ports are powered-on by the host. The host PC can selectively switch power on
or off for a given port using a Set_Feature request with a Port_Power feature selecto
8X930Hx firmware must respond to this port power request by setting or clearing the approp
bit in the HPPWR SFR (Figure 8-13). An exception to this is the internal downstream port, Po
4, which is statically powered-on. The host PC may inquire about a port's power status using
Get_Feature (Port_Power). Firmware must respond to this inquiry by checking and report
the PPSTAT bit (bit 4) of HPSTAT (on page 8-19).
8-27

8x930Ax, 8x930Hx USER’S MANUAL

ted on
P-
rrent
ignal
tected
s first
 that
ntal

igure
hub
8.7.2 Overcurrent Detection

The OVRI# pin is an input pin that indicates when an overcurrent condition has been detec
one of the downstream devices at the board level. It is used to asynchronously disable the U
WEN# output pin, which switches power off to all three external ports. When the overcu
condition is removed, the OVRI# pin is deasserted to a ‘1’ state; however, the UPWEN# s
remains inactive since the HPPWR3:1 bits are reset when an overcurrent condition is de
(unless firmware has asserted one or more of these bits since the time the overcurrent wa
detected). Due to the asynchronous nature of this signal, the user must be careful to guarantee
the OVRI# input is not “glitchy” or noisy, since glitches on this signal could have a detrime
impact on the system.

The state of the OVRI# pin can be read by the USB host via firmware, using the HSTAT (F
8-5 on page 8-9) OVI (HSTAT.1 — latest overcurrent indicator) and OVISC (HSTAT.3 —
overcurrent status change) bits. OVI indicates if the overcurrent bit is presently asserted (‘0’) or

HPPWR Address: S:9AH
Reset State: xxx1 000xB

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.

7 0

— — — HPPWR.4 HPPWR.3 HPPWR.2 HPPWR.1 —

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

The value read from these bits is indeterminate. Write zeros to these bits.

4 HPPWR.4 Port Power Control Register for USB Port 4 (read-only):

Port 4 is an internal port and is always powered on. This bit is hard-wired to
‘1.’

3:1 HPPWR.3.1 Port Power Control Register for USB Ports 1-3:

Bit 3 is power control for port 3, bit 2 for port 2, and bit 1 for port 1. These
bits are set and cleared by firmware via a USB host request SetPortFeature
with the PORT_POWER feature selector. These bits will also be cleared by
hardware upon detection of an over-current condition. This is done to
prevent oscillation of the UPWEN# pin during an over-current condition with
bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the port in a
disconnected state. A value of ‘0’ turns the downstream port power off.
NOTE: The UPWEN# pin is set to ‘1’ only if all three port power enable

bits (bits 3:1) are ‘0,’ due to the use of a ganged (shared) power
enable scheme.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

Figure 8-13. HPPWR: Hub Port Power Control
8-28

USB HUB

bit was
re).

 in the
 self-
er to

 pin is

ol of

 long

 deas-

gnals

 via the
nt con-

e dis-
de-asserted (‘1’). OVISC indicates whether the overcurrent status has changed since this
first cleared by firmware (i.e., this bit acts as a “sticky” bit which must be cleared in firmwa

Another fact to consider about the overcurrent condition is that all external ports are placed
“powered off” state. This is true for both bus-powered and self-powered ports, even though
powered ports may still be powered. This condition will remain until the host enables pow
the ports via one of the HPPWR.3:1 bits.

8.7.3 Ganged Power Enable

The 8x930Hx uses a ganged power enable scheme to enable power to the three externaldown-
stream ports. This means that a single output pin, UPWEN# (pin 60) should be used at theboard-
level to switch power to all three of the downstream ports. The state of this power enable
controlled in two ways:

• by the collective ORed value of bits 3:1 of the HPPWR SFR (Figure 8-13) under contr
firmware, and

• by the present state of the overcurrent sense input pin, OVRI# (pin 59).

If any of the HPPWR[3:1] bits are set, then the UPWEN# signal will be asserted (to a ‘0’) as
as the OVRI# signal is not asserted (i.e., OVRI # = ‘1’). If the OVRI# signal is asserted (‘0’), or
if all three of the power enable bits in HPPWR are cleared, then the UPWEN# signal will be
serted (to a ‘1’).

Table 8-7 describes the state of the UPWEN# signal for all conditions of the HPPWR[3:1] si
and the OVRI# pin. Port power enable bits in the HPPWR SFR (Figure 8-13 on page 8-28) are
set via the SetPortFeature PORT_POWER request from the USB host. They are cleared
ClearPortFeature PORT_POWER request, or by hardware upon detection of an overcurre
dition.

Since a single power enable output is used for three ports, the value of the corresponding HPPWR
bit does not necessarily reflect the actual state of the port power, since all three bits must b
abled for power to be disabled. Similarly, a ‘1’ bit in the HPPWR SFR might not reflect that pow-
er is actually enabled to any devices in the event of an overcurrent condition.

Table 8-7. UPWIN# Pin State Truth Table

HPPWR.3 HPPWR.2 HPPWR.1 OVRI# UPWEN#

0 (disabled) 0 (disabled) 0 (disabled) 1 (disabled) 1 (disabled)

X X 1 1 0 (enabled)

X 1 X 1 0

1 X X 1 0

X X X 0 (enabled) 1
8-29

8x930Ax, 8x930Hx USER’S MANUAL

ct the

es is

dix B.
Note that the power enable signal for the internal port, HPPWR (for port 4), does not affe
state of the UPWEN# pin. Also, note that bus-powered devices must use the UPWEN# signal to
switch power to downstream ports, however, port power switching for self-powered devic
optional.

NOTE
Before the UPWEN# pin can be enabled, the EP1EN bit in the HSTAT SFR
(Figure 8-5 on page 8-9) must be set. See Section 11.9 of the Universal Serial
Bus Specification.

8.8 HUB DEVICE SIGNALS

Table 8-8 lists device signals associated with the hub. Pin assignments are shown in Appen

Table 8-8. Signal Descriptions

Signal
Name Type Description Alternate

Function

DP0, DM0 I/O USB (Upstream) Port 0 . DP0 and DM0 are the data plus and
data minus lines of differential USB port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KΩ pullup resistor at DM0. For full-speed
devices, provide an external 1.5 KΩ pullup resistor at DP0.

NOTE: For the 8x930Hx, provide an external 1.5 KΩ pullup
resistor at DP0 so the device indicates to the host that it is a full-
speed device.

—

DP1, DM1 I/O USB (Downstream) Port 1 . DP1 and DM1 are the voltage plus
and voltage minus lines of differential USB port 1. You must
supply an external 15 KΩ pulldown resistor for these lines.

—

DP2, DM2 I/O USB (Downstream) Port 2 . DP2 and DM2 are the voltage plus
and voltage minus lines of differential USB port 2. You must
supply an external 15 KΩ pulldown resistor for these lines.

—

DP3, DM3 I/O USB (Downstream) Port 3 . DP3 and DM3 are the voltage plus
and voltage minus lines of differential USB port 3. You must
supply an external 15 KΩ pulldown resistor for these lines.

—

8-30

9
USB Programming
Models

 inter-
en the
SB re-

erations
terface
tion.”

ils on
CHAPTER 9
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface and the hub
face. It provides flow charts of firmware routines needed to perform data transfers betwe
host PC and the embedded function, as well as routines needed to handle hub-oriented U
quests. It also describes briefly how the firmware interacts with the USB module hardware during
these operations. Data operations refer to data transfers over the USB, whereas event op
are hardware operations such as attach and detach. For a description of the USB function in
as well as its FIFOs and special functions registers (SFRs), refer to Chapter 7, “USB Func
For further information about the USB hub interface, see Chapter 8, “USB Hub.” For deta
data flow in USB transactions refer to Appendix D.

Section 9.1 through section 9.5 discuss programming models for the 8x930Ax. These models also
apply to the embedded function of the 8x930Hx. Section 9.6 contains the hub programming mod-
els for the 8x930Hx.

Figure 9-1. Program Flow

Receive SOFTransmit

Unenumerated

Reset

IN

token OUT

token
SETUP

token

SOF

token

Setup

A4260-02

Idle/Application Code

Receive
9-1

8x930Ax, 8x930Hx USER’S MANUAL

ceive
ach
r enu-
s.

eration
que ad-

e for
 see

ction

o
er

,

he

ith the
9.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and re
SOF. Program flow is depicted in Figure 9-1 along with the type of token associated with e
routine. Following device reset, the USB function enters the unenumerated state and afte
meration by the host, the idle state. From the idle state, it can enter any of the four routine

9.1.1 Unenumerated State

Following device reset, the USB function enters the unenumerated state. Initially, the function
address register FADDR contains the default value 00H. The host PC performs bus enum
in which it identifies and addresses devices attached to the bus. During enumeration, a uni
dress assigned by the host is written to FADDR.

NOTE
Although the 8x930Hx performs the following enumeration process for its
embedded function, this process is only part of a larger enumeration process
for the hub. 8x930Hx firmware must perform the hub enumeration process
outlined in “Bus Enumeration” on page 9-16 before performing the following
process.

The 8x930Ax bus enumeration process has four steps:

1. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet siz
endpoint 0, vendor id, product id, etc. For detailed information on device descriptors,
the “Device Framework” chapter in Universal Serial Bus Specification.

2. Set address. The host sends the 8x930’s function address in a data packet using function
endpoint 0. Device firmware interprets the data and instructs the CPU to write the fun
address to FADDR.

3. Get configuration. The host requests and reads the device configuration descriptor t
determine such information as the number of interfaces and endpoints; endpoint transf
type, packet size, and direction; power source; maximum power; etc. For detailed
information on configuration descriptors, see the “Device Framework” chapter in
Universal Serial Bus Specification. When the host requests the configuration descriptor
all related interface and endpoint descriptors are returned.

4. Set configuration. The host assigns a configuration value to the device to establish t
current configuration. Devices can have multiple configurations.

9.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this state, the 8x930 exe-
cutes application code associated with the embedded function. Upon receipt of a token w
assigned address, the module enters the designated routine. The 8x930 remains in the idle state
when not processing USB transmissions.
9-2

USB PROGRAMMING MODELS

ration
 adjust-
th the
fer
 that
d point-
ed by

ts, see

ansmit
side of
er the
-6 and

 data
pt of
t over
n
anage-

is then
U. The
ement
9.1.3 Transmit and Receive Routines

When the 8x930 is sending and receiving packets in the transmit and receive modes, its ope
depends on the type of data that is transferred—isochronous or non-isochronous—and the
ment of the FIFO markers and pointers—automatic or manual. These differences affect bo
8x930 firmware and the operation of the 8x930 hardware. For isochronous data, a failed trans
is not retried (lossy data). For non-isochronous data, a failed transfer can be repeated. Data
can be repeated is considered lossless data. Automatic adjustment of the FIFO markers an
ers is accomplished by the function interface hardware. Manual adjustment is accomplish
the 8x930 firmware.

9.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, hub, and SOF interrup
Chapter 6, “Interrupt System.”

9.2 TRANSMIT OPERATIONS

9.2.1 Overview

A transmit operation occurs in three major steps:

1. Pre-transmit data preparation by firmware

2. Data packet transmission by function interface hardware

3. Post-transmit management by firmware

These steps are depicted in a high-level view of transmit operations (Figure 9-2). The pre-tr
and post-transmit operations are executed by the two firmware routines shown on the left
the figure. Function interface hardware (right side of the figure) transmits the data packet ov
USB line. Details of these operations are described in “Pre-transmit Operations” on page 9
“Post-transmit Operations” on page 9-7.

Transmit operations for non-isochronous data begin with an interrupt request from the embedded
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the
from the function to the transmit FIFO where it is held until the next IN token. Upon recei
the next valid IN token, the function interface shifts the data out of the FIFO and transmits i
the USB. If the data packet is not ready for transmission, 8x930 hardware responds to the IN toke
with a NAK. The post-transmit routine checks the transmission status and performs data m
ment tasks.

Completion of data transmission is indicated by a handshake returned by the host. This
used to generate a transmit done interrupt to signal the end of data transmission to the CP
interrupt can also be used for activity tracking and fail-safe management. Fail-safe manag
permits recovery from lockups that can only be cleared by firmware.
9-3

8x930Ax, 8x930Hx USER’S MANUAL

o

s

 initi-
, and
updated

ajor

ta

nsmit

re

Because a transmit done interrupt is generated regardless of transmission errors, this condition
means either:

1. The transmit data has been transmitted and the host has sent an acknowledgment t
indicate that is was successfully received; or

2. A transmit data error occurred during transmission of the data packet, which require
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

For ISO data transmission, the cycle is similar. The significant differences are: the cycle is
ated by a start-of-frame (SOF) interrupt, there is no handshake associated with ISO transfer
a transmit done interrupt is not generated. For ISO data transfers, the transaction status is
at the end of the USB frame. The 8x930 supports one ISO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 7-12 on page 7-24) have a m
influence on transmit operation:

• The TXISO bit (TXCON.3) determines whether the transmission is for isochronous da
(TXISO = 1) or non-isochronous data (TXISO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 9-2). Also, for non-
isochronous data, the post-transmit routine is an ISR; for isochronous data the post-tra
routine is an ISR initiated by an SOF token.

• The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer a
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REVRP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitions in TXCON (Figure 7-12).
9-4

USB PROGRAMMING MODELS

Figure 9-2. High-level View of Transmit Operations

Interrupt

(keyboard, joystick, modem)

ISR

Write data to transmit FIFO

Write TXCNT

TXISO = 0: Transmit done interrupt

TXISO = 1: SOF interrupt

IN Token

Send data over USB

RETI

Firmware Hardware

RETI

– Receive host handshake

– Manage TXSEQ bit

If TXISO = 0:

If ATM = 1:

A4262-02

(SIE, FIU, FIFOs)

Post-

Transmit

Routine

Pre-transmit

Routine

– Adjust FIFO read

 marker and read pointer

– Adjust FIFO read marker and

 read pointer

•

•

•
•

ISR

Check status

If ATM = 0:

•

•

•

Generate transmit done interrupt

or SOF interrupt

•

9-5

8x930Ax, 8x930Hx USER’S MANUAL

e, joy-
f data
 pre-
re 9-3

se to a
9.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mous
stick, scanner, etc. In event-control applications, the end function signals the availability o
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should
pare the data for transmission and initiate the transmission process. The flow chart in Figu
illustrates a typical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in respon
start-of-frame (SOF) packet.

Figure 9-3. Pre-transmit ISR (Non-Isochronous)

RETI

Start: Non-ISO

 A5071-01

Yes

No

Yes

NoVacancy

in Transmit

FIFO?

Transfer Packet to

Transmit FIFO through

TXDAT

TXFIF1:0 = 11 in Dual-packet Mode

TXFIF1:0 = 00 in Single-packet Mode

Write Packet Size to

TXCNT

Error in

Transmit FIFO? TXOVF = 1 (overflow)

Error

Recovery
9-6

USB PROGRAMMING MODELS

received

rupt.
 ensure
uld be

 flow of
9.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake
from the host (non-isochronous data) or based on the transmission process itself (isochronous
data). For a non-isochronous transfer, the function interface generates a transmit done inter
The purpose of the post-transmit service routines is to manage the transmitter’s state and to
data integrity for the next transmission. For isochronous data, the post-transmit routine sho
embedded within the transfer request routine because both are triggered by an SOF. The
operations of typical post-transmit ISRs is illustrated in Figure 9-4 (non-isochronous data) and
Figure 9-5 (isochronous data).

Figure 9-4. Post-transmit ISR (Non-isochronous)

RETI

Identify Interrupt and Endpoint

(check FTXDx bits in FIFLG register)

Start: Transmit Done ISR

 A5072-01

No(TXACK = 1) Yes

Read Transaction Status

(TXSTAT Register)

Clear Interrupt Flag

(FTXDx Bit)

Transmit

Error?

(TXERR = 1)

Error in

Transmit

FIFO?

Yes

Data Error recovery

Reverse Transmit FIFO to

Current Packet Retry

No

Failed CRC,

Bit-stuffing, or

Timeout from Host

Advance Transmit FIFO to

Next Packet Transmit

(Underrun Flag

TXURF = 1?)

Buffer Segmentation Management. Executed automatically by hardware, based on transaction

status, if ATM bit in TXCON is set.

†

† †
9-7

8x930Ax, 8x930Hx USER’S MANUAL

Figure 9-5. Post-transmit ISR (Isochronous)

No

RETI

Start: SOF ISR

 A5073-02

Check TXFLUSH

(error tracking)

Overflow

Error in Transmit

FIFO?

No

Yes (TXURF = 1)

YesNo
For

Each Endpoint,

Read Transaction Status

(TXSTAT)

Transmit Error?

Write Next Packet

to Transmit FIFO

(TXERR = 1)(TXACK = 1)

Error in

Transmit FIFO?

Advance Transmit

FIFO to next packet No

(Failed CRC, Bit

Stuffing, or Timeout

from Host)

Transmit FIFO

Error Recovery

Write Packet Size

to TXCNT

Error Recovery

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit

in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

†

Write Packet Size

to TXCNT

Write Next Packet

to Transmit FIFO

Advance Transmit

FIFO to Next Packet

Overflow

Error in Transmit

FIFO?(TXOVF = 1)

Yes

(TXOVF = 1)Yes

†

†

9-8

USB PROGRAMMING MODELS

 post-
e. For
 of fig-

PU
ine
lso be

d by an

for post

ajor

 = 1)
ce

ne
for

are

P
ly
9.3 RECEIVE OPERATIONS

9.3.1 Overview

A receive operation is always initiated by the host, which sends an OUT token to the 8x930. The
operation occurs in two major steps:

1. Data packet reception by the function interface (hardware)

2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 9-6. The
receive operations are executed by the firmware routine shown on the left side of the figur
details see “Post-receive Operations” on page 9-10. Function interface hardware (right side
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin when the 8x930 receives a valid OUT token
from the host. The received data is written to a data buffer FIFO. The 8x930 indicates completion
of data received by returning a handshake to the host.

At the end of the receive cycle, the 8x930 generates a receive done interrupt to notify the C
that a receive operation has occurred. Program execution branches to the interrupt service rout
and transfers the data packet from the receive FIFO to its destination. The interrupt can a
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiate
OUT token. At the end of the OUT transaction, the 8x930Ax does not return handshake to the
host and the receive done interrupt is not generated. Instead, the SOF interrupt is used
receive management. The data reception status is updated at the next SOF. The 8x930 supports
one ISO packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 7-15 on page 7-29) have a m
influence on receive operation:

• The ISO bit (RXCON.3) determines whether the reception is for isochronous data (ISO
or non-isochronous data (ISO = 0). For non-isochronous data only, the function interfa
sends a handshake to the host, checks the sequence bit, and generates a receive-do
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routine is an ISR;
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOF token.

• The ARM bit (RXCON.2) determines whether the FIFO write marker and write pointer
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVW
bits, which control the write marker and write pointer when ARM = 0, are used primari
for test purposes. See bit definitions in RXCON (Figure 7-15).
9-9

8x930Ax, 8x930Hx USER’S MANUAL

 from the

a integ-
the re-
 called

us da-

Figure 9-6. High-level View of Receive Operations

9.3.2 Post-receive Operations

Reception status is updated at the end of data reception based on the handshake received
host (non-isochronous data) or based on the transmission process itself (isochronous data). For a
non-isochronous transfer, the function interface generates a receive done interrupt (FRXDx). The
purpose of the post-receive service routine is to manage the receiver’s state to ensure dat
rity and latency for the next reception. The post-receive routine also transfers the data in
ceive FIFO to the end function. For isochronous data, the post-receive routine should be
by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 9-7 (non-isochrono
ta) and Figure 9-8 (isochronous data).

RXISO = 0: Receive done interrupt

RXISO = 1: SOF interrupt

ISR

OUT Token

Firmware

Hardware

RETI

A4265-02

(SIE, FIU, FIFOs)

Post-

Receive

Routine

Send data over USB

– Send host handshake

– Adjust RXSEQ bit

Generate receive done interrupt

or SOF interrupt

If ISO = 0:

If ARM = 1:
– Adjust FIFO write marker and

 write pointer

•
•

•

Check status and read data

If ARM = 0:
– Adjust FIFO write marker

 and write pointer

•
•

•

9-10

USB PROGRAMMING MODELS

Figure 9-7. Post-receive ISR (Non-isochronous)

No

RETI

Start: Receive Done ISR

Clear Interrupt Flag

Identify Function Interrupt and Endpoint

(Check FRXDx Bits in FIFLG Register)

Error in

Receive

FIFO?

No

Yes (RXOVF=1)

Yes

YesNo
Check

RXSTAT for

Receive

Error

Read Data Packet(s)

(RXERR=1)(RXACK=1)

Error in

Receive FIFO?

Advance Receive FIFO

to next packet

Reverse Receive FIFO

to current packet retry

No(Failed CRC or Bit Stuffing)

Receive FIFO

Error Recovery

Check for

Another Packet in

Receive FIFO

(RXFIF1:0 = 00 in Dual

Port Mode)

Receive FIFO

Error Recovery

Unlock Current Packet from

Receive FIFO (set RXFFRC

Bit in RXCON)

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction

if ARM bit in RXCON is set.

†

†

†

 A5070-01

Yes (RXURF = 1)

(RXOVF=1)
9-11

8x930Ax, 8x930Hx USER’S MANUAL

Figure 9-8. Receive SOF ISR (Isochronous)

Yes

RETI

Start: SOF ISR

 A5074-01

Error

in Receive

FIFO?

Yes (RXOVF = 1)

YesNo
For

Each Endpoint,

Read Transaction Status

(RXSTAT)

Transmit Error?

Read Data Packet

(RXERR = 1)(RXACK = 1)

Error in

Receive FIFO?

Advance Receive

FIFO to Next Packet No

(Failed CRC

or Bit Stuffing)

Receive FIFO

Error Recovery

Data Reconstruction

by Application for

Lost Data

Receive FIFO

Error Recovery

Unlock Current Packet

from Receive FIFO

(set RXFFRC bit in RXCON)

Buffer Segmentation Management. Executed automatically by hardware at the end of a data

transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current

packet regardless of transaction status.

†

(RXURF = 1)

No

Advance Receive FIFO

to Next Packet Receive

Data Reconstruction

by Application for

Lost Data

†

†

Unlock FIFO

(set RXFFRC)
9-12

USB PROGRAMMING MODELS

ayer”

ood).
n non-
ferent

 a set-
-
 nature
t this,
ite is
, user
s the
9.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in order to respond to SETUP tokens. (This
will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol L
section of the Universal Serial Bus Specification for details of SETUP token transactions and pro-
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is g
Receive data transfer operations for a control endpoint are very similar to data transfers o
control endpoints for non-setup tokens. However, the response of a control endpoint is dif
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receipt of
up token, a control endpoint flushes the contents of the receive FIFO before writing it with re
ceived setup data. This may create an error condition in the FIFO due to the asynchronous
of FIFO reads by the CPU and simultaneous writes by the function interface. To preven
STOVW and EDOVW are used to track when an overwrite is occurring. When the overwr
complete, the user must clear EDOVW to read the SETUP packet. If EDOVW is not cleared
firmware will only be able to read the first byte of the SETUP packet. Figure 9-9 illustrate
operations of a typical post-receive routine for a control endpoint.
9-13

8x930Ax, 8x930Hx USER’S MANUAL

Figure 9-9. Post-receive ISR (Control)

RETI

Start: Receive Done ISR

 A5075-01

No

YesNo

Read Data Packet

OUT Token

Received

Clear Firmware

Setup Flag

Setup Token Received

Clear EDOVW

(RXERR = 1)(RXACK = 1)

Clear Overwrite Bit

(EDOVW)

Unlock Current Packet

from Receive FIFO

(set RXFFRC bit in RXCON)

Inhibited in hardware if STOVW or EDOVW are asserted.
†

No

No

Yes

(STOVW = 0 and

EDOVW = 1)

Yes

(STOVW = 1 or

 EDOVW = 1)

Normal

Error

Handling

†

Identify Interrupt Endpoint

(check FRXDx bits in the FIFLG register) Clear Interrupt Flag

Check

RXSTAT for

Receive

Error

Setup

Token?

Yes (RXSETUP = 1)

Overwrite

Completed?

Receive FIFO

Overwrite?

Error in

Receive FIFO?

No

No

Yes

Error

Recovery

(RXURF = 1)

Yes

Yes

Clear Overwrite Bit

(EDOVW)

No

Overwrite

Completed

Receive FIFO

Overwrite?

(STOVW = 0 and

EDOVW = 0)

(STOVW = 1 or

EDOVW = 1)

(STOVW = 0 and

EDOVW = 1)

(STOVW = 0 and

EDOVW = 0)
9-14

USB PROGRAMMING MODELS

art-of-
n SOF

ed by
9.5 START-OF-FRAME (SOF) TOKEN

Figure 9-10 illustrates the hardware operations performed by the function interface for a st
frame (SOF) token. The host issues an SOF token at a nominal rate of once every 1.0 ms. A
token is valid if the PID is good. The SOF token is not endpoint-specific; it should be receiv
every node on the bus.

Figure 9-10. Hardware Operations for SOF Token

Set ASOF Bit

End of

Transfer

No

Pass

CRC?

Yes

Write SOF Registers

Clear

SOFACK

Bit

Done

Yes

Valid SOF Token

No

Set SOFACK.

(SOF token received

without error)

Generate SOF Pulse

by Asserting SOF# Pin

(SOFH.7)

(SOFH.7)

(SOFH, SOFL)

(SOFH.6)

A4267-02
9-15

8x930Ax, 8x930Hx USER’S MANUAL

be-

ce is at-
ed
rforms
numer-

e such
e for

int
s to

nd

he

. The
red in

re to
n
e.

he host

 the
ature
ster.
9.6 HUB OPERATION

The primary objective of the programming model suggested here is to explain the linkage
tween the hardware and firmware of the 8x930Hx in operation.

9.6.1 Bus Enumeration

The USB host manages bus enumeration at system start-up or whenever a new USB devi
tached to the host or to a hub’s downstream port. Initially, the USB hub is in the unenumerat
state and the hub address register HADDR contains the default value 00H. The host PC pe
bus enumeration in which it identifies and addresses devices attached to the bus. During e
ation, a unique address assigned by the host is written to the HADDR of the hub device. An ex-
ample enumeration for the hub and downstream ports is given here:

1. Get device descriptor. The host requests and reads the device descriptor to determin
information as device class, USB specification compliance level, maximum packet siz
endpoint 0, vendor id, product id, etc. For additional information on the 8x930Hx
descriptors, see “Hub Descriptors” on page 8-6.

2. Set address. The host sends the 8x930Hx’s hub address in a data packet using hub endpo
0. Device firmware interprets the data and instructs the CPU to write the hub addres
HADDR. See “The Hub Address Register (HADDR)” on page 8-8.

3. Get configuration descriptor. The host requests and reads the device’s configuration
descriptor to determine such information as the number of interfaces and endpoints;
endpoint transfer type, packet size, and direction; power source; maximum power; etc.
When the host requests the configuration descriptor, all related interface, endpoint, a
hub descriptors are returned. For additional information on the 8x930Hx descriptors, see
“Hub Descriptors” on page 8-6.

4. Set configuration. The host assigns a configuration value to the device to establish t
current configuration.

5. Next, the hub downstream ports start the state flow shown in Figure 8-2 on page 8-4
host issues a SetPortPowerFeature request to the downstream ports that were decla
the hub descriptor. This moves the hub downstream ports to the disconnect state.

6. As connect detects occur, the host is notified through hub endpoint 1 (status change
endpoint). The host then issues a GetPortStatus command retrieving the contents of
HPSTAT and HPSC to determine the change for a specific downstream port. The host
then issues a ClearPortConnectionFeature command which should cause the firmwa
clear the PCSC bit in the HPSC register. This will indirectly clear the appropriate bit i
TXDAT for hub endpoint 1. This moves the hub downstream port to the disabled stat

7. The host sends a SetPortResetFeature request for the specified downstream port. T
receives a response through hub endpoint 1 (status change endpoint). The host issues a
GetPortStatus command retrieving the contents of HPSTAT and HPSC to determine
change for the specified downstream port. The host then issues a ClearPortResetFe
command which should cause the firmware to clear the RSTSC bit in the HPSC regi
This moves the hub downstream port to the enabled state.
9-16

USB PROGRAMMING MODELS

s-spe-
ub and
stream
 phys-
SB re-

b end-
8. At this point, the device connected to the downstream port goes through the enumeration
process discussed in “Unenumerated State” on page 9-2 (i.e., GetDeviceDescriptor,
SetAddress, GetConfigurationDescriptor, and SetConfiguration).

9. The remaining external ports must go through steps 6 through 8.

9.6.2 Hub Status and Configuration

USB communication with the USB hub function is performed via the standard and hub clas
cific USB requests. These requests control status management and configuration of the h
its downstream ports. Since the hub is part of a compound device, it has an internal down
port (port 4) which is unique from the external downstream ports. This is because port 4 is
ically connected to the embedded function and is powered-on at all times. Thus several U
quests intended for internal downstream port 4 are handled differently from similar requests to
the other downstream ports, as shown in Table 8-6 on page 8-16.

Table 9-1 is a summary of firmware actions required for standard USB requests sent to hu
point 0.

Table 9-1. Firmware Actions for USB Requests Sent to Hub

USB Request Feature Selector /
Type Firmware Action Required

SET_FEATURE

DEVICE_REMOTE
_WAKEUP

Set the HRWUPE bit of the HSTAT SFR. See “Hub
Status” on page 8-8.

ENDPOINT_STALL

Stall the endpoint specified in the Setup PID. See “Hub
Endpoint Control” on page 8-11.

Endpoint 0 specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set RXSTL and TXSTL bits of EPCON SFR.

Endpoint 1 specified:

Set EP1STL bit of HSTAT SFR.

CLEAR_FEATURE

DEVICE_REMOTE
_WAKEUP

Clear HRWUPE bit of HSTAT SFR. See “Hub Status” on
page 8-8.

ENDPOINT_STALL

Cancel stall for the specified endpoint. See “Hub
Endpoint Control” on page 8-11.

Endpoint 0 specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Clear RXSTL and TXSTL bits of EPCON SFR

Endpoint 1 specified:

Clear EP1STL bit of HSTAT SFR.

SET_CONFIGURATION N/A

1. Store hub endpoint 1 configuration value from value
field in memory

2. Set EP1EN bit of HSTAT SFR (Figure 8-5 on page
8-9) after the Status stage if 2-byte configuration
value = 0001H

GET_CONFIGURATION N/A Read configuration value (one byte) from memory and
send to the host.
9-17

8x930Ax, 8x930Hx USER’S MANUAL
Table 9-2 summarizes firmware action for hub class-specific USB requests.

NOTE
Upon receipt of a state-related USB request (i.e., SetPortFeature,
ClearPortFeature), firmware must examine the HPSTAT SFR to determine the
current port state. If the port is in a state where the request will be ignored by

GET_DESCRIPTOR

Device Read device descriptor from memory and transmit to
USB host through hub endpoint 0.

 Configuration
Read configuration, interface, endpoint, and hub
descriptors from memory and transmit to USB host
through hub endpoint 0.

GET_INTERFACE N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

GET_STATUS

Device
Read HSTAT SFR bit HRWUPE (Figure 8-5 on page
8-9) and power configuration from memory and transmit
to USB host using hub endpoint 0.

Interface
Load 2 bytes of zero into transmit buffer and transmit to
USB host. These bits are reserved in the initial version of
USB.

Endpoint

Endpoint 0 specified:

Load transmit buffer with value of zero if endpoint 0 is not
stalled. No data can be returned if endpoint 0 is stalled,
since STALL will be transmitted instead.

Endpoint 1 specified:

Load value of EP1STL bit of HSTAT SFR into transmit
buffer (Figure 8-5 on page 8-9).

SET_ADDRESS N/A

Read address value contained in request value field and
store in HADDR SFR (Figure 8-4 on page 8-8) after
successful completion of control transaction status
stage.

SET_DESCRIPTOR N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

SET_INTERFACE N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

SYNCH_FRAME N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent

during status stage

Table 9-1. Firmware Actions for USB Requests Sent to Hub (Continued)

USB Request Feature Selector /
Type Firmware Action Required
9-18

USB PROGRAMMING MODELS
hardware, instead of performing the action given in Table 9-2, firmware must
respond to the host by sending a STALL during the transaction status stage to
indicate the command was not completed. Table 8-5 depicts the state-related
USB requests and the port states for which they are ignored. See“Controlling a
Port Using HPCON” on page 8-14 for additional information.

Table 9-2. Firmware Action for Hub Class-Specific Requests

USB Requests Feature Selector
/ Type / Index Firmware Action Required

SetHubFeature —

Unsupported request since there are no current feature selectors
to match this request in the initial version of USB.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

ClearHubFeature

C_HUB_OVER_
CURRENT

Clear HSTAT SFR bit OVISC (hub over-current status change bit).
HSTAT is shown in Figure 8-5 on page 8-9.

C_HUB_LOCAL_
POWER

Unsupported request.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

GetBusState Port 1,2,3 or 4

Transfer the port bus signal values (DP and DM) to the host for
diagnostic purposes.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Transfer the DPSTAT and DMSTAT bits of HPSTAT (Figure

8-9 on page 8-18) to the transmit buffer of hub endpoint 0.
Transmit these bits in a single byte, with DMSTAT as bit 0,
DPSTAT as bit 1, and bits 2-7 as ‘0’.

GetHubDescriptor N/A Read hub descriptor from memory and transmit to USB host
using hub endpoint 0.

SetHubDescriptor N/A

Optional request for hubs which is not supported.
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

GetHubStatus N/A

Communicate the hub over-current status change, local power
status change, current-overcurrent indicator, and current local
power status to the host:

Load HSTAT bits OVISC and OVI into transmit buffer, with LPS
as the LSb. The HSTAT SFR is shown in Figure 8-5 on page 8-9.

GetPortStatus Port 1,2,3 or 4

Load the HPSTAT and HPSC SFRs for hub port 1,2,3 or 4 into the
transmit buffer.

See “GetPortStatus Request Firmware” on page 9-24 for
additional information, including bit ordering and a flowchart.
9-19

8x930Ax, 8x930Hx USER’S MANUAL
SetPortFeature

PORT_ENABLE

Enables address and endpoint decoding for the downstream
ports. For hub port 4, this enables address and endpoint decoding
for the embedded function.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Write “001” to bits 2:0 of the port’s HPCON SFR (Figure 8-8

on page 8-15)

PORT_SUSPEND

Write “011” to bits 2:0 of the port’s HPCON SFR.

If hub port 4 is specified, the user cannot suspend the embedded
function without also suspending the hub. Firmware must
suspend any non-hub functionality associated with the embedded
function prior to writing to HPCON. This is done by placing any
external device hardware into a low-power suspend mode.

See “SetPortFeature (PORT_SUSPEND) Firmware” on page
9-26 for additional information and a flowchart.

PORT_RESET

Write “010” to bits 2:0 of the port’s HPCON SFR.

If port 4 is specified, firmware needs to reset all non-hub
functionality in the microcontroller. Upon writing to port 4’s
HPCON SFR, a hardware reset is generated to the FIU and
function FIFOs. Firmware must gracefully shut-down the
application code, peripherals, etc. prior to writing to port 4’s
HPCON. Once written, the reset will be active in hardware for 10-
11 ms.

See “SetPortFeature (PORT_RESET) Firmware” on page 9-27 for
additional information and a flowchart.

PORT_POWER

Set bit x of HPPWR (where x is the port specified in the request
index field)

Port power-on is also supported for port 4, but only for reasons of
port compatibility since power for the embedded function cannot
be switched (i.e., writing bit 4 of HPPWR does not affect any
hardware).

Table 9-2. Firmware Action for Hub Class-Specific Requests (Continued)

USB Requests Feature Selector
/ Type / Index Firmware Action Required
9-20

USB PROGRAMMING MODELS
ClearPortFeature

PORT_ENABLE

Requests port disable.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Write “000” to bits 2:0 of the port’s HPCON SFR (Figure 8-8

on page 8-15)

For hub port 4, this will disable address and endpoint decoding for
the embedded function.

PORT_SUSPEND

Requests port resume.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Write “100” to bits 2:0 of the port’s HPCON SFR (Figure 8-8

on page 8-15)

If port 4 is specified, firmware must also resume any non-hub
functionality associated with the embedded function prior to
writing to port 4’s HPCON. This requires taking any external
device hardware out of a low-power suspend mode.

PORT_POWER

Request port power off.

If any port other than port 4 is specified:

Clear bit x of HPPWR (where x is the port specified in the
request index field)

Port power off is not supported for port 4. If port 4 is specified:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

C_PORT_
CONNECTION

Request to clear port connect status change.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Clear PCSC bit of HPSC SFR (Figure 8-10 on page 8-21)

C_PORT_
ENABLE

Request to clear hardware-initiated port enable/disable status
change.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Clear PESC bit of HPSC SFR (Figure 8-10 on page 8-21)

C_PORT_
SUSPEND

Request to clear port suspend status change.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Clear PSSC bit of HPSC SFR (Figure 8-10 on page 8-21)

C_PORT_
OVERCURRENT

Unsupported request to clear port over-current status change.
The 8x930Hx implements over-current detection on a hub-wide
basis, not on a per-port basis. If received:
1. Load 80H into EPINDEX (for hub endpoint 0)
2. Set TXSTL bit of EPCON SFR so STALL is sent during status

stage

C_PORT_RESET

Request to clear port reset status change.
1. Load xxxB into HPINDEX.2:0, where xxx is the binary

representation of the port index
2. Clear RSTSC bit of HPSC SFR (Figure 8-10 on page 8-21)

Table 9-2. Firmware Action for Hub Class-Specific Requests (Continued)

USB Requests Feature Selector
/ Type / Index Firmware Action Required
9-21

8x930Ax, 8x930Hx USER’S MANUAL

e host.

teps:

 the

 hub
rent

nge
 in

t
port’s
is

rent

ature
 will
9.6.3 Port Status Change Communication

The flowchart in Figure 9-11 shows how the hub communicates a change in port status to th
This process involves 8X930Hx hardware, 8X930Hx firmware, and PC host firmware. The flow-
chart illustrates the complete process at a high level. The process contains the following s

1. Any change in a port’s reset, suspend, enable, or connect status is communicated to
host via hub endpoint 1’s TXDAT register, as shown in Figure 8-7 on page 8-13. The
information passed through hub endpoint 1 is sufficient to indicate which port (or the
itself) changed status, but it does not indicate which status value changed or the cur
value of any status indicator.

Firmware has no involvement with USB communication to hub endpoint 1 (status cha
endpoint 1). This communication is handled completely in hardware and is discussed
“USB Hub Endpoints” on page 8-10

2. After the host receives notice of a change in port status through hub endpoint 1, hos
firmware can determine which status value changed and the current value of all the
status indicators by transmitting a GetPortStatus request through hub endpoint 0. Th
request includes a Port_Index to tell the 8X930Hx which port is of interest to the host. See
the Universal Serial Bus Specification for additional information.

3. The host’s GetPortStatus request triggers the 8x930Hx’ GetPortStatus routine. The
firmware response to the GetPortStatus request provides the host with the port’s cur
status along with an indication of any status changes that have occurred. See
“GetPortStatus Request Firmware” on page 9-24 for a complete description of this
routine.

4. The host resets the port status change indicators by issuing a separate ClearPortFe
request for each bit in HPSC that showed a change. Each ClearPortFeature request
include one of the following feature selectors:

a. C_PORT_CONNECTION — to clear HPSC.PCSC

b. C_PORT_ENABLE — to clear HPSC.PESC

c. C_PORT_SUSPEND— to clear HPSC.PSSC

d. C_PORT_RESET — to clear HPSC.RSTSC

5. 8x930Hx firmware responds to each ClearPortFeature request by performing the actions
shown in Table 9-2 on page 9-19.

6. Finally, the host must perform any actions necessitated by the status change.
9-22

USB PROGRAMMING MODELS

emain-
n ad-
Figure 9-11. Hub-to-host Port Status Communication

9.6.4 Hub Firmware Examples

Several of the firmware routines given in Table 9-2 have been selected as examples. The r
ing routines should be coded similarly. The following subsections contain a flowchart and a
ditional explanation for these routines:

• GetPortStatus (Port_Index)

 A5207-01

8X930Hx

communicates change

in port status to host

via hub endpoint 1

Status Change

Communication

Host inquires into

status change via a

GetPortStatus

command

Firmware

responds through the

GetPortStatus

request routine

Host clears bits of HPSC

one at a time through

ClearPortFeature

commands

Firmware clears

HPSC bits through

ClearPortFeature

routines

Host performs any

actions necessitated by

status change

End
9-23

8x930Ax, 8x930Hx USER’S MANUAL

chart

ctive-
e con-
• SetPortFeature (PORT_SUSPEND)

• SetPortFeature (PORT_RESET)

9.6.4.1 GetPortStatus Request Firmware

Firmware responds to a GetPortStatus call by returning four bytes to the host using the flow
procedure shown in Figure 9-12. The four bytes are arranged into a two-byte port status field and
a two-byte port change field containing the contents of the HPSTAT and HPSC SFRs, respe
ly. Figure 9-13 shows the relationship between the four bytes returned by firmware and th
tents of the HPSTAT and HPSC registers.

Figure 9-12. GetPortStatus Request

Transferring the contents of HPSTAT and HPSC into TXDAT requires additional code not shown
in the flowchart. The bits of HPSTAT must be “converted” into a two-byte port status field, as

 A5208-01

Write 80H to

EPINDEX to access

hub endpoint 0's

TX registers

Start:

GetPortStatus Request

Write xxxB to HPINDEX

(xxx = port number)

to access port's

HP registers

Transfer HPSTAT to

TXDAT using

two-byte format

Transfer HPSC to

TXDAT using two-byte

format

Put 04H in TXCNTL

(to indicate 4 bytes

ready to transmit)

End
9-24

USB PROGRAMMING MODELS

-

he
Firm-
ition).
shown in Figure 9-13, and transmitted to the host LSB first. The bits of HPSC must also be trans
mitted in a two-byte format, called the port change field.

The bit names are given in Figure 9-13, along with their position in the register (shown below t
bit name) and their position in the transmitted two-byte field (shown above the bit names).
ware must transmit the four bytes to the host in the byte order indicated (above the bit pos

NOTE
The HPSTAT bits are not directly mapped into the port status field. Firmware
must clear bit three of byte one to indicate that power is normal (not
overcurrent) for the port. This is done because the 8x930Hx indicates
overcurrent on a ganged, not per-port, basis.

Figure 9-13. Firmware Response to GetPortStatus

 A5117-01

P
C

S
C

P
E

S
C

P
S

S
C

R
S

T
S

C

Reserved

01234

HPSC

P
C

S
T

A
T

P
E

S
T

A
T

P
S

S
T

A
T

0

Res
er

ve
d

P
R

S
T

A
T

P
P

S
T

A
T

Reserved

LS
S

T
A

T

012345

HPSTAT

Get

Port

Status

0781507815

Port Change FieldPort Status Field
Byte 3Byte 4Byte 1Byte 2

0

9-25

8x930Ax, 8x930Hx USER’S MANUAL

ed is in-
d any
 hard-
9.6.4.2 SetPortFeature (PORT_SUSPEND) Firmware

This USB request suspends the downstream ports. The number of the port to be suspend
cluded in the request from the host. If hub port 4 is specified, firmware must also suspen
non-hub functionality associated with the embedded function and place any external device
ware into low-power suspend mode prior to writing to hub port 4’s HPCON SFR.

To implement this routine, firmware must write “011” to bits 2:0 of the port’s HPCON SFR. The
flowchart in Figure 9-14 illustrates the process.

Figure 9-14. SetPortFeature (PORT_SUSPEND) Routine

 A5166-01

Write xxxB to

HPINDEX

(xxx = port number)

to select the port

End

Write 011B to

HPCON to

suspend the port

Is Suspend

for port 4?

Place embedded

function and its

external device

hardware into low-

power suspend

mode

Yes

No

SetPortFeature

(PortSuspend)
9-26

USB PROGRAMMING MODELS

ded in
f the
1.6.2

rt 4’s

IFOs.
TAT,
e SO-
 un-
9.6.4.3 SetPortFeature (PORT_RESET) Firmware

This USB request resets the downstream ports. The number of the port to be reset is inclu
the request from the host. To implement this routine, firmware must write “010” to bits 2:0 o
port’s HPCON SFR. The flowchart in Figure 9-15 illustrates the process. Refer to Section 1
of the Universal Serial Bus Specification for a detailed description of this USB command.

Figure 9-15. SetPortFeature (PORT_RESET) Routine

If port 4 is specified, firmware must reset all non-hub functionality in the microcontroller. Firm-
ware must gracefully shut-down the application code, peripherals, etc. prior to writing to po
HPCON.

Upon writing to port 4’s HPCON SFR, a hardware reset is applied to the FIU and function F
When this reset is applied, the embedded function’s EPCON, FIFLG, FIE, TXSTAT, RXS
TXCON, RXCON, FADDR, and PCON1 SFRs are reset to their default values, as are th
FACK, ASOF, SOFIE, and SOFODIS bits of SOFH. The EPINDEX and SOFL SFRs remain

 A5167-01

Write xxxB to

HPINDEX

(xxx = port number)

to select the port

End

Write 011B to

HPCON to

reset the port

Is Reset

for port 4?

Shut down

application code,

peripherals, etc.,

for embedded

function

Yes

No

SetPortFeature

(PortReset)
9-27

8x930Ax, 8x930Hx USER’S MANUAL

 to the
m-
changed. These SFRs are reset immediately after the write to HPCON, however bus traffic
embedded function remains inactive for 15 ms. You may use this time frame to initialize the e
bedded function.
9-28

10
Input/Output Ports

p-
d

ternal

n in-
pera-
ves the
ddress

2. Port
CHAPTER 10
INPUT/OUTPUT PORTS

The 8x930 has four 8-bit input/output (I/O) ports for general-purpose I/O, external memory o
erations, and specific alternate functions (see Table 10-1). This chapter describes the ports an
provides information on port loading, read-modify-write instructions, and external memory ac-
cesses. Chapter 16, “External Memory Interface,” contains additional information about ex
memory operations.

10.1 INPUT/OUTPUT PORT OVERVIEW

All four 8x930 I/O ports are bidirectional. Each port contains a latch, an output driver, and a
put buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory o
tions. Port 0 drives the lower address byte onto the parallel address bus, and port 2 dri
upper address byte onto the bus. In nonpage mode, the data is multiplexed with the lower a
byte on port 0. In page mode, the data is multiplexed with the upper address byte on port
1 and port 3 provide both general-purpose I/O and special alternate functions.

Table 10-1. Input/Output Port Pin Descriptions

Pin
Name Type Alternate

Pin Name Alternate Description Alternate
Type

P0.7:0 I/O AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) I/O

P1.0 I/O T2 Timer 2 Clock Input/Output I/O

P1.1 I/O T2EX Timer 2 External Input I

P1.2 I/O ECI PCA External Clock Input I

P1.3 I/O CEX0 PCA Module 0 I/O I/O

P1.4 I/O CEX1 PCA Module 1 I/O I/O

P1.5 I/O CEX2 PCA Module 2 I/O I/O

P1.6 I/O CEX3/WAIT# PCA Module 3 I/O I/O

P1.7 I/O CEX4/A17/WCLK PCA Module 4 I/O or 18th Address Bit I/O(O)

P2.7:0 I/O A15:8 Address (Nonpage Mode), Address/Data (Page Mode) I/O

P3.0 I/O RXD Serial Port Receive Data Input I (I/O)

P3.1 I/O TXD Serial Port Transmit Data Output O (O)

P3.2 I/O INT0# External Interrupt 0 I

P3.3 I/O INT1# External Interrupt 1 I

P3.4 I/O T0 Timer 0 Input I

P3.5 I/O T1 Timer 1 Input I

P3.6 I/O WR# Write Signal to External Memory O

P3.7 I/O RD#/A16 Read Signal to External Memory or 17th Address Bit O
10-1

8x930Ax, 8x930Hx USER’S MANUAL

ead
ignal
” sig-

ource
ts al-

e

, shown
10.2 I/O CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 10-1 for ports 1 and 3. A CPU
“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “r
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” s
transfers the logical level of the port pin. Some port data instructions activate the “read latch
nal while others activate the “read pin” signal. Latch instructions are referred to as read-modify-
write instructions (see “Read-Modify-Write Instructions” on page 10-5). Each I/O line may be
independently programmed as input or output.

10.3 PORT 1 AND PORT 3

Figure 10-1 shows the structure of ports 1 and 3, which have internal pullups. An external s
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for i
ternate input or output function (Table 10-1).

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
1, 3). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, th
“alternate output function” signal controls the output level (Figure 10-1). The operation of ports
1 and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 10-5.

10.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0
in Figure 10-2, differs from the other ports in not having internal pullups. Figure 10-3 on page
10-4 shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
0, 2). To use a pin for general-purpose input, set the bit in the Px register to turn off the output
driver FET.
10-2

INPUT/OUTPUT PORTS
Figure 10-1. Port 1 and Port 3 Structure

Figure 10-2. Port 0 Structure

Read

Latch

Read

Pin

Write to

Latch

Internal

Bus

Alternate

Output

Function

D

CL

Q

Q#

P3.x

Latch

Internal

Pullup

P3.x

Alternate

Input

Function

A2239-01

VCC

Read

Latch

Read

Pin

Address/

Data Control

D

CL

Q

Q#

P0.x

A2238-01

VCC

Write to

Latch

Internal

Bus P0.x

Latch 1

0

10-3

8x930Ax, 8x930Hx USER’S MANUAL

itches

us.
Figure 10-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal sw
the output-driver input from the latch output to the internal address/data line. “External Memory
Access” on page 10-7 discusses the operation of port 0 and port 2 as the external address/data b

NOTE
Port 0 and port 2 are precluded from use as general purpose I/O ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port 0 outputs are
open drain.

Read

Latch

Read

Pin

Address

Control

D

CL

Q

Q#

P2.x

Latch

VCC

Internal

Pullup

A2240-01

P2.x

Write to

Latch

Internal

Bus

1

0

10-4

INPUT/OUTPUT PORTS

ns read
e” in-
ination

 write
h rath-
levels
cannot

c zero.

ional”
 current
direc-
hes.
 by a
10.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructio
the data, modify the data, and then rewrite the latch. These are called “read-modify-writ
structions. Table 10-2 contains a complete list of these special instructions. When the dest
operand is a port, or a port bit, these instructions read the latch rather than the pin.

It is not obvious that the last three instructions in Table 10-2 are read-modify-write instructions.
These instructions read the port (all eight bits), modify the specifically addressed bit, and
the new byte back to the latch. These read-modify-write instructions are directed to the latc
er than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic)
at the pin. For example, a port bit used to drive the base of an external bipolar transistor
rise above the transistor’s base-emitter junction voltage (a value lower than VIL). With a logic one
written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logi
A read of the latch rather than the pin returns the correct logic-one value.

10.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirect
ports. When configured as an input, the pin impedance appears as logic one and sources
(see the 8x930 datasheet) in response to an external logic-zero condition. Port 0 is a “true bi
tional” pin. The pin floats when configured as input. Resets write logical one to all port latc
If logical zero is subsequently written to a port latch, it can be returned to input conditions
logical one written to the latch. For additional electrical information, refer to the current 8x930
datasheet.

NOTE
Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Table 10-2. Read-Modify-Write Instructions

Instruction Description

ANL logical AND, e.g., ANL P1, A

ORL logical OR, e.g., ORL P2, A

XRL logical EX-OR, e.g., XRL P3, A

JBC jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL

CPL complement bit, e.g., CPL P3.0

INC increment, e.g., INC P2

DEC decrement, e.g., DEC P2

DJNZ decrement and jump if not zero, e.g., DJNZ P3, LABEL

MOV PX.Y, C move carry bit to bit Y of port X

CLR PX.Y clear bit Y of port X

SETB PX.Y set bit Y of port x
10-5

8x930Ax, 8x930Hx USER’S MANUAL

his
urces
 rath-
 is on
rned on
 one
T pair
ssoci-
s are

-drain
-one
only
h sink
nal

nts to
Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid t
logic transition (see Figure 10-4). This increases switch speed. The extra pullup briefly so
100 times the normal internal circuit current. The internal pullups are field-effect transistors
er than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET
when the gate senses logical zero and off when the gate senses logical one. pFET #1 is tu
for two oscillator periods immediately after a zero-to-one transition in the port latch. A logic
at the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFE
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the a
ated nFET is switched off. This is a traditional CMOS switch convention. Current strength
1/10 that of pFET #3.

Figure 10-4. Internal Pullup Configurations

10.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see VOL specifica-
tions in the 8x930 data sheet). These port pins can be driven by open-collector and open
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a logic
condition (Figure 10-4 on page 10-6). A logic-zero input turns off pFET #3. This leaves
pFET #2 weakly in support of the transition. In external bus mode, port 0 output buffers eac
3.2 mA at logic zero (see VOL1 in the 8x930 data sheet). However, the port 0 pins require exter
pullups to drive external gate inputs. See the latest revision of the 8x930 datasheet for complete
electrical design information. External circuits must be designed to limit current requireme
these conditions.

Q#

From

Port

Latch

P3P2P1

n

Port

Input Data

Read Port Pin

2 Osc. Periods

A2242-01

VCCVCCVCC
10-6

INPUT/OUTPUT PORTS

e (used
te and
e multi-

rites
cles.
e port 2

al pull-
dance

l pull-

al pull-
internal
ss

al data
 sig-

strobe

it ad-
ry ad-

he in-
10.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mod
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address by
the data are multiplexed on port 0. In page mode, the upper address byte and the data ar
plexed on port 2, while port 0 outputs the lower address byte.

The 8x930 CPU writes FFH to the P0 register for all external memory bus cycles. This overw
previous information in P0. In contrast, the P2 register is unmodified for external bus cy
When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on th
pins.

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong intern
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impe
state for data input.

In page mode, port 0 uses a strong internal pullup FET to output ones or a strong interna
down FET to output zeros for the lower address byte or a strong internal pulldown FET to output
zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong intern
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong
pullup FET to output ones or a strong internal pulldown FET to output zeros for the upper addre
byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

There are two types of external memory accesses: external program memory and extern
memory (see Chapter 16, “External Memory Interface”). External program memories utilize
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to
memory for data accesses. Depending on its RD1:0 configuration bits, the 8x930 uses PSEN# or
RD# for data reads (See “Configuration Bits RD1:0” on page 4-8).

During instruction fetches, external program memory can transfer instructions with 16-b
dresses for binary-compatible code or with the external bus configured for extended memo
dressing (17-bit or 18-bit).

External data memory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on t
struction and the configuration of the external bus. Table 10-3 lists the instructions that can be
used for these bus widths.

Table 10-3. Instructions for External Data Moves

Bus Width Instructions

8 MOVX @Ri; MOV @Rm; MOV dir8

16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dir16

17 MOV @DRk; MOV @DRk+dis

18 MOV @DRk; MOV @DRk+dis
10-7

8x930Ax, 8x930Hx USER’S MANUAL

ddress
r
s,
driven
.

NOTE
Avoid MOV P0 instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The a
byte is valid after the ALE pin drives VOL. For write cycles, valid data is written to port 0 just prio
to the write (WR#) pin asserting VOL. Data remains valid until WR# is undriven. For read cycle
data returned from external memory must appear at port 0 before the read (RD#) pin is un
(refer to the 8x930 datasheet for specifications). Wait states, by definition, affect bus-timing
10-8

11
Timer/Counters and
Watchdog Timer

herals
 time,

rupt re-

set if a
er”

ed as
ety of
ed sep-
 capture

)

cribes

 TH

r 0 and

he
 at the
d

CHAPTER 11
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as perip
on the 8x930. When operating as a timer, a timer/counter runs for a programmed length of
then issues an interrupt request. When operating as a counter, a timer/counter counts negative
transitions on an external pin. After a preset number of counts, the counter issues an inter
quest.

The watchdog timer provides a way to monitor system operation. It causes a system re
firmware malfunction allows it to expire. The watchdog timer is covered in “Watchdog Tim
on page 11-16.

11.1 TIMER/COUNTER OVERVIEW

The 8x930 contains three general-purpose, 16-bit timer/counters. Although they are identifi
timer 0, timer 1, and timer 2, you can independently configure each to operate in a vari
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, us
arately or in cascade, to maintain the count. The timer registers and associated control and
registers are implemented as addressable special function registers (SFRs). Four of the SFRs pro-
vide programmable control of the timers as follows:

• Timer/counter mode control register (TMOD) and timer/counter control register (TCON
control timer 0 and timer 1

• Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 11-1 describes the external signals referred to in this chapter. Table 11-2 briefly des
the SFRs referred to in this chapter. For a map of the SFR address space, see Table 3-5 on page
3-16.

11.2 TIMER/COUNTER OPERATION

The block diagram in Figure 11-1 depicts the basic logic of the timers. Here timer registersx
and TLx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRx) turns the timer on by allowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Time
timer 1 can also be controlled by external pin INTx# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. T
timer register is incremented once every peripheral cycle (once every six states). That is,
internal clock frequency divided by six (FCLK/6). Exceptions are the timer 2 clock-out and bau
11-1

8x930Ax, 8x930Hx USER’S MANUAL

1

 Unit”
 high in

ipheral

led at
rate modes, in which the timer register is incremented at the internal clock rate (FCLK). See “Clock
and Reset Unit” on page 2-9. Table 2-4 on page 2-10 and Figures 2-7, and 2-8 on page 2-1show
the relationship between FOSC, FCLK, state times, and peripheral cycles. Also see the 8x930 clock
circuit block diagram in Figure 2-6 on page 2-9.

NOTE
The timing calculations in this chapter are based on the value of FCLK, which is
a function of PLLSEL2:0. See Table 2-4 on page 2-10.

For counter operation (C/Tx# = 1), the timer register counts the negative transitions on the Tx ex-
ternal input pin. The external input is sampled during every S5P2 state. “Clock and Reset
on page 2-9 describes the notation for the states in a peripheral cycle. When the sample is
one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3P1 state after the transition was detected. Since it takes two per
cycles to recognize a negative transition, the maximum count rate is FCLK/12. There are no restric-
tions on the duty cycle of the external input signal, but to ensure that a given level is samp
least once before it changes, it should be held for at least one full peripheral cycle.

Table 11-1. External Signals

Signal
Name Type Description Alternate

Function

T2 I/O Timer 2 Clock Input/Output . This signal is the external clock input
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

P1.0

T2EX I Timer 2 External Input . In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

P1.1

INT1:0# I External Interrupts 1:0 . These inputs set the IE1:0 interrupt flags in
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = 0 selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

P3.3:2

T1:0 I Timer 1:0 External Clock Inputs . When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4
11-2

TIMER/COUNTERS AND WATCHDOG TIMER

Figure 11-1. Basic Logic of the Timer/Counters

Table 11-2. Timer/ Counter and Watchdog Timer SFRs

Mnemonic Description Address

TL0
TH0

Timer 0 Timer Registers. Used separately as 8-bit counters or in cascade
as a 16-bit counter. Counts an internal clock signal with frequency FCLK/6
(timer operation) or an external input (event counter operation).

S:8AH
S:8CH

TL1
TH1

Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade
as a 16-bit counter. Counts an internal clock signal with frequency FCLK/6
(timer operation) or an external input (event counter operation).

S:8BH
S:8DH

TL2
TH2

Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a
16-bit counter. Counts an internal clock signal with frequency FCLK/6 (timer
operation) or an external input (event counter operation).

S:CCH
S:CDH

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags,
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.

S:88H

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits,
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

S:89H

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

S:C8H

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and
down count enable bits.

S:C9H

RCAP2L
RCAP2H

Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values
to and receive values from the timer registers (TL2,TH2).

S:CAH
S:CBH

WDTRST Watchdog Timer Reset Register (WDTRST). Used to reset and enable
the WDT.

S:A6H

A5197-01

TRx

TLx

(8 Bits)

THx

(8 Bits) TFx

Interrupt

Request

6

Tx

Overflow

x = 0, 1, or 2

FCLK

C/Tx#

0

1

11-3

8x930Ax, 8x930Hx USER’S MANUAL

 11-2,

5, 4,
r gat-
 The
ter-

e se-
This
on page

rrupt

 with
. The
erflow

igure
11.3 TIMER 0

Timer 0 functions as either a timer or event counter in four modes of operation. Figures
11-3, and 11-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 11-5) and bits
1, and 0 of the TCON register (Figure 11-6). The TMOD register selects the method of time
ing (GATE0), timer or counter operation (T/C0#), and mode of operation (M10 and M00).
TCON register provides timer 0 control functions: overflow flag (TF0), run control (TR0), in
rupt flag (IE0), and interrupt type control (IT0).

For normal timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by th
lected input. Setting GATE0 and TR0 allows external pin INT0# to control timer operation.
setup can be used to make pulse width measurements. See “Pulse Width Measurements”
11-10.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TF0 flag generating an inte
request.

11.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer which is set up as an 8-bit timer (TH0 register)
a modulo 32 prescalar implemented with the lower five bits of the TL0 register (Figure 11-2)
upper three bits of the TL0 register are indeterminate and should be ignored. Prescalar ov
increments the TH0 register.

11.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with TH0 and TL0 connected in cascade (F
11-2). The selected input increments TL0.

Figure 11-2. Timer 0/1 in Mode 0 and Mode 1

A5198-01

GATEx

INTx#

TRx

TLx

(8 Bits)

THx

(8 Bits) TFx

Interrupt

Request

6

Tx

Overflow

Mode 0: 13-bit Timer/Counter

Mode 1: 16-bit Timer/Counter

x = 0 or 1

FCLK

C/Tx#

0

1

11-4

TIMER/COUNTERS AND WATCHDOG TIMER

 the
ster
t re-

ad Set-

s (Fig-
nter.
N in
f

Halt)”
11.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TL0 register) that automatically reloads from
TH0 register (Figure 11-3). TL0 overflow sets the timer overflow flag (TF0) in the TCON regi
and reloads TL0 with the contents of TH0, which is preset by firmware. When the interrup
quest is serviced, hardware clears TF0. The reload leaves TH0 unchanged. See “Auto-relo
up Example” on page 11-9.

Figure 11-3. Timer 0/1 in Mode 2, Auto-reload

11.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TL0 and TH0 operate as separate 8-bit timer
ure 11-4). This mode is provided for applications requiring an additional 8-bit timer or cou
TL0 uses the timer 0 control bits C/T0# and GATE0 in TMOD, and TR0 and TF0 in TCO
the normal manner. TH0 is locked into a timer function (counting FCLK /6) and takes over use o
the timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restricted
when timer 0 is in mode 3. See the last paragraph of “Timer 1” on page 11-6 and “Mode 3 (
on page 11-9.

A5199-01

GATEx

INTx#

TRx

TLx

(8 Bits) TFx

Interrupt

Request

6

Tx

Overflow

x = 0 or 1

FCLK

Reload

THx

(8 Bits)

C/Tx#

0

1

11-5

8x930Ax, 8x930Hx USER’S MANUAL

-2 and
ode.

 7,
 timer
. The
ter-

ud rate

ent-
r op-
Width

rrupt

 For
ud rate
d on.

Figure 11-4. Timer 0 in Mode 3, Two 8-bit Timers

11.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 11
11-3 show the logical configuration for modes 0, 1, and 2. Timer 1’s mode 3 is a hold-count m

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 11-5) and bits
6, 3, and 2 of the TCON register (Figure 11-6). The TMOD register selects the method of
gating (GATE1), timer or counter operation (T/C1#), and mode of operation (M11 and M01)
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), in
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the ba
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATE1 = 0), setting TR1 allows timer register TL1 to be increm
ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control time
eration. This setup can be used to make pulse width measurements. See “Pulse
Measurements” on page 11-10.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag, generating an inte
request.

When timer 0 is in mode 3, it uses timer 1’s overflow flag (TF1) and run control bit (TR1).
this situation, use timer 1 only for applications that do not require an interrupt (such as a ba
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off an

A5200-01

GATE0

INT0#

TR0

TL0

(8 Bits) TF0

Interrupt

Request

6

T0

Overflow

FCLK TF1
OverflowTH0

(8 Bits)

TR1

Interrupt

Request

C/T0#

0

1

11-6

TIMER/COUNTERS AND WATCHDOG TIMER

Figure 11-5. TMOD: Timer/Counter Mode Control Register

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

Bit
Number

Bit
Mnemonic Function

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATE0 Timer 0 Gate:

When GATE0 = 0, run control bit TR0 gates the input signal to the timer
register. When GATE0 = 1 and TR0 = 1, external signal INT0 gates the
timer input.

2 C/T0# Timer 0 Counter/Timer Select:

C/T0# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/T0# = 1 selects counter operation: timer 0 counts
negative transitions on external pin T0.

1, 0 M10, M00 Timer 0 Mode Select:

M10 M00
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TL0)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL0). Reloaded

from TH0 at overflow.
1 1 Mode 3: TL0 is an 8-bit timer/counter. TH0 is an 8-bit

timer using timer 1’s TR1 and TF1 bits.
11-7

8x930Ax, 8x930Hx USER’S MANUAL

Figure 11-6. TCON: Timer/Counter Control Register

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Function

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

Set/cleared by firmware to turn timer 1 on/off.

5 TF0 Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TR0 Timer 0 Run Control Bit:

Set/cleared by firmware to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IE0 Interrupt 0 Flag:

Set by hardware when an external interrupt is detected on the INT0# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 IT0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).
11-8

TIMER/COUNTERS AND WATCHDOG TIMER

) with
. The
ister.

igure

TH1
eg-
aves

imer 1
 para-

er
-
xamples
ers.

he

r
11.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register
a modulo-32 prescalar implemented with the lower five bits of the TL1 register (Figure 11-2)
upper three bits of the TL1 register are ignored. Prescalar overflow increments the TH1 reg

11.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (F
11-2). The selected input increments TL1.

11.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the
register on overflow (Figure 11-3). Overflow from TL1 sets overflow flag TF1 in the TCON r
ister and reloads TL1 with the contents of TH1, which is preset by firmware. The reload le
TH1 unchanged. See “Auto-reload Setup Example” on page 11-9.

11.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt t
when the TR1 run control bit is not available (i.e., when timer 0 is in mode 3). See the final
graph of “Timer 1” on page 11-6.

11.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. The tim
applications presented in this section are intended to demonstrate timer setup, and do not repre
sent the only arrangement nor necessarily the best arrangement for a given task. These e
employ timer 0, but timer 1 can be set up in the same manner using the appropriate regist

11.5.1 Auto-reload Setup Example

Timer 0 can be configured as an eight-bit timer (TL0) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 11-5) to specify: mode 2 for
timer 0, C/T0# = 0 to select FCLK/6 as the timer input, and GATE0 = 0 to select TR0 as t
timer run control.

2. Enter an eight-bit initial value (n0) in timer register TL0, so that the timer overflows afte
the desired number of peripheral cycles.

3. Enter an eight-bit reload value (nR) in register TH0. This can be the same as n0 or
different, depending on the application.

4. Set the TR0 bit in the TCON register (Figure 11-6) to start the timer. Timer overflow
occurs after FFH + 1 - n0 peripheral cycles, setting the TF0 flag and loading nR into TL0
from TH0. When the interrupt is serviced, hardware clears TF0.
11-9

8x930Ax, 8x930Hx USER’S MANUAL

 pulse
llows:

re

m is

nd

-
nd

e. Set-

 TF2
5. The timer continues to overflow and generate interrupt requests every FFH + 1 - nR
peripheral cycles.

6. To halt the timer, clear the TR0 bit.

11.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEx and TRx allows an external waveform at pin INTx# to
turn the timer on and off. This setup can be used to measure the width of a positive-going
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made as fo

1. Program the four low-order bits of the TMOD register (Figure 11-5) to specify: mode 1 for
timer 0, C/T0# = 0 to select FCLK/6 as the timer input, and GATE0 = 1 to select INT0 as
timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register TH0/TL0, or read and sto
the current contents of the register.

3. Set the TR0 bit in the TCON register (Figure 11-6) to enable INT0.

4. Apply the pulse to be measured to pin INT0. The timer runs when the pulse wavefor
high.

5. Clear the TR0 bit to disable INT0.

6. Read timer register TH0/TL0 to obtain the new value.

7. Calculate pulse width = 6TCLK × (new value - initial value).

8. Example 1, PLLSEL2:0 = 100 (low speed): FOSC = 12 MHz, FCLK = 6 MHz,
TCLK = 0.16667 µs. If the new value = 10,00010 counts and the initial value = 0, the pulse
width = 6(0.16667) x (10,000 – 0) = 1 µs × 10,000 = 10 ms.

Example 2, PLLSEL2:0 = 110 (full speed): FOSC = 12 MHz, FCLK = 12 MHz,
TCLK = 0.08333 µs. If the new value = 10,00010 counts and the initial value = 0, the pulse
width = 6(0.08333) x (10,000 – 0) = 0.5 µs × 10,000 = 5 ms.

11.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two 8-bit timer registers, TH2 a
TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD) as shown in Fig-
ure 11-11 on page 11-16) and the timer/counter 2 control register (T2CON) as shown in Figure
11-12 on page 11-17) control the operation of timer 2.

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud rate gen
erator mode, and programmable clock-out mode. Select the operating mode with T2MOD a
TCON register bits as shown in Table 11-3 on page 11-15. Auto-reload is the default mod
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the divided-down system clock
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting
allows TL2 to be incremented by the selected input.
11-10

TIMER/COUNTERS AND WATCHDOG TIMER

s 11-7

rflow
ble bit
isters
2EX
The operating modes are described in the following paragraphs. Block diagrams in Figure
through 11-10 show the timer 2 configuration for each mode.

11.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 11-7). An ove
condition sets bit TF2, which you can use to request an interrupt. Setting the external ena
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer reg
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

Figure 11-7. Timer 2: Capture Mode

Interrupt

Request

T2EX

TF2
6

T2

Overflow

RCAP2H

TR2

RCAP2L

TH2

(8 Bits)

EXEN2

EXF2

Capture

A5201-01

FCLK

C/T2#

0

1
TL2

(8 Bits)
11-11

8x930Ax, 8x930Hx USER’S MANUAL

eload.

 timer

XEN2
p to
e re-
n

tran-
ither
11.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic r
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode,
2 defaults to operation as an up counter.

11.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 11-8). The external enable bit E
in the T2CON register provides two options (Figure 11-12). If EXEN2 = 0, timer 2 counts u
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in th
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values i
RCAP2H and RCAP2L are preset by firmware.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to-low
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. E
TF2 or EXF2 bit can generate a timer 2 interrupt request.

Figure 11-8. Timer 2: Auto-reload Mode (DCEN = 0)

Interrupt

Request

T2EX

TF2

6

T2

Overflow

TR2

TH2

(8 Bits)

TL2

(8 Bits)

EXEN2

EXF2

Reload

A5202-01

FCLK

RCAP2H RCAP2L

C/T2#

0

1

11-12

TIMER/COUNTERS AND WATCHDOG TIMER

 con-
ts up.
es an
 load-

imer
e

ount.
 bit can
11.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 11-9). External pin T2EX
trols the direction of the count (Table 11-1 on page 11-2). When T2EX is high, timer 2 coun
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generat
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the t
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets th
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the c
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This
be used to provide 17-bit resolution.

Figure 11-9. Timer 2: Auto-reload Mode (DCEN = 1)

Interrupt

Request

T2

Overflow

TR2

TH2

(8 Bits)

TL2

(8 Bits)

FFH FFH

6

T2EX

Count

Direction

1 = Up

0 = Down

TF2

EXF2

Toggle

(Down Counting Reload Value)

(Up Counting Reload Value)

RCAP2LRCAP2H

A5203-01

FCLK

C/T2#

0

1

11-13

8x930Ax, 8x930Hx USER’S MANUAL

s mode
 this

igure
the in-
ue.
In
quen-

ge
-

e

2L

oad

er 2 as
d rates
11.6.4 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select thi
by setting the RCLK and/or TCLK bits in T2CON. See Table 11-3. For details regarding
mode of operation, refer to “Baud Rates” on page 13-10.

11.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (F
11-10). The generated clock signal appears on pin T2. The input clock increments TL0 at
ternal clock frequency (FCLK). The timer repeatedly counts to overflow from a preloaded val
At overflow, the contents of the RCAP2H and RCAP2L registers are loaded into TH2/TL2.
this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out fre
cy as a function of FCLK (Table 2-4 on page 2-10) and the value in the RCAP2H and RCAP2L
registers:

For PLLSEL2:0 = 100 (low speed, FCLK = 6 MHz), timer 2 has a programmable frequency ran
of 45.8 Hz to 3 MHz. For PLLSEL2:0 = 110 (full speed, FCLK = 12 MHz), timer 2 has a program
mable frequency range of 91.6 Hz to 6 MHz.

Timer 2 is programmed for the clock-out mode as follows:

1. Set the T2OE bit in T2MOD. This gates the timer register overflow to the ÷2 counter.

2. Clear the C/T2# bit in T2CON to select FCLK as the timer input signal. This also gates th
output of the ÷2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the rel
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use tim
a baud rate generator and a clock generator simultaneously. For this configuration, the bau
and clock frequencies are not independent since both functions use the values in the RCAP2H
and RCAP2L registers.

Clock-out Frequency
FCLK

2 (65535 - RCAP2H, RCAP2L)×--=
11-14

TIMER/COUNTERS AND WATCHDOG TIMER

Figure 11-10. Timer 2: Clock Out Mode

 .

Table 11-3. Timer 2 Modes of Operation

Mode RCLK OR TCLK
(in T2CON)

CP/RL2#
(in T2 CON)

T2OE
(in T2MOD)

Auto-reload Mode 0 0 0

Capture Mode 0 1 0

Baud Rate Generator Mode 1 X X

Programmable Clock-Out X 0 1

Interrupt

Request

T2EX

T2OE

RCAP2H

TR2

RCAP2L

TH2

(8 Bits)

EXEN2

EXF2

TL2

(8 Bits)

2

A5204-01

T2

C/T2#

0

1

FCLK
11-15

8x930Ax, 8x930Hx USER’S MANUAL

ering
 de-

ted in

ontrol

T.

 For
 µs

read

Figure 11-11. T2MOD: Timer 2 Mode Control Register

11.7 WATCHDOG TIMER

The peripheral section of the 8x930 contains a dedicated, hardware watchdog timer (WDT) that
automatically resets the chip if it is allowed to time out. The WDT provides a means of recov
from routines that do not complete successfully due to firmware malfunctions. The WDT
scribed in this section is not associated with the PCA watchdog timer, which is implemen
firmware.

11.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.e., (FCLK/6. The WDTRST special
function register at address S:A6H provides control access to the WDT. Two operations c
the WDT:

• Device reset clears and disables the WDT (see “Reset” on page 14-5).

• Writing a specific two-byte sequence to the WDTRST register clears and enables the WD

If it is not cleared, the WDT overflows on count 3FFFH + 1. For PLLSEL2:0 = 100 (FCLK = 6
MHZ, a peripheral cycle is 1 µs), the WDT overflows in 1 µs × 16384 = 16.384 ms.
PLLSEL2:0 = 110 (FCLK = 12 MHZ, a peripheral cycle is 0.5 µs), the WDT overflows in 0.5
× 16384 = 8.192 ms.

The WDTRST is a write-only register. Attempts to read it return FFH. The WDT itself is not
or write accessible. The WDT does not drive the external RESET pin.

T2MOD Address: S:C9H
Reset State: xxxx xx00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0

— — — — — — T2OE DCEN

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T2OE Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.
11-16

TIMER/COUNTERS AND WATCHDOG TIMER

Figure 11-12. T2CON: Timer 2 Control Register

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit
Number

Bit
Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK = 1 or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.
11-17

8x930Ax, 8x930Hx USER’S MANUAL

er to

-E1H

 WDT
ice the
t when
heral

to hold
ated

 if the
11.7.2 Using the WDT

To use the WDT to recover from system malfunctions, the user program should control the WDT
as follows:

1. Following device reset, write the two-byte sequence 1EH-E1H to the WDTRST regist
enable the WDT. The WDT begins counting from 0.

2. Repeatedly for the duration of program execution, write the two-byte sequence 1EH
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at 0.

If the WDT overflows, it initiates a device reset (see “Reset” on page 14-5). Device reset clears
the WDT and disables it.

11.7.3 WDT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The
continues to count while the microcontroller is in idle mode. This means the user must serv
WDT during idle. One approach is to use a peripheral timer to generate an interrupt reques
the timer overflows. The interrupt service routine then clears the WDT, reloads the perip
timer for the next service period, and puts the microcontroller back into idle.

11.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and
its count. The WDT resumes counting from where it left off if the powerdown mode is termin
by INT0/INT1. To ensure that the WDT does not overflow shortly after exiting the powerdown
mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled
powerdown mode is terminated by a reset.
11-18

12
Programmable
Counter Array

 8
tion

com-
r for the
it bus.
hile

ister

e Table
ctions.

ed by
t com-

or. The
pture
 in the
 tim-
CHAPTER 12
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripheral of thex930
that performs a variety of timing and counting operations, including pulse width modula
(PWM). The PCA provides the capability for a firmware watchdog timer (WDT).

12.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit
pare/capture modules. The timer/counter serves as a common time base and event counte
compare/capture modules, distributing the current count to the modules by means of a 16-b
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, w
five SFR pairs, CCAPxH/CCAPxL, store values for the modules (see Figure 12-1). Additional
SFRs provide control and mode select functions as follows:

• The PCA timer/counter mode register (CMOD) and the PCA timer/counter control reg
(CCON) control the operation of the timer/counter. See Figure 12-7 on page 12-13 and
Figure 12-8 on page 12-14.

• Five PCA module mode registers (CCAPMx) specify the operating modes of the
compare/capture modules. See Figure 12-9 on page 12-16.

For a list of SFRs associated with the PCA, see Table 12-1. For an SFR address map, se
3-5 on page 3-16. Port 1 provides external I/O for the PCA on a shared basis with other fun
Table 12-2 identifies the port pins associated with the timer/counter and compare/capture mod-
ules. When not used for PCA I/O, these pins can be used for standard I/O functions.

The operating modes of the five compare/capture modules determine the functions perform
the PCA. Each module can be independently programmed to provide input capture, outpu
pare, or pulse width modulation. Module 4 only also has a watchdog-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vect
EC bit in the IEN0 special function register is a global interrupt enable for the PCA. Ca
events, compare events in some modes, and PCA timer/counter overflows all set flags
CCON register. Setting the overflow flag (CF) generates a PCA interrupt request if the PCA
er/counter interrupt enable bit (ECF) in the CMOD register is set (Figure 12-1). Setting a com-
pare/capture flag (CCFx) generates a PCA interrupt request if the ECCFx interrupt enable bit in
the corresponding CCAPMx register is set (Figures 12-2 and 12-3). For a description of the 8x930
interrupt system see Chapter 6, “Interrupt System”.
12-1

8x930Ax, 8x930Hx USER’S MANUAL

 as fol-

p

hen

ecial
he CL
cilla-
ner-

to the

00

h

put.

 of
ing a
12.1.1 Alternate Port Usage

PCA modules 3 and 4 share port pins with the real-time wait state and address functions
lows:

• PCA module 3 — P1.6/CEX3/WAIT#

• PCA module 4 — P1.7/CEX4/A17/WCLK

When the real-time wait state functions are enabled (using the WCON register), the corresond-
ing PCA modules are automatically disabled. Configuring the 8x930 to use address line A17
(specified by UCONFIG0, bits RD1:0) overrides the PCA module 3 and WCLK functions. W
a real-time wait state function is enabled, do not use the corresponding PCA module.

NOTE
It is not advisable to alternate between PCA operations and real-time wait state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK). See
“External Bus Cycles with Real-time Wait States” on page 16-11.

12.2 PCA TIMER/COUNTER

Figure 12-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL sp
function register pair operates as a 16-bit timer/counter. The selected input increments t
(low byte) register. When CL overflows, the CH (high byte) register increments after two os
tor periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) ge
ating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPS1 and CPS0 bits in the CMOD register select one of four signals as the input
timer/counter (Figure 12-7 on page 12-13):

• FCLK/6. Provides a clock pulse at S5P2 of every peripheral cycle. With PLLSEL2:0 = 1
and FOSC = 12 MHz, the timer/counter increments every 1000 nanoseconds. With
PLLSEL2:0 = 110 and FOSC = 12 MHz, the timer/counter increments every 500
nanoseconds.

• FCLK/2. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. Wit
PLLSEL2:0 = 100 and FOSC = 12 MHz, the timer/counter increments every 333 1/3
nanoseconds. With PLLSEL2:0 = 110 and FOSC = 12 MHz, the timer/counter increments
every 166 2/3 nanoseconds.

• Timer 0 overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer 0 overflows. This selection provides the PCA with a programmable frequency in

• External signal on P1.2/ECI. The CPU samples the ECI pin at S1P2, S3P2, and S5P2
every peripheral cycle. The first clock pulse (S1P2, S3P2, or S5P2) that occurs follow
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection is FOSC/8.

For a description of peripheral cycle timing, see “Clock and Reset Unit” on page 2-9.
12-2

PROGRAMMABLE COUNTER ARRAY

ut

nts of
nting

the
Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the outp
of the NAND gate (Figure 12-1) equals logic 1. The PCA timer/counter continues to operate dur-
ing idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the conte
the CH and CL registers at any time. However, writing to them is inhibited while they are cou
(i.e., when the CR bit is set).

Figure 12-1. Programmable Counter Array †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110),
clock frequencies at inputs 00 and 01 of the CPSx selector are twice that for PLLSEL2:0 = 100 (PLL off). See Table
2-4 on page 2-10.

16-bit

Bus

CL

(8 Bits)

CH

(8 Bits) CF

Interrupt

Request

FCLK /6

PCA

Timer/Counter

CCON.7

Overflow

ECF

CMOD.0

Enable

CR

CCON.6

Run Control

IDL

PCON.0

Idle Mode

CIDL
CMOD.7

CPS0
CMOD.1

CPS1
CMOD.2

00

01

10

11

FCLK /2

Timer 0 Overflow

P1.2/ECI

Module 0 P1.3/CEX0

Module 1 P1.4/CEX1

Module 2 P1.5/CEX2

Module 3 P1.6/CEX3/WAIT#

Module 4 P1.7/CEX4/

A17/WCLK

(16 Bits)

Compare/Capture

Modules

 A4162-04
12-3

8x930Ax, 8x930Hx USER’S MANUAL

Table 12-1. PCA Special Function Registers (SFRs)

Mnemonic Description Address

CL
CH

PCA Timer/Counter. These registers serve as a common 16-bit timer or
event counter for the five compare/capture modules. Counts FOSC/12,
FOSC/4, timer 0 overflow, or the external signal on P1.2/ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

S:E9H
S:F9H

CCON PCA Timer/Counter Control Register. Contains the run control bit and
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

S:D8H

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

S:D9H

CCAP0H
CCAP0L

PCA Module 0 Compare/Capture Registers . This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FAH
S:EAH

CCAP1H
CCAP1L

PCA Module 1 Compare/Capture Registers . This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FBH
S:EBH

CCAP2H
CCAP2L

PCA Module 2 Compare/Capture Registers . This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FCH
S:ECH

CCAP3H
CCAP3L

PCA Module 3 Compare/Capture Registers . This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FDH
S:EDH

CCAP4H
CCAP4L

PCA Module 4 Compare/Capture Registers . This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FEH
S:EEH

CCAPM0
CCAPM1
CCAPM2
CCAPM3
CCAPM4

PCA Compare/Capture Module Mode Registers. Contain bits for
selecting the operating mode of the compare/capture modules and
enabling the compare/capture flag. See Table 12-3 on page 12-15 for mode
select bit combinations.

S:DAH
S:DBH
S:DCH
S:DDH
S:DEH

Table 12-2. External Signals

Signal
Name Type Description Alternate

Function

ECI I PCA Timer/counter External Input . This signal is the external
clock input for the PCA timer/counter.

P1.2

CEX0
CEX1
CEX2
CEX3
CEX4

I/O Compare/Capture Module External I/O. Each compare/capture
module connects to a Port 1 pin for external I/O. When not used by
the PCA, these pins can handle standard I/O.

P1.3
P1.4
P1.5

P1.6/WAIT#
P1.7/A17/WCLK
12-4

PROGRAMMABLE COUNTER ARRAY

pair
tors.

hich an

es
 of the

e.

 4

e un-

 time
in the

le sets
pt

pulse
CEX0
hen a

ition, it
detect-
12.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register
(CCAPxH/CCAPxL), a 16-bit comparator, and various logic gates and signal transition selec
The registers store the time or count at which an external event occurred (capture) or at w
action should occur (comparison). In the PWM mode, the low-byte register controls the duty cy-
cle of the output waveform.

The logical configuration of a compare/capture module depends on its mode of operation (Figur
12-2 through 12-5). Each module can be independently programmed for operation in any
following modes:

• 16-bit capture mode with triggering on the positive edge, negative edge, or either edg

• Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module
only), or 8-bit pulse width modulation.

• No operation.

Bit combinations programmed into a compare/capture module’s mode register (CCAPMx) deter-
mine the operating mode. Figure 12-9 on page 12-16 provides bit definitions and Table 12-3 lists
the bit combinations of the available modes. Other bit combinations are invalid and produc
defined results.

The compare/capture modules perform their programmed functions when their common
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit
CCON register. To disable any given module, program it for the no operation mode. The occur-
rence of a capture, firmware timer, or high-speed output event in a compare/capture modu
the module’s compare/capture flag (CCFx) in the CCON register and generates a PCA interru
request if the corresponding enable bit in the CCAPMx register is set.

The CPU can read or write the CCAPxH and CCAPxL registers at any time.

12.3.1 16-bit Capture Mode

The capture mode (Figure 12-2) provides the PCA with the ability to measure periods,
widths, duty cycles, and phase differences at up to five separate inputs. External I/O pins
through CEX4 are sampled for signal transitions (positive and/or negative as specified). W
compare/capture module programmed for the capture mode detects the specified trans
captures the PCA timer/counter value. This records the time at which an external event is
ed, with a resolution equal to the timer/counter clock period.

To program a compare/capture module for the 16-bit capture mode, program the CAPPx and
CAPNx bits in the module’s CCAPMx register as follows:

• To trigger the capture on a positive transition, set CAPPx and clear CAPNx.

• To trigger the capture on a negative transition, set CAPNx and clear CAPPx.

• To trigger the capture on a positive or negative transition, set both CAPPx and CAPNx.
12-5

8x930Ax, 8x930Hx USER’S MANUAL

 in

g

st clear
ptured
re the
Table 12-3 on page 12-15 lists the bit combinations for selecting module modes. For modules
the capture mode, detection of a valid signal transition at the I/O pin (CEXx) causes hardware to
load the current PCA timer/counter value into the compare/capture registers (CCAPxH/CCAPxL)
and to set the module’s compare/capture flag (CCFx) in the CCON register. If the correspondin
interrupt enable bit (ECCFx) in the CCAPMx register is set (Figure 12-9 on page 12-16), the PCA
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user mu
the flag in firmware. A subsequent capture by the same module overwrites the existing ca
value. To preserve a captured value, save it in RAM with the interrupt service routine befo
next capture event occurs.

Figure 12-2. PCA 16-bit Capture Mode

A4163-02

CCAPxH CCAPxL

CH

(8 Bits)

CL

(8 Bits)

CEXx

External I/O

X O CAPPx CAPNx O O ECCFxO

CCFx

CCON Register

PCA Timer/Counter

Enable

Interrupt

Request

Capture

07 CCAPMx Mode Register

x = 0,1,2,3 or 4

X = Don't Care

Count

Input
12-6

PROGRAMMABLE COUNTER ARRAY

t
ware
e, the
e 16-

, the
 with
pheral

 for
e

s

pt

er must
ritten
12.3.2 Compare Modes

The compare function provides the capability for operating the five modules as timers, even
counters, or pulse width modulators. Four modes employ the compare function: 16-bit firm
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of thes
compare/capture module continuously compares the 16-bit PCA timer/counter value with th
bit value pre-loaded into the module’s CCAPxH/CCAPxL register pair. In the PWM mode
module continuously compares the value in the low-byte PCA timer/counter register (CL)
an 8-bit value in the CCAPxL module register. Comparisons are made three times per peri
cycle to match the fastest PCA timer/counter clocking rate (FOSC/4). For a description of periph-
eral cycle timing, see “Clock and Reset Unit” on page 2-9.

Setting the ECOMx bit in a module’s mode register (CCAPMx) selects the compare function
that module (Figure 12-9 on page 12-16). To use the modules in the compare modes, observe th
following general procedure:

1. Select the module’s mode of operation.

2. Select the input signal for the PCA timer/counter.

3. Load the comparison value into the module’s compare/capture register pair.

4. Set the PCA timer/counter run control bit.

5. After a match causes an interrupt, clear the module’s compare/capture flag.

12.3.3 16-bit Software Timer Mode

To program a compare/capture module for the 16-bit software timer mode (Figure 12-3), set the
ECOMx and MATx bits in the module’s CCAPMx register. Table 12-3 lists the bit combination
for selecting module modes.

A match between the PCA timer/counter and the compare/capture registers (CCAPxH/CCAPxL)
sets the module’s compare/capture flag (CCFx in the CCON register). This generates an interru
request if the corresponding interrupt enable bit (ECCFx in the CCAPMx register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the us
clear the flag in firmware. During the interrupt routine, a new 16-bit compare value can be w
to the compare/capture registers (CCAPxH/CCAPxL).

NOTE
To prevent an invalid match while updating these registers, user firmware
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.
12-7

8x930Ax, 8x930Hx USER’S MANUAL

firm-

ns
apture
ag

 setting
t

 flag in

Figure 12-3. PCA Software Timer and Hi gh-speed Output Modes

12.3.4 High-speed Output Mode

The high-speed output mode (Figure 12-3) generates an output signal by toggling the module’s
I/O pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in
ware because the toggle occurs before the interrupt request is serviced. Thus, interrupt response
time does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the ECOMx, MATx,
TOGx bits in the module’s CCAPMx register. Table 12-3 on page 12-15 lists the bit combinatio
for selecting module modes. A match between the PCA timer/counter and the compare/c
registers (CCAPxH/CCAPxL) toggles the CEXx pin and sets the module’s compare/capture fl
(CCFx in the CCON register). By setting or clearing the CEXx pin in firmware, the user selects
whether the match toggles the pin from low to high or vice versa.

The user also has the option of generating an interrupt request when the match occurs by
the corresponding interrupt enable bit (ECCFx in the CCAPMx register). Since hardware does no
clear the compare/capture flag when the interrupt is processed, the user must clear the
firmware.

A4164-01

CCAPxH

(8 Bits)

CCAPxL

(8 Bits)

CH

(8 Bits)

CL

(8 Bits)

CEXx

X ECOMx 0 0 TOGx 0 ECCFxMATx

CCFx

PCA Timer/Counter

Enable

Interrupt

Request

07 CCAPMx Mode Register

X = Don't Care

x = 0, 1, 2, 3, 4

For software timer mode, set ECOMx and MATx.

For high speed output mode, set ECOMx, MATx, and TOGx.

Compare/Capture

Module

16-Bit

Comparator

Count

Input

Reset
Write to

CCAPxL

"0"

Match

"1"

Write to CCAPxH

Toggle

Enable

CCON
12-8

PROGRAMMABLE COUNTER ARRAY

t toggle
 value.
pture

suc-
d-off
, elec-

cy
e reset

re/cap-
e only

 in the

ts in
ina-

y
. Enter

ence
o “ex-
DT.

 reset,

urs

urs,

ption.
odules
If the user does not change the compare/capture registers in the interrupt routine, the nex
occurs after the PCA timer/counter rolls over and the count again matches the comparison
During the interrupt routine, a new 16-bit compare value can be written to the compare/ca
registers (CCAPxH/CCAPxL).

NOTE
To prevent an invalid match while updating these registers, user firmware
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.

12.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) provides the means to recover from routines that do not complete
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hol
signals. WDTs are used in applications that are subject to electrical noise, power glitches
trostatic discharges, etc., or where high reliability is required.

In addition to the 8x930’s 14-bit hardware WDT, the PCA provides a programmable-frequen
16-bit WDT as a mode option on compare/capture module 4. This mode generates a devic
when the count in the PCA timer/counter matches the value stored in the module 4 compa
ture registers. A PCA WDT reset has the same effect as an external reset. Module 4 is th
PCA module that has the WDT mode. When not programmed as a WDT, it can be used
other modes.

To program module 4 for the PCA WDT mode (Figure 12-4), set the ECOM4 and MAT4 bi
the CCAPM4 register and the WDTE bit in the CMOD register. Table 12-3 lists the bit comb
tions for selecting module modes. Also select the desired input for the PCA timer/counter bpro-
gramming the CPS0 and CPS1 bits in the CMOD register (see Figure 12-7 on page 12-13)
a 16-bit comparison value in the compare/capture registers (CCAP4H/CCAP4L). Enter a 16-bit
initial value in the PCA timer/counter (CH/CL) or use the reset value (0000H). The differ
between these values multiplied by the PCA input pulse rate determines the running time t
piration.” Set the timer/counter run control bit (CR in the CCON register) to start the PCA W

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT
the user has three options:

• periodically change the comparison value in CCAP4H/CCAP4L so a match never occ

• periodically change the PCA timer/counter value so a match never occurs

• disable the module 4 reset output signal by clearing the WDTE bit before a match occ
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third o
The second option is not recommended if other PCA modules are in use, since the five m
share a common time base. Thus, in most applications the first option is the best one.
12-9

8x930Ax, 8x930Hx USER’S MANUAL

ion as
lution
 to

ared

riod.

Figure 12-4. PCA Watchdog Timer Mode

12.3.6 Pulse Width Modulation Mode

The five PCA comparator/capture modules can be independently programmed to funct
pulse width modulators (Figure 12-5). The modulated output, which has a pulse width reso
of eight bits, is available at the CEXx pin. The PWM output can be used to convert digital data
an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously comp
with the value in the low byte of the compare/capture register (CCAPxL). When CL < CCAPxL,
the output waveform (Figure 12-6) is low. When a match occurs (CL = CCAPxL), the output
waveform goes high and remains high until CL rolls over from FFH to 00H, ending the pe
At roll over the output returns to a low, the value in CCAPxH is loaded into CCAPxL, and a new
period begins.

A4165-01

CCAP4H

(8 Bits)

CCAP4L

(8 Bits)

CH

(8 Bits)

CL

(8 Bits)

X ECOM4 0 0 X 0 X1

WDTE

PCA Timer/Counter

PCA WDT Reset

07 CCAPM4 Mode Register

X = Don't Care

Compare/Capture

Module

16-Bit

Comparator

Count

Input

Reset
Write to

CCAP4L

"0"

Match

"1"

Write to CCAP4H

Enable
CMOD.6
12-10

PROGRAMMABLE COUNTER ARRAY

ignal

Figure 12-5. PCA 8-bit PWM Mode

The value in CCAPxL determines the duty cycle of the current period. The value in CCAPxH de-
termines the duty cycle of the following period. Changing the value in CCAPxL over time mod-
ulates the pulse width. As depicted in Figure 12-6, the 8-bit value in CCAPxL can vary from 0
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE
To change the value in CCAPxL without glitches, write the new value to the
high byte register (CCAPxH). This value is shifted by hardware into CCAPxL
when CL rolls over from FFH to 00H.

The frequency of the PWM output equals the frequency of the PCA timer/counter input s
divided by 256. The highest frequency occurs when the FOSC/4 input is selected for the PCA tim-
er/counter. For PLLSEL2:0 = 100 and FOSC = 12 MHz, this is 11.7 KHz. For PLLSEL2:0 = 110
and FOSC = 12 MHz, this is 23.4 KHz.

A4166-01

CCAPxH

CEXx

X ECOMx 0 0 0 PWMx 00

07 CCAPMx Mode Register

X = Don't Care

x = 0, 1, 2, 3, 4.

8-Bit

Comparator

CL rollover from FFH to 00H loads

CCAPxH contents into CCAPxL

"0"

"1"
CL ≥ CCAPxL

CL < CCAPxL

CCAPxL

CL

(8 Bits)

8

8

Enable
12-11

8x930Ax, 8x930Hx USER’S MANUAL

g the

e in
t (CR
To program a compare/capture module for the PWM mode, set the ECOMx and PWMx bits in the
module’s CCAPMx register. Table 12-3 on page 12-15 lists the bit combinations for selecting
module modes. Also select the desired input for the PCA timer/counter by programmin
CPS0 and CPS1 bits in the CMOD register (see Figure 12-7). Enter an 8-bit value in CCAPxL to
specify the duty cycle of the first period of the PWM output waveform. Enter an 8-bit valu
CCAPxH to specify the duty cycle of the second period. Set the timer/counter run control bi
in the CCON register) to start the PCA timer/counter.

Figure 12-6. PWM Variable Duty Cycle

A4161-01

Duty

CycleCCAPxL

255

230

128

25

0

0.4%

10%

50%

90%

100%

1

0

1

0

1

0

1

0

Output Waveform

1

0

12-12

PROGRAMMABLE COUNTER ARRAY
CMOD Address: S:D9H
Reset State: 00XX X000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 0

CIDL WDTE — — — CPS1 CPS0 ECF

Bit
Number

Bit
Mnemonic Function

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPS0

0 0 FCLK /6
0 1 FCLK /2
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = FOSC /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 12-7. CMOD: PCA Timer/Counter Mode Register
12-13

8x930Ax, 8x930Hx USER’S MANUAL

CCON Address: S:D8H
Reset State: 00X0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0

CF CR — CCF4 CCF3 CCF2 CCF1 CCF0

Bit
Number

Bit
Mnemonic Function

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or firmware but can be cleared only by firmware.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by firmware to turn the PCA timer/counter on and off.

5 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by firmware.

Figure 12-8. CCON: PCA Timer/Counter Control Register
12-14

PROGRAMMABLE COUNTER ARRAY

Table 12-3. PCA Module Modes

ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx Module Mode

0 0 0 0 0 0 0 No operation

X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXx

X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXx

X 1 1 0 0 0 X 16-bit capture on positive- or
negative-edge trigger at CEXx

1 0 0 1 0 0 X Compare: firmware timer

1 0 0 1 1 0 X Compare: high-speed output

1 0 0 0 0 1 0 Compare: 8-bit PWM

1 0 0 1 X 0 X Compare: PCA WDT
(CCAPM4 only) (Note 3)

NOTES:
1. This table shows the CCAPMx register bit combinations for selecting the operating modes of the PCA

compare/capture modules. Other bit combinations are invalid. See Figure 12-9 for bit definitions.
2. x = 0–4, X = Don’t care.
3. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.
12-15

8x930Ax, 8x930Hx USER’S MANUAL

CCAPMx (x = 0–4) Address: CCAPM0 S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: x000 0000B

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0

— ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:

ECOMx = 1 enables the module comparator function. The comparator is
used to implement the firmware timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMx and MATx to implement the firmware timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:

Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

Figure 12-9. CCAPM x: PCA Compare/Capture Module Mode Registers
12-16

13
Serial I/O Port

heral
the se-

t oper-
des
 and at

o
er 1 and

ers are

e RXD

lds re-
rs. To
gister

ll over-
tively.

rt.
CHAPTER 13
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external perip
devices. This chapter provides instructions for programming the serial port and generating
rial I/O baud rates with timer 1 and timer 2.

13.1 OVERVIEW

The serial I/O port provides both synchronous and asynchronous communication modes. I
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex mo
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-
cation, and automatic address recognition. The serial port also operates in a single synchronous
mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at twbaud
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by tim
timer 2. Baud rates are detailed in “Baud Rates” on page 13-10.

NOTE
The baud rate calculations in this chapter are based on the value of FCLK which
is a function of PLLSEL2:0. See Table 2-4 and Figure 2-6 on page 2-9.

The serial port signals are defined in Table 13-1, and the serial port special function regist
described in Table 13-2. Figure 13-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on th
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pin and
sends and receives messages on the RXD pin (Figure 13-1). The SBUF register, which ho
ceived bytes and bytes to be transmitted, actually consists of two physically different registe
send, firmware writes a byte to SBUF; to receive, firmware reads SBUF. The receive shift re
allows reception of a second byte before the first byte has been read from SBUF. However, if firm-
ware has not read the first byte by the time the second byte is received, the second byte wi
write the first. The UART sets interrupt bits TI and RI on transmission and reception, respec
These two bits share a single interrupt request and interrupt vector.

The serial port control (SCON) register (Figure 13-2) configures and controls the serial po
13-1

8x930Ax, 8x930Hx USER’S MANUAL

pabil-
 puls-
its are
2) of

on.

6P2 of
ycle,
e. In
f the

13.2 MODES OF OPERATION

The serial I/O port can operate in one synchronous and three asynchronous modes.

13.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O ca
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data b
transmitted and received least-significant bit (LSb) first. Shifts occur in the last phase (S6P
every peripheral cycle, which corresponds to a baud rate of FCLK/6. Figure 13-3 on page 13-6
shows the timing for transmission and reception in mode 0.

13.2.1.1 Transmission (Mode 0)

Follow these steps to begin a transmission:

1. Write to the SCON register, clearing bits SM0, SM1, and REN.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmissi

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S
the following cycle, hardware shifts the LSb (D0) onto the RXD pin. At S3P1 of the next c
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycl
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning o

Table 13-1. Serial Port Signals

Function
Name Type Description Multiplexed

With

TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In
modes 1, 2, and 3, TXD transmits serial data.

P3.1

RXD I/O Receive Data. In mode 0, RXD transmits and receives serial
data. In modes 1, 2, and 3, RXD receives serial data.

P3.0

Table 13-2. Serial Port Special Function Registers

Mnemonic Description Address

SBUF Serial Buffer . Two separate registers, accessed with same address
comprise the SBUF register. Writing to SBUF loads the transmit buffer;
reading SBUF accesses the receive buffer.

S:99H

SCON Serial Port Control . Selects the serial port operating mode. SCON enables
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt
bits.

S:98H

SADDR Serial Address . Defines the individual address for a slave device. S:A8H

SADEN Serial Address Enable. Specifies the mask byte that is used to define the
given address for a slave device.

S:B8H
13-2

SERIAL I/O PORT

 of the

nd set

 first
ift-
 shift-
eption.
tenth cycle, hardware drives the RXD pin high and asserts TI (S1P1) to indicate the end
transmission.

13.2.1.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1, and RI a
the REN bit.

Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (Figure 13-3).
In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the
clock-signal pulse, and the LSb (D0) is sampled on the RXD pin at S5P2. The D0 bit is then sh
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSb (D7) is
ed into the shift register, and hardware asserts RI (S1P1) to indicate a completed rec
Firmware can then read the received byte from SBUF.

Figure 13-1. Serial Port Block Diagram

A4123-01

SBUF

(Receive)

Receive

Shift Register

SBUF

(Transmit)

Read SBUFWrite SBUF

Mode 0

Transmit

TxD

RxD

SCON

TIRI

Interrupt

Request

Serial I/O

Control

IB Bus

Load SBUF
13-3

8x930Ax, 8x930Hx USER’S MANUAL
SCON Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

7 FE

SM0

Framing Error Bit:

To select this function, set the SMOD0 bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

Serial Port Mode Bit 0:

To select this function, clear the SMOD0 bit in the PCON register.
Firmware writes to bits SM0 and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SM0 (above) to select the serial port
operating mode.

SM0 SM1 Mode Description Baud Rat e†

0 0 0 Shift register FCLK/6
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FCLK/16†† or FCLK/32††

1 1 3 9-bit UART Variable
†The baud rate calculations in this chapter are based on the value of FCLK
which is a function of PLLSEL2:0. See Table 2-4 and Figure 2-6 on page
2-9.
††Select by programming the SMOD bit in the PCON register (see
section “Baud Rates” on page 13-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

Figure 13-2. SCON: Serial Port Control Register
13-4

SERIAL I/O PORT
2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

SCON (Continued) Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

Figure 13-2. SCON: Serial Port Control Register (Continued)
13-5

8x930Ax, 8x930Hx USER’S MANUAL

Figure 13-3. Mode 0 Timing

Figure 13-4. Data Frame (Modes 1, 2, and 3)

A4124-02

TXD

RXD D1

Shift
S6P2 S6P2 S6P2 S6P2

Write to

SBUF

S3P1 S6P1

D2D0 D6 D7

S6P2S6P2

Transmit

TI

TXD

S3P1 S6P1
Write to

SCON

RI

Shift
S6P2 S6P2 S6P2 S6P2

RXD

S1P1
Receive

Set REN, Clear RI

D0 D1 D6 D7

S6P2

S5P2
S6P2

S1P1

S6P2

S6P2

D0 D7 D8D1 D2 D3 D4 D5 D6

Stop Bit

Ninth Data Bit (Modes 2 and 3 only)Start Bit

Data Byte

A2261-01
13-6

SERIAL I/O PORT

itted
it is
er 1

 LSb
e
it in

he

on.

ini-

aming
 page
lid stop
ssion
ister

t, only
cannot
13.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation:

• Mode 1. Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 13-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transm
on the TXD pin and received on the RXD pin. When a message is received, the stop b
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of tim
or timer 2 (see “Baud Rates” on page 13-10).

• Modes 2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 13-4) consists of 11 bits: one start bit, eight data bits (transmitted and received
first), one programmable ninth data bit, and one stop bit. Serial data is transmitted on th
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 b
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— In mode 2, the baud rate is programmable to 1/16 or 1/32 internal frequency, FCLK.

— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

13.2.2.1 Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SM0 and SM1 bits, and clear t
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmissi

13.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is then
tiated by a detected high-to-low transition on the RXD pin.

13.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the fr
bit error detection feature, set the SMOD0 bit in the PCON register (see Figure 15-1 on
15-3). When this feature is enabled, the receiver checks each incoming data frame for a va
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmi
by two CPUs. If a valid stop bit is not found, the firmware sets the FE bit in the SCON reg
(see Figure 13-2).

Firmware may examine the FE bit after each reception to check for data errors. Once se
firmware or a reset can clear the FE bit. Subsequently received frames with valid stop bits
clear the FE bit.
13-7

8x930Ax, 8x930Hx USER’S MANUAL

nable
essor

inth bit
 slave

ith the
 If the
d the RI

s to re-
e waiting

ication

muni-
mand
it in the

mand

nfigu-
eived
it.
13.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To e
this feature, set the SM2 bit in the SCON register (see Figure 13-2). When the multiproc
communication feature is enabled, the serial port can differentiate between data frames (n
clear) and address frames (ninth bit set). This allows the microcontroller to function as a
processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames w
ninth bit clear. The receiver examines frames with the ninth bit set for an address match.
received address matches the slave’s address, the receiver hardware sets the RB8 bit an
bit in the SCON register, generating an interrupt.

NOTE
The ES bit must be set in the IEN0 register to allow the RI bit to generate an
interrupt. The IEN0 register is described in Chapter 8, Interrupts.

The addressed slave’s firmware then clears the SM2 bit in the SCON register and prepare
ceive the data bytes. The other slaves are unaffected by these data bytes because they ar
to respond to their own addresses.

13.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor commun
feature is enabled (i.e., the SM2 bit is set in the SCON register).

Implemented in hardware, automatic address recognition enhances the multiprocessor com
cation feature by allowing the serial port to examine the address of each incoming com
frame. Only when the serial port recognizes its own address does the receiver set the RI b
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by com
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this co
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the rec
command frame address matches the device’s address and is terminated by a valid stop b

NOTE
The multiprocessor communication and automatic address recognition features
cannot be enabled in mode 0 (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identified by a given address and a broad-
cast address.
13-8

SERIAL I/O PORT

e. To

bit 0
 only,

t (e.g.,

es
it 2 set

t, bit 1

with

st
13.5.1 Given Address

Each device has an individual address that is specified in the SADDR register; the SADEN reg-
ister is a mask byte that contains don't-care bits (defined by zeros) to form the device’s given ad-
dress. These don't-care bits provide the flexibility to address one or more slaves at a tim
address a device by its individual address, the SADEN mask byte must be 1111 1111 The follow-
ing example illustrates how a given address is formed:

The following is an example of how to use given addresses to address different slaves:

The SADEN byte is selected so that each slave may be addressed separately. For Slave A,
(the LSb) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A
the master must send an address where bit 0 is clear (e.g., 1111 0000).

For Slave A, bit 1 is a 0; for Slaves B and C, bit 1 is a don’t-care bit. To communicate with Slaves
B and C, but not Slave A, the master must send an address with bits 0 and 1 both se
1111 0011).

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is a 0. To communicate with Slav
A and B, but not Slave C, the master must send an address with bit 0 set, bit 1 clear, and b
(e.g., 1111 0101).

To communicate with Slaves A, B, and C, the master must send an address with bit 0 se
clear, and bit 2 clear (e.g., 1111 0001).

13.5.2 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers
zeros defined as don't-care bits, e.g.:

The use of don't-care bits provides flexibility in defining the broadcast address, however, in mo
applications, a broadcast address is 0FFH.

SADDR

SADEN

Given

=

=

=

0101 0110

1111 1100

0101 01XX

Slave A: SADDR

SADEN

Given

=

=

=

1111 0001

1111 1010

1111 0X0X

Slave C: SADDR

SADEN

Given

=

=

=

1111 0010

1111 1101

1111 00X1

Slave B: SADDR

SADEN

Given

=

=

=

1111 0011

1111 1001

1111 0XX1

SADDR

SADEN

(SADDR) OR (SADEN)

=

=

=

0101 0110

1111 1100

1111 111X
13-9

8x930Ax, 8x930Hx USER’S MANUAL

all of

BH.

st
om-

modes
ort can
eption
d for the
The following is an example of using broadcast addresses:

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is set. To communicate with
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address F

13.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00H, that is, the given and broadca
addresses are xxxx xxxx (all don't-care bits). This ensures that the serial port is backwards-c
patible with MCS® 51 microcontrollers that do not support automatic address recognition.

13.6 BAUD RATES

You must select the baud rate for the serial port transmitter and receiver when operating in
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial p
transmit and receive simultaneously. Depending on the mode, the transmission and rec
rates can be the same or different. Table 13-3 summarizes the baud rates that can be use
four serial I/O modes.

NOTE
The baud rate calculations in this chapter are based on the value of FCLK which
is a function of PLLSEL2:0. See Table 2-4 and Figure 2-6 on page 2-9.

13.6.1 Baud Rate for Mode 0

The baud rate for mode 0 is fixed at FCLK/6.

Slave A: SADDR

SADEN

Broadcast

=

=

=

1111 0001

1111 1010

1111 1X11

Slave C: SADDR

SADEN

Broadcast

=

=

=

1111 0010

1111 1101

1111 1111

Slave B: SADDR

SADEN

Broadcast

=

=

=

1111 0011

1111 1001

1111 1X11

Table 13-3. Summary of Baud Rates

Mode No. of
Baud Rates

Send and Receive
at the Same Rate

Send and Receive
at Different Rates

0 1 N/A N/A

1 Many †† Yes Yes

2 2 Yes No

3 Many †† Yes Yes

 †† Baud rates are determined by overflow of timer 1 and/or timer 2.
13-10

SERIAL I/O PORT

2. You
 receiv-

 and 3.
 in the

age

OD

.

13.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by the SMOD1 bit in the PCON register (Figure
15-1 on page 15-3). The following expression defines the baud rate:

13.6.3 Baud Rates for Modes 1 and 3

In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the
er.

13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown
following formula:

13.6.3.2 Selecting Timer 1 as the Baud Rate Generator

To select timer 1 as the baud rate generator:

• Disable the timer interrupt by clearing the ET1 bit in the IEN0 register (Figure 6-12 on p
6-25).

• Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 11-5 on page 11-7).

• Select timer mode 0–3 by programming the M1 and M0 bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TM
= 0010B). The resulting baud rate is defined by the following expression:

Timer 1 can generate very low baud rates with the following setup:

• Enable the timer 1 interrupt by setting the ET1 bit in the IEN0 register.

• Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).

• Use the timer 1 interrupt to initiate a 16-bit firmware reload.

Table 13-4 lists commonly used baud rates and shows how they are generated by timer 1

Serial I/O Mode 2 Baud Rate 2SMOD1 FCLK

32
-----------×=

Serial I/O Modes 1 and 3 Baud Rate 2SMOD1 Timer 1 Overflow Rate
32

--×=

Serial I/O Modes 1 and 3 Baud Rate 2SMOD1 FCLK

16 12 256 TH1)(–[]××--×=
13-11

8x930Ax, 8x930Hx USER’S MANUAL

(Figure
 in the
 and

m the
iffer-
to its
not set
XF2
L2).
ON.

timer
13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver
13-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H
RCAP2L, which are preset by firmware.

The timer 2 baud rate is expressed by the following formula:

13.6.3.4 Selecting Timer 2 as the Baud Rate Generator

To select timer 2 as the baud rate generator for the transmitter and/or receiver, progra
RCLCK and TCLCK bits in the T2CON register as shown in Table 13-5. (You may select d
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 in
baud rate generator mode (Figure 13-5). In this mode, a rollover in the TH2 register does
the TF2 bit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the E
bit in the T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, T
You can use the T2EX pin as an additional external interrupt by setting the EXEN2 bit in T2C

NOTE
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

You may configure timer 2 as a timer or a counter. In most applications, it is configured for
operation (i.e., the C/T2# bit is clear in the T2CON register).

Table 13-4. Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3

Baud
Rate

Oscillator
Frequency

(FCLK)
SMOD1

Timer 1

C/T# Mode Reload
Value

125.0 Kbaud (max) † 12.0 MHz 1 0 2 FFH

62.5 Kbaud † 6.0 MHz 1 0 2 FFH

110.0 Baud 3.0 MHz 0 0 2 72H

110.0 Baud † 6.0 MHz 0 0 1 FEEBH

† The baud rate calculations in this chapter are based on the value of FCLK which is a function of
PLLSEL2:0. See Table 2-4 and Figure 2-6 on page 2-9.

Serial I/O Modes 1 and 3 Baud Rate
Timer 2 Overflow Rate

16
--=
13-12

SERIAL I/O PORT

e.

.

Note that timer 2 increments every state time (4FCLK) when it is in the baud rate generator mod
In the baud rate formula that follows, “RCAP2H, RCAP2L” denotes the contents of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer:

NOTE
When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Table 13-6 lists commonly used baud rates and shows how they are generated by timer 2

Table 13-5. Selecting the Baud Rate Generator(s)

RCLCK
Bit

TCLCK
Bit

Receiver
Baud Rate Generator

Transmitter
Baud Rate Generator

0 0 Timer 1 Timer 1

0 1 Timer 1 Timer 2

1 0 Timer 2 Timer 1

1 1 Timer 2 Timer 2

Serial I/O Modes 1 and 3 Baud Rate
FCLK

16 65536 RCAP2H RCAP2L),(–[]×---=
13-13

8x930Ax, 8x930Hx USER’S MANUAL
Figure 13-5. Timer 2 in Baud Rate Generator Mode

Table 13-6. Timer 2 Generated Baud Rates

Baud Rate
Internal

Frequency
(FCLK)

RCAP2H RCAP2L

750.0 Kbaud †† 12 MHz FF FF

375.0 Kbaud †† 6 MHz FFH FFH

9.6 Kbaud †† 6 MHz FFH D9H

4.8 Kbaud †† 6 MHz FFH B2H

2.4 Kbaud †† 6 MHz FFH 64H

1.2 Kbaud †† 6 MHz FEH C8H

 300.0 baud †† 6 MHz FBH 1EH

110.0 baud †† 6 MHz F2H AFH

300.0 baud 3 MHz FDH 8FH

110.0 baud 3 MHz F9H 57H

†† See note on page page 13-1.

T2EX

T2

Timer 1 Overflow

TR2

TH2

(8 Bits)

TL2

(8 Bits)

EXEN2

EXF2

A5205-01

FCLK

RCAP2H RCAP2L

C/T2#

0

1

Interrupt

Request

0

1

SMOD1

1

0

RCLCK

16

1

0

TCLCK

RX

Clock

TX

Clock

2

16

Note availability of additional external interrupt.
13-14

14
Minimum Hardware
Setup

ystem

cts the

ng en-
on or
See the
m tim-
CHAPTER 14
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of the 8x930 and describes a minimum
hardware setup. Topics covered include power, ground, clock source, and device reset. For param-
eter values, refer to the device data sheet.

14.1 MINIMUM HARDWARE SETUP

Figure 14-1 shows a minimum hardware setup that employs the on-chip oscillator for the s
clock and provides power-on reset. Control signals, Ports 0–3, and the USB port are not shown.
See “Clock Sources” on page 14-2 and “Power-on Reset” on page 14-7. PLLSEL.2:0 sele
USB operating rate. Refer to Table 2-4 on page 2-10.

Figure 14-1. Minimum Setup

14.2 ELECTRICAL ENVIRONMENT

The 8x930 is a high-speed CHMOS device. To achieve satisfactory performance, its operati
vironment should accommodate the device signal waveforms without introducing distorti
noise. Design considerations relating to device performance are discussed in this section.
device data sheet for voltage and current requirements, operating frequency, and wavefor
ing.

8X930

Microcontroller

A4291-03

XTAL2

VSS

VCC

VCC

XTAL1 RST
C1

C2

1µF
+

AVCC

EA#

USB Rate Select

PLLSEL0

PLLSEL1

PLLSEL2
14-1

8x930Ax, 8x930Hx USER’S MANUAL

 Use

 inter-

power

 noise

or

amic
 or the
0.

 fre-
 as an
tor de-
rasitic

ith high

 and

 PD
n.

be-
e chip
 of
14.2.1 Power and Ground Pins

Power the 8x930 from a well-regulated power supply designed for high-speed digital loads.
short, low impedance connections to the power (VCC) and ground (VSS) pins.

14.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pins to VSS or VCC. Untermi-
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated
rupt inputs may generate spurious interrupts.

14.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the
supply lines and signal outputs. To minimize noise and waveform distortion, follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep
within acceptable limits. Connect 0.01 µF bypass capacitors between VCC and each VSS pin. Place
the capacitors close to the device to minimize path lengths.

Multi-layer printed circuit boards with separate VCC and ground planes help minimize noise. F
additional information on noise reduction, see Application Note AP-125, “Designing Microcon-
troller Systems for Electrically Noisy Environments.”

14.3 CLOCK SOURCES

The 8x930 can use an external clock (Figure 14-3), an on-chip oscillator with crystal or cer
resonator (Figure 14-2), or an on-chip phase-locked oscillator (locked to the external clock
on-chip oscillator) as its clock source. For USB operating rates, see Table 2-4 on page 2-1

14.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTAL1 to XTAL2 as the
quency-determining element (Figure 14-2). The crystal operates in its fundamental mode
inductive reactance in parallel resonance with capacitance external to the crystal. Oscilla
sign considerations include crystal specifications, operating temperature range, and pa
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. W
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTAL2 are protected by on-chip electrostatic discharge (ESD) devices, D1
D2, which are diodes parasitic to the RF FETs. They serve as clamps to VCC and VSS. Feedback
resistor RF in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the
bit in the PCON register (Figure 15-1 on page 15-3) to disable the clock during powerdow

Noise spikes at XTAL1 and XTAL2 can disrupt microcontroller timing. To minimize coupling
tween other digital circuits and the oscillator, locate the crystal and the capacitors near th
and connect to XTAL1, XTAL2, and VSS with short, direct traces. To further reduce the effects
noise, place guard rings around the oscillator circuitry and ground the metal crystal case.
14-2

MINIMUM HARDWARE SETUP

tion of
ded

eramic
tion.

own
te. If

xternal

wer is
e (i.e.,
mains
For a more in-depth discussion of crystal specifications, ceramic resonators, and the selec
C1 and C2 see Applications Note AP-155, “Oscillators for Microcontrollers,” in the Embed
Applications handbook.

14.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. C
resonator applications may require slightly different capacitor values and circuit configura
Consult the manufacturer’s data sheet for specific information.

Figure 14-2. CHMOS On-chip Oscillator

14.3.3 External Clock

To operate the 8x930 from an external clock, connect the clock source to the XTAL1 pin as sh
in Figure 14-3. Leave the XTAL2 pin floating. The external clock driver can be a CMOS ga
the clock driver is a TTL device, its output must be connected to VCC through a 4.7 kΩ pullup
resistor.

For external clock drive requirements, see the device data sheet. Figure 14-4 shows the clock drive
waveform. The external clock source must meet the minimum high and low times (TCHCX and
TCLCX) and the maximum rise and fall times (TCLCH and TCHCL) to minimize the effect of external
noise on the clock generator circuit. Long rise and fall times increase the chance that e
noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 when po
applied, due to the interaction between the internal amplifier and its feedback capacitanc
the Miller effect). Once the input waveform requirements are met, the input capacitance re
under 20 pF.

A4143-03

XTAL2

XTAL1

C1

C2

VCC

PD#

To Internal

Timing Circuit

In
te

rn
al

RF

Quartz Crystal

or Ceramic Resonator D1

D2

E
xt

er
na

l

14-3

8x930Ax, 8x930Hx USER’S MANUAL

Figure 14-3. External Clock Connection for the 8 x930

Figure 14-4. External Clock Drive Waveforms

XTAL2

VSS

XTAL1

N/C

External

Clock

CMOS

Clock Driver

A4142-03

Note: If TTL clock driver is used, connect a 4.7kΩ pullup resistor from driver output to VCC.

0.7 VCC

A4119-01

0.45 V

VCC – 0.5

0.2 VCC – 0.1

TCHCL

TCLCX

TCLCL

TCLCH TCHCX
14-4

MINIMUM HARDWARE SETUP

eans
ould

eet)

 a cold

 when

exam-
ower-

 by ca-
ST

tes a
g Tim-
14.4 RESET

A device reset initializes the 8x930 and vectors the CPU to address FF:0000H. A reset is a m
of exiting the idle and powerdown modes or recovering from firmware malfunctions, and c
be a USB reset initiated by the host or upstream hub.

NOTE
A reset is required after applying power.

To achieve a valid reset, VCC must be within its normal operating range (see device data sh
and the reset signal must be maintained for 64 clock cycles (64TOSC) after the oscillator has sta-
bilized.

Device reset is initiated in three ways:

• externally, by asserting the RST pin

• internally, if the hardware WDT or the PCA WDT expires

• over the bus, by a USB-initiated reset

These three reset mechanisms are ORed to create a single reset signal for the 8x930.

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or
start. A cold start reset (POF = 1) is a reset that occurs after power has been off or VCC has fallen
below 3 V, so the contents of volatile memory are indeterminate. POF is set by hardware
VCC rises from less than 3 V to its normal operating level. See “Power Off Flag” on page 15-2. A
warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or p
down modes.

14.4.1 Externally-Initiated Resets

To reset the 8x930, hold the RST pin at a logic high for at least 64 clock cycles (64TOSC) while the
oscillator is running. Reset can be accomplished automatically at the time power is applied
pacitively coupling RST to VCC (see Figure 14-1 and “Power-on Reset” on page 14-7). The R
pin has a Schmitt trigger input and a pulldown resistor.

14.4.2 WDT-initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) genera
reset signal. WDT initiated resets have the same effect as an external reset. See “Watchdo
er” on page 11-16 and section “PCA Watchdog Timer Mode” on page 12-9.
14-5

8x930Ax, 8x930Hx USER’S MANUAL

E. This
 all of
, then
-

erated

.
 when
 it
erates

mme-

rnally.
cycles
SB-
ck cy-

 SFRs,
 Table
w-
-
dress
14.4.3 USB-initiated Resets

The 8x930 can be reset by the host or upstream hub if a reset signal is detected by the SI
reset signal is defined as an SE0 held longer than 2.5 µs. A USB-initiated reset will reset
the 8x930 hardware, even if the device is suspended (in which case it would first wake-up
reset). See “USB Power Control” on page 15-8 for additional information about USB-related sus
pend and resume.

A peripheral that is reset must be re-enumerated. This procedure is given in “Unenum
State” on page 9-2.

NOTE
You must ensure that the time from connection of this USB device to the bus
until the entire reset process is complete (including firmware initialization of
the 8x930) is less than 10 ms. After 10 ms, the host may attempt to
communicate with the 8x930 to set its device address. If the 8x930 firmware
cannot respond to the host at this time, the host may disable the device after
three attempts to communicate.

14.4.3.1 8x930Ax USB Reset Separation

The 8x930Ax features an optional USB reset that functions independently from the chip reset
When the PCON1 SFR’s URDIS bit is set, the MCS 251 core and peripherals will not reset
a USB reset signal is detected. After an 8x930Ax with URDIS set detects a USB reset signal,
resets all the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and gen
a USB reset interrupt. For a complete description of the optional USB reset for the 8x930Ax, see
“8x930Ax USB Reset Separation” on page 6-18.

14.4.4 Reset Operation

When a reset is initiated, whether externally, over the bus, or by a WDT, the port pins are i
diately forced to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the WDT- and USB- initiated reset signals are combined inte
For an external reset the voltage on the RST pin must be held high for 32 internal clock
(TCLK) after the oscillator and on-chip PLL stabilize (approximately 5 ms). For WDT and U
initiated resets, a 5-bit counter in the reset logic maintains the signal for the required 32 clo
cles (TCLK). Refer to Table 2-4 on page 2-10.

The CPU checks for the presence of the combined reset signal every 2TOSC. When a reset is de-
tected, the CPU responds by triggering the internal reset routine. The reset routine loads the
including the ACC, B, stack pointer, and data pointer registers, with their reset values (see
3-5 on page 3-16). Reset does not affect on-chip data RAM or the register file. (However, follo
ing a cold start reset, these are indeterminate because VCC has fallen too low or has been off.) Fol
lowing a synchronizing operation and the configuration fetch, the CPU vectors to ad
FF:0000. Figure 14-5 shows the reset timing sequence.
14-6

MINIMUM HARDWARE SETUP

ALE
ices

rg-

stal

 asyn-

age
While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first
occurs 16 internal clock cycles (TCLK) after the reset signal goes low. For this reason, other dev
can not be synchronized to the internal timings of the 8x930.

NOTE
Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8x930 without a reset may improperly initialize the program
counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

14.4.5 Power-on Reset

To automatically generate a reset when power is applied, connect the RST pin to the VCC pin
through a 1-µF capacitor as shown in Figure 14-1 on page 14-1.

When VCC is applied, the RST pin rises to VCC, then decays exponentially as the capacitor cha
es. The time constant must be such that RST remains high (above the turn-off threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plus 64TOSC. At power up,
VCC should rise within approximately 10 ms. Oscillator start-up time is a function of the cry
frequency.

During power up, the port pins are in a random state until forced to their reset state by the
chronous logic.

Reducing VCC quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This volt
is internally limited and does not harm the device.

Figure 14-5. Reset Timing Sequence

RST

XTAL

Internal Reset

Routine

ALE

A4103-01

PSEN#

≥ 64 TOSC

1 2 3 32

First ALE
14-7

15
Special Operating
Modes

evice
ted with

ns
 bits in
terrupt.

pe-
s I

 device
tate,

.

 and

s-
Power

e Fig-

vides
elect
CHAPTER 15
SPECIAL OPERATING MODES

This chapter describes the idle, powerdown, low-clock, and on-circuit emulation (ONCE) d
operating modes and the USB function suspend and resume operations. The SFRs associa
these operations (PCON and PCON1) are also described.

15.1 GENERAL

The idle, low clock, and powerdown modes are power reduction modes for use in applicatio
where power consumption is a concern. User instructions activate these modes by setting
the PCON register. Program execution halts, but resumes when the mode is exited by an in
While in idle or powerdown modes, the VCC pin is the input for backup power.

Following chip reset, the 8x930 operates in low-clock mode, wherein the CPU and on-chip
ripherals are clocked at a reduced rate until bus enumeration is accomplished. This reduceCC to
meet the 100 mA USB requirement.

Suspend and resume are low current modes used when the USB bus is idle. The 8x930 enters sus-
pend when there is a continuous idle state on the bus lines for more than 3.0 msec. When a
is in suspend state, it draws less than 500 µA from the bus. Once a device is in the suspend s
its operation can be resumed by receiving resume signaling on the bus.

ONCE is a test mode that electrically isolates the 8x930 from the system in which it operates.

Table 15-1 on page 15-6 lists the condition of the out pins for the various operating modes

15.2 POWER CONTROL REGISTERS

The PCON special function register (Figure 15-1) provides two control bits for the serial I/O
function; bits for selecting: the idle, low-clock, and powerdown modes, the power off flag,
two general purpose flags.

The PCON1 SFR (Figure 15-2) provides USB power control, including the USB global su
pend/resume and USB function suspend. The PCON1 SFR is discussed further in “USB
Control” on page 15-8.

15.2.1 Serial I/O Control Bits

The SMOD1 bit in the PCON register is a factor in determining the serial I/O baud rate. Se
ure 15-1 and “Baud Rates” on page 13-10.

The SMOD0 bit in the PCON register determines whether bit 7 of the SCON register pro
read/write access to the framing error (FE) bit (SMOD0 = 1) or to SM0, a serial I/O mode s
bit (SMOD0 = 0). See Figure 15-1 and Figure 13-2 on page 13-4 (SCON).
15-1

8x930Ax, 8x930Hx USER’S MANUAL

leared
et or a

ce for

.
 when
 it
erates
15.2.2 Power Off Flag

Hardware sets the Power Off Flag (POF) in PCON when VCC rises from < 3 V to > 3 V to indicate
that on-chip volatile memory is indeterminate (e.g., at power-on). The POF can be set or c
by firmware. After a reset, check the status of this bit to determine whether a cold start res
warm start reset occurred (see “Reset” on page 14-5). After a cold start, user firmware should
clear the POF. If POF = 1 is detected at other times, do a reset to re-initialize the chip, sin
VCC < 3 V data may have been lost or some logic may have malfunctioned.

15.2.3 8x930Ax USB Reset Separation

The 8x930Ax features an optional USB reset that functions independently from the chip reset
When the PCON1 SFR’s URDIS bit is set, the MCS 251 core and peripherals will not reset
a USB reset signal is detected. After an 8x930Ax with URDIS set detects a USB reset signal,
resets all the USB blocks (including the USB SFRs), sets the URST bit in PCON1, and gen
a USB reset interrupt. For a complete description of the optional USB reset for the 8x930Ax, see
“8x930Ax USB Reset Separation” on page 6-18.
15-2

SPECIAL OPERATING MODES

Figure 15-1. PCON: Power Control Register

PCON Address: S:87H
Reset State: 00xx 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial I/O
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SM0 bit.

7 0

SMOD1 SMOD0 LC POF GF1 GF0 PD IDL

Bit
Number

Bit
Mnemonic Function

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 13-10.

6 SMOD0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SM0 bit.
See the SCON register (Figure 13-2 on page 13-4).

5 LC Low-clock Mode Enable:

Setting this bit forces the internal clock (FCLK) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns FCLK to the
clock frequency determined by pins PLLSEL2:0.

4 POF Power Off Flag:

Set by hardware as VCC rises above 3 V to indicate that power has been
off or VCC had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by firmware.

3 GF1 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GF0 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.
15-3

8x930Ax, 8x930Hx USER’S MANUAL

PCON1 Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and resume,
USB reset separation, and remote wake-up of the 8x930.

7 0

— — — URDIS URST RWU GRSM GSUS

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

4 URDIS
(8x930Ax)

USB Reset Disable:

When clear by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 251 core, USB blocks and all
peripherals.

When set by firmware, the MCS 251 core and peripherals will not reset
when a USB reset signal is detected. Upon detecting a USB reset signal,
the 8x930Ax resets all the USB blocks (FIFOs, FIU, SIE, and
transceiver), sets the URST bit and generates a USB reset interrupt
(refer to the description of URST).

URDIS
(8X930Hx)

Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

3 URST
(8x930Ax)

USB Reset Flag:

This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IEN1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

URST
(8x930Hx)

Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware when resume signaling
is done.
NOTE: Do not set this bit unless the USB function is suspended

(GSUS = 1 and GRSM = 0). See Figure 15-3 on page 15-11.

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 15-2. PCON1: USB Power Control Register
15-4

SPECIAL OPERATING MODES
1 GRSM Global Resume Bit:

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt†
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 15-3
on page 15-11.

0 GSUS Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.† During the global suspend ISR, firmware should
set the PD bit to enter the suspend mode. Cleared by firmware when a
resume occurs. See Figure 15-3 on page 15-11.

PCON1 (Continued) Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and resume,
USB reset separation, and remote wake-up of the 8x930.

7 0

— — — URDIS URST RWU GRSM GSUS

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 15-2. PCON1: USB Power Control Register (Continued)
15-5

8x930Ax, 8x930Hx USER’S MANUAL

Table 15-1. Pin Conditions in Various Modes

Pin

Reset Idle Mode Powerdown Mode Once
Mode

— Internal
Program
Memory

External
Memory
(page
mode)

External
Memory
(nonpage
mode)

Internal
Program
Memory

External
Memory
(page
mode)

External
Memory
(nonpage
mode)

—

ALE Weak
High

1 1 1 0 0 0 Float

PSEN# Weak
High

1 1 1 0 0 0 Float

Port 0
Pins

Float Data Float Float Data Float Float Float

Port 1
Pins

Weak
High

Data Data Data Data Data Data Weak
High

Port 2
Pins

Weak
High

Data Float Weak
High

Data Float Weak
High

Weak
High

Port 3
Pins

Weak
High

Data Data Data Data Data Data Weak
High

SOF# Weak
High

Data Data Data Data Data Data Weak
High

DP0 Float Data Data Data Float Float Float Weak
High

DM0 Float Data Data Data Float Float Float Float

DP3:1 Float Data Data Data Data J Data J Data J Float

DM3:1 Float Data Data Data Data J Data J Data J Float

UPWEN# Weak
High

Data Data Data Data Data Data Float
15-6

SPECIAL OPERATING MODES

0% of

tus be-

 RAM
emory:

, 2,

n
ction

res

gs
urred
, the

15.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to approximately 4
normal. In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known
states while the peripherals continue to be clocked (Figure 2-6 on page 2-9). The CPU sta
fore entering idle mode is preserve. That is, the program counter, program status word register,
and register file retain their data for the duration of idle mode. The contents of the SFRs and
are also retained. The status of the port pins depends upon the location of the program m

• Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1
and 3 pins are driving the port SFR value (Table 15-1).

• External program memory: the ALE and PSEN# pins are pulled high; the port 0 pins are
floating; and the pins of ports 1, 2, and 3 are driving the port SFR value (Table 15-1).

NOTE
If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bit in the CMOD register (Figure 12-7 on page 12-13).

15.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. The 8x930 enters idle mode upon executio
of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last instru
executed.

CAUTION
If the IDL bit and the PD bit are set simultaneously, the 8x930 enters
powerdown mode.

15.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

• Generate an enabled interrupt. Hardware clears the PCON register IDL bit which resto
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose fla
(GF1 and GF0 in the PCON register) may be used to indicate whether an interrupt occ
during normal operation or during idle mode. When idle mode is exited by an interrupt
interrupt service routine may examine GF1 and GF0.

• Reset the chip. See “Reset” on page 14-5. A logic high on the RST pin clears the IDL bit in
the PCON register directly and asynchronously. This restores the clocks to the CPU.
Program execution momentarily resumes with the instruction immediately following the
instruction that activated the idle mode and may continue for a number of clock cycles
before the internal reset algorithm takes control. Reset initializes the 8x930 and vectors the
CPU to address FF:0000H.
15-7

8x930Ax, 8x930Hx USER’S MANUAL

d

et
activity

hange
al sus-
e

ered

the

s and
rogram

 2,
NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

15.4 USB POWER CONTROL

The 8x930 supports USB power control through firmware, including global suspend/resume an
remote wake-up. For flow charts of these operations, see Figure 15-3 on page 15-11.

15.4.1 Global Suspend Mode

When a global suspend is detected by the 8x930, the global suspend bit (GSUS in PCON1) is s
and the global suspend/resume interrupt is generated. Global suspend is defined as bus in
for more than 3 ms on the USB lines. A device that is already in suspend mode will not c
state. Hardware does not invoke any particular power-saving mode on detection of a glob
pend. You must implement power control through firmware within the global suspend/resum
ISR.

NOTE
Firmware must set the PD bit (PCON.1 in Figure 15-1 on page 15-3).

For global suspend on a bus powered device, firmware must put the 8x930 into powerdown mode
to meet the USB limit of 500 µA. For consistency, it is recommended that you put self-pow
devices into powerdown mode as well.

15.4.1.1 Powerdown (Suspend) Mode

The powerdown mode places the 8x930 in a very low power state. Powerdown mode stops
oscillator and freezes all clocks at known states (Figure 2-6 on page 2-9). The CPU status prior
to entering powerdown mode is preserved, i.e., the program counter, program status word register,
and register file retain their data for the duration of powerdown mode. In addition, the SFR
RAM contents are preserved. The status of the port pins depends on the location of the p
memory:

• Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1,
and 3 pins are reading data (Table 15-1 on page 15-6).

• External program memory: the ALE and PSEN# pins are pulled low; the port 0 pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 15-1).

NOTE
VCC may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, that VCC is not reduced until power-
down is invoked.
15-8

SPECIAL OPERATING MODES

 is the

cks to

st be

gnal

PD bit

l.
15.4.1.2 Entering Powerdown (Suspend) Mode

To enter powerdown mode, set the PCON register PD bit. The 8x930 enters powerdown mode
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit
last instruction executed.

CAUTION
Do not put the 8x930 into powerdown mode unless the USB suspend signal is
detected on the USB lines (GSUS = 1). Otherwise, the device will not be able
to wake up from powerdown mode by a resume signal sent through the USB
lines. See “USB Power Control” on page 15-8.

15.4.1.3 Exiting Powerdown (Suspend) Mode

CAUTION
If V CC was reduced during the powerdown mode, do not exit powerdown until
VCC is restored to the normal operating level.

There are two ways (other than USB signaling) to exit the powerdown mode:

1. Generate an enabled external interrupt. The interrupt signal must be held active long
enough for the oscillator to restart and stabilize (normally less than 10 ms). Hardware
clears the PD bit in the PCON register which starts the oscillator and restores the clo
the CPU and peripherals. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the
instruction immediately following the instruction that activated powerdown mode.

To enable an external interrupt, set the IEN0 register EX0 and/or EX1 bit[s]. The external
interrupt used to exit powerdown mode must be configured as level-sensitive and mu
assigned the highest priority. Holding the interrupt pin (INT0# or INT1#) low restarts the
oscillator and bringing the pin high completes the exit. The duration of the interrupt si
must be long enough to allow the oscillator to stabilize (normally less than 10 ms).

2. Generate a reset. See “Reset” on page 14-5. A logic high on the RST pin clears the
in the PCON register directly and asynchronously. This starts the oscillator and restores
the clocks to the CPU and peripherals. Program execution momentarily resumes with the
instruction immediately following the instruction that activated powerdown and may
continue for a number of clock cycles before the internal reset algorithm takes contro
Reset initializes the 8x930 and vectors the CPU to address FF:0000H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powerdown mode should not write to a port pin or to the
external RAM.
15-9

8x930Ax, 8x930Hx USER’S MANUAL

t,

arted. A
 reset
am
ended

ing

en the
ce
as

USB

sume

r, set
USB

o

bled
15.4.2 Global Resume Mode

When a global resume is detected by the 8x930, the global resume bit (GRSM of PCON1) is se
the global suspend bit (GSUS of PCON1) is cleared, and the global suspend/resume interrupt is
generated. As soon as resume signaling is detected on the USB lines, the oscillator is rest
resume condition is defined as a “J to anything” transition. This could be a K transition, or
signaling on the root port. For the 8x930Hx, a resume condition could be an enabled downstre
port or connect/disconnect of a downstream port in the disconnected, disabled, or susp
states.

Upon detection of a resume condition, the 8x930 applies power to the USB transceivers, the crys-
tal oscillator, and the PLL (although the PLL output is still gated-off). The device begins tim
two different time points, T1 and T2, as described in Chapter 11 of the Universal Serial Bus Spec-
ification.

After the clocks are restarted, the CPU program continues execution from where it was wh
device was put into powerdown mode. The device then services the resume interrupt servirou-
tine. After executing the resume ISR, the 8x930 continues operation from the point where it w
interrupted by the suspend interrupt.

15.4.3 USB Remote Wake-up

The 8x930 can initiate resume signaling to the USB lines through remote wake-up of the
function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up has to
be initiated through assertion of an enabled external interrupt. The external interrupt has to be en-
abled and it must be configured with level trigger and with higher priority than a Suspend/Re
interrupt. A function resume restarts the clocks to the 8x930 and program execution branches to
an external interrupt service routine.

Within this external interrupt service routine, you must ensure GRSM = 0. If GRSM is clea
the remote wake-up bit (RWU in PCON1 — Figure 15-2) to drive resume signaling on the
lines to the host or upstream hub (as well as to the enabled downstream ports for the 8x930Hx).
After executing the external ISR, the program continues execution from where it was put int
powerdown mode and the 8x930 resumes normal operation.

The procedure is similar for remote wake-up initiated from idle mode. For idle mode, ena
interrupts from the USB function should also initiate wake-up.

NOTE
Do not initiate a remote wake-up (by setting the RWU bit in PCON1) prior to
5ms after the last bus activity is detected (2ms after the 8x930Hx is
suspended).
15-10

SPECIAL OPERATING MODES

Figure 15-3. Suspend/Resume Program with/without Remote Wake-up

A5089-02

Suspend Command

Host sends Suspend

 down USB

Suspend is detected by

8X930 setting GSUS

and causes interrupt

Suspend ISR should

shut down all

external peripherals

Suspend ISR sets PD bit

† (GSUS must not

be cleared)

Setting PD bits causes

8X930 to enter

powerdown mode.

Entire function must draw

less than 500 µ�A from USB.

Suspend Mode Entered

† If GSUS is cleared, the 8X930 will not be able to detect resume signaling from the host.

Remote Wake-up using

an external interrupt

Hold external interrupt pin

(INT0# or INT1#) low until

oscillator stabilizes.

Normally 10ms or less

Program returns to

command immediately

following the 'setb PD'

command in the original

Suspend ISR

Host sends Resume

 down bus

8X930 detects resume,

hardware sets GRSM,

clears GSUS and

starts oscillator

When oscillator stabilizes,

program begins execution

at location immediately

following the

'setb PD' command.

External ISR entered

External ISR serviced

RETI (from external ISR)

Resume Command

from Host

.
.
.
.
.
.
15-11

8x930Ax, 8x930Hx USER’S MANUAL

 Suspend/Resume Program with/without Remote Wake-up (Continued)

A5090-01

Global Resume already

applied by host.

GSUS cleared by

hardware. No need to send

Remote Wake-up to host.

Software sets RWU bit

.
.
.
.
.
.

(continued) (continued)

GRSM bit = 0?

†

GRSM = 0

GRSM = 1

Hardware clears GSUS bit

RWU will clear

automatically when

RESUME signaling is done

Software clears GRSM

Software enables

external peripherals

RETI

(from suspend ISR)

† Check to see if host has driven a resume onto the bus before function drives resume onto bus.
15-12

SPECIAL OPERATING MODES

d
ways
he I
 unit

te se-

e

ear the
gh-

U is

 and

=

lled
vice is
ator or
15.5 LOW-CLOCK MODE

Low-clock mode is the default operation mode for the 8x930 upon reset. After reset, the CPU an
peripherals (excluding the USB module) default to a 3 MHz clock rate. The USB module al
operates at the clock rate selected by pins PLLSEL2:0. Low-clock mode ensures that tCC
drawn by the 8x930, while in the unenumerated state following chip reset, is less than one
load (100 mA).

After USB enumeration (and given that the request for more than one unit load of ICC is granted),
firmware can clear the LC bit in PCON to clock the CPU and on-chip peripherals at the ra
lected by pin PLLSEL2:0.

15.5.1 Entering Low-clock Mode

Low-clock mode can be invoked through firmware anytime the device is unconfigured by th
host PC. To invoke low-clock mode, set the LC bit in the PCON register (Figure 15-1).

NOTE
The device reset routine sets the LC bit placing the 8x930 in low-clock mode.

15.5.2 Exiting Low-clock Mode

To switch the clock of the CPU and the peripherals to the hardware-selected clock rate, cl
LC bit in the PCON register (Figure 15-1). The hardware clock rate selection determines the hi
est operating clock rate for the 8x930.

15.6 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8x930-based
systems without removing the chip from the circuit board. A clamp-on emulator or test CP
used in place of the 8x930 which is electrically isolated from the system.

15.6.1 Entering ONCE Mode

To enter the ONCE mode:

1. Assert RST to initiate a device reset. See “Externally-Initiated Resets” on page 14-5
the reset waveforms in Figure 14-5 on page 14-7.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN
low, P0.7:5 = low, P0.4 = high, P0.3:0 = low (i.e., port 0 = 10H).

3. Deassert RST, then remove the logic levels from PSEN# and port 0.

These actions cause the 8x930 to enter the ONCE mode. Port 1, 2, and 3 pins are weakly pu
high and port 0, ALE, and PSEN# pins are floating (Table 15-1 on page 15-6). Thus the de
electrically isolated from the remainder of the system which can then be tested by an emul
test CPU. Note that in the ONCE mode the device oscillator remains active.
15-13

8x930Ax, 8x930Hx USER’S MANUAL
15.6.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.
15-14

16
External Memory
Interface

als as-

l-time
ait state
s idle,

ave a
ed on

figured,
-
mode
 or 18);
al wait
pecial
ation.
7.

ge mode
de does
CHAPTER 16
EXTERNAL MEMORY INTERFACE

This chapter covers various aspects of the external memory interface. It describes the sign
sociated with external memory operations, page mode/nonpage mode operation, and external bus
cycle timing (for normal accesses, accesses with configurable wait states, accesses with rea
wait states, and configuration byte accesses). This chapter also describes the real-time w
register (WCON), gives the status of the pins for ports P0 and P2 during bus cycles and bu
and includes several external memory design examples.

16.1 OVERVIEW

The 8x930 interfaces with a variety of external memory devices. It can be configured to h
16-bit, 17-bit, or 18-bit external address bus. Data transfer operations (8 bits) are multiplex
the address bus.

The external memory interface comprises the external bus (ports 0 and 2, and when so con
address bits A17 and A16) and the bus control signals described in Table 16-1. Chip configura
tion bytes (see Chapter 4, “Device Configuration”) provide several interface options: page
or nonpage mode for external code fetches; the number of external address bits (16, 17,
the address ranges for RD#, WR#, and PSEN#; and the number of preprogrammed extern
states to extend RD#, WR#, PSEN#, or ALE. Real-time wait states can be enabled with s
function register WCON.1:0. You can use these options to tailor the interface to your applic
For additional information refer to “Configuring the External Memory Interface” on page 4-

The external memory interface operates in either page mode or nonpage mode. Figure 16-1 shows
the structure of the external address bus for page mode and nonpage mode operation. Pa
provides increased performance by reducing the time for external code fetches. Page mo
not apply to code fetches from on-chip memory.

Figure 16-1. Bus Structure in Nonpage Mode and Page Mode

A4273-02

D7:0

A15:8

A7:0

A15:8
P2

P0

A7:0

8X930

Micro-

controller�

RAM/

EPROM/

Flash

AD7:0

Latch

A7:0

D7:0

A15:8

A7:0

P2

P0

A15.8

8X930

Micro-

controller

RAM/

EPROM/

Flash

A15:8/D7:0

Latch

Nonpage Mode Page Mode
16-1

8x930Ax, 8x930Hx USER’S MANUAL

he

Table 16-1. External Memory Interface Signals

Signal
Name Type Description Alternate

Function

A17 O Address Line 17. P1.7/CEX4/WCLK

A16 O Address Line 16. See RD#. P3.7/RD#

A15:8† O Address Lines. Upper address for external bus (non-page mode). P2.7:0

AD7:0† I/O Address/Data Lines. Multiplexed lower address and data for the
external bus (non-page mode).

P0.7:0

ALE O Address Latch Enable. ALE signals the start of an external bus
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0.

PROG#

EA# I External Access . Directs program memory accesses to on-chip
or off-chip code memory. For EA# strapped to ground, all program
memory accesses are off-chip. For EA# = strapped to VCC, an
access is to on-chip ROM if the address is within the range of the
on-chip ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For devices without on-chip ROM, EA# must be
strapped to ground.

VPP

PSEN# O Program Store Enable . Read signal output. This output is
asserted for a memory address range that depends on bits RD0
and RD1 in the configuration byte (see also RD#):

RD1 RD0 Address Range for Assertion
0 0 All addresses
0 1 All addresses
1 0 All addresses
1 1 All addresses ≥ 80:0000H

—

RD# O Read or 17th Address Bit (A16). Read signal output to external
data memory or 17th external address bit (A16), depending on the
values of bits RD0 and RD1 in configuration byte. (See PSEN#):

RD1 RD0 Function
0 0 The pin functions as A16 only.
0 1 The pin functions as A16 only.
1 0 The pin functions as P3.7 only.
1 1 RD# asserted for reads at all addresses ≤7F:FFFFH.

P3.7/A16

WAIT# I Real-time Wait State Input. The real-time WAIT# input is enabled
by writing a logical ‘1’ to the WCON.0 (RTWE) bit at S:A7H. During
bus cycles, the external memory system can signal ‘system ready’
to the microcontroller in real time by controlling the WAIT# input
signal on the port 1.6 input.

P1.6/CEX3

WCLK O Wait Clock Output. The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit at
S:A7H. When enabled, the WCLK output produces a square wave
signal with a period of one-half the oscillator frequency.

A17/P1.7/CEX4

WR# O Write . Write signal output to external memory. WR# is asserted for
writes to all valid memory locations.

P3.6

† If the chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries t
upper address bits (A15:8) and the data (D7:0).
16-2

EXTERNAL MEMORY INTERFACE

g to
15:8.
ode.

D7:0

ata
c-
 page

5).

rs

ng.)

ode bus
s: code
ta write
n ports

he up-
ith the
 times.
write

signal
assert-
The reset routine configures the 8x930 for operation in page mode or nonpage mode accordin
bit 1 of configuration byte UCONFIG0. P0 carries address A7:0 while P2 carries address A
Data D7:0 is multiplexed with A7:0 on P0 in nonpage mode and with A15:8 on P2 in page m

Table 16-1 describes the external memory interface signals. The address and data signals (A
on port 0 and A15:8 on port 2) are defined for nonpage mode.

16.2 EXTERNAL BUS CYCLES

This section describes the bus cycles the 8x930 executes to fetch code, read data, and write d
in external memory. Both page mode and nonpage mode are described and illustrated. This se
tion does not cover wait states (see “External Bus Cycles With Configurable Wait States” on
16-8) or configuration byte bus cycles (see “Configuration Byte Bus Cycles” on page 16-1

NOTE
For simplicity, the accompanying figures depict the bus cycle waveforms in
idealized form and do not provide precise timing information. For bus cycle
timing parameters refer to the 8x930Ax and 8x930Hx datasheets.

An “inactive external bus” exists when the 8x930 is not executing external bus cycles. This occu
under any of the three following conditions:

• Bus Idle (The chip is in normal operating mode but no external bus cycles are executi

• The chip is in idle mode

• The chip is in powerdown mode

16.2.1 Bus Cycle Definitions

Table 16-2 lists the types of external bus cycles. It also shows the activity on the bus for nonpage
mode and page mode bus cycles with no wait states. There are three types of nonpage m
cycles: code fetch, data read, and data write. There are four types of page mode bus cycle
fetch (page miss), code fetch (page hit), data read, and data write. The data read and da
cycles are the same for page mode and nonpage mode (except the multiplexing of D7:0 o
0 and 2).

16.2.2 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. T
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed w
data (D7:0) on port 0. External code read bus cycles execute in approximately two state
See Table 16-2 and Figure 16-2. External data read bus cycles (Figure 16-3) and external
bus cycles (Figure 16-4) execute in approximately three state times. For the write cycle (Figure
16-4), a third state is appended to provide recovery time for the bus. Note that the write
WR# is asserted for all memory regions, except for the case of RD1:0 = 11, where WR# is
ed for regions 00:–01: but not for regions FE:–FF:.
16-3

8x930Ax, 8x930Hx USER’S MANUAL

Figure 16-2. External Code Fetch (Nonpage Mode)

Table 16-2. Bus Cycle Definitions (No Wait States)

Mode Bus Cycle
Bus Activity

State 1 State 2 State 3

Nonpage
Mode

Code Read ALE RD#/PSEN#, code in

Data Read (2) ALE RD#/PSEN# data in

Data Write (2) ALE WR# WR# high, data out

Page
Mode

Code Read, Page Miss ALE RD#/PSEN#, code in

Code Read, Page Hit (3) PSEN#, code in

Data Read (2) ALE RD#/PSEN# data in

Data Write (2) ALE WR# WR# high, data out

NOTES:
1. Signal timing implied by this table is approximate (idealized).
2. Data read (page mode) = data read (nonpage mode) and write (page mode) = write (nonpage mode)

except that in page mode data appears on P2 (multiplexed with A15:0), whereas in nonpage mode
data appears on P0 (multiplexed with A7:0).

3. The initial code read page hit bus cycle can execute only following a code read page miss cycle.

P0

A17/A16/P2

ALE

RD#/PSEN#

State 1 State 2

A4282-02

A17/A16/A15:8

A7:0 D7:0
16-4

EXTERNAL MEMORY INTERFACE

Figure 16-3. External Data Read (Nonpage Mode)

Figure 16-4. External Data Write (Nonpage Mode)

P0

A17/A16/P2

ALE

RD#/PSEN#

State 1 State 2

A4283-02

A17/A16/A15:8

A7:0 D7:0

State 3

P0

A17/A16/P2

ALE

WR#

A4284-02

A17/A16/A15:8

A7:0 D7:0

State 1 State 2 State 3
16-5

8x930Ax, 8x930Hx USER’S MANUAL

 certain
ad of

ubse-
.
-

ig-
nd the

d with
ced-

ddress
 the in-
 by one

ode.
16.2.3 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under
conditions the controller fetches an instruction from external memory in one state time inste
two (Table 16-2). Page mode does not affect internal code fetches.

The first code fetch to a 256-byte “page” of memory always uses a two-state bus cycle. S
quent successive code fetches to the same page (page hits) require only a one-state bus cycle
When a subsequent fetch is to a different page (a page miss), it again requires a two-state bus cy
cle. The following external code fetches are always page-miss cycles:

• the first external code fetch after a page rollover†

• the first external code fetch after an external data bus cycle

• the first external code fetch after powerdown or idle mode

• the first external code fetch after a branch, return, interrupt, etc.

In page mode, the 8x930 bus structure differs from the bus structure in MCS 51 controllers (F
ure 16-1). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2, a
lower address bits (A7:0) are on port 0.

Figure 16-5 shows the two types of external bus cycles for code fetches in page mode. Thepage-
miss cycle is the same as a code fetch cycle in nonpage mode (except D7:0 is multiplexe
A15:8 on P2.). For the page-hit cycle, the upper eight address bits are the same as for the pre
ing cycle. Therefore, ALE is not asserted, and the values of A15:8 are retained in the a
latches. In a single state, the new values of A7:0 are placed on port 0, and memory places
struction byte on port 2. Notice that a page hit reduces the available address access time
state. Therefore, faster memories may be required to support page mode.

Figure 16-6 and Figure 16-7 show the bus cycles for data reads and data writes in page m
These cycles are identical to those for nonpage mode, except for the different signals on ports 0
and 2.

† A page rollover occurs when the address increments from the top of one 256-byte page to the bottom of the next (e.g.,
from FF:FAFFH to FF:FB00H).
16-6

EXTERNAL MEMORY INTERFACE

Figure 16-5. External Code Fetch (Page Mode)

Figure 16-6. External Data Read (Page Mode)

A17/A16/P0

P2

ALE

PSEN#

A17/A16/A7:0

Cycle 1, Page-Miss Cycle 2, Page-Hit

A17/A16/A7:0

† During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

 A4274-02

†

D7:0A15:8 D7:0

State 1 State 2 State 1

A17/A16/P0

P2

ALE

PSEN#

A17/A16/A7:0

 A4275-02

D7:0A15:8

State 1 State 2 State 3
16-7

8x930Ax, 8x930Hx USER’S MANUAL

-time,

 of the
 page

ycles
page

nd data
.

config-
r
o not

 and
 the
th one

the bus
ad ex-

Figure 16-7. External Data Write (Page Mode)

16.3 WAIT STATES

The 8x930 provides three types of wait state solutions to external memory problems: real
RD#/WR#/PSEN#, and ALE wait states. The 8x930 supports traditional real-time wait state op-
erations for dynamic bus control. Real-time wait state operations are controlled by means
WCON special function register. See “External Bus Cycles with Real-time Wait States” on
16-11.

In addition, the 8x930 device can be configured at reset to add wait states to external bus c
by extending the ALE or RD#/WR#/PSEN# pulses. See “Wait State Configuration Bits” on
4-11.

You can configure the chip to use multiple types of wait states. Accesses to on-chip code a
memory always use zero wait states. The following sections demonstrate wait state usage

16.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES

This section describes the code fetch, read data, and write data external bus cycles with
urable wait states. Both page mode and nonpage mode operation are described and illustrated. Fo
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and d
provide precise timing information.

16.4.1 Extending RD#/WR#/PSEN#

You can use bits WSA1:0# in configuration byte UCONFIG0 (Figure 4-3 on page 4-5)
WSB1:0# in UCONFIG1 (Figure 4-4 on page 4-6) to add 0, 1, 2, or 3 wait states to
RD#/WR#/PSEN pulses. Figure 16-8 shows the nonpage mode code fetch bus cycle wi
RD#/PSEN# wait state. The wait state extends the bus cycle to three states. Figure 16-9 shows
the nonpage mode data write bus cycle with one WR# wait state. The wait state extends
cycle to four states. The waveforms in Figure 16-9 also apply to the nonpage mode data re
ternal bus cycle if RD#/PSEN# is substituted for WR#.

A17/A16/P0

P2

ALE

WR#

A17/A16/A7:0

 A4276-02

D7:0A15:8

State 1 State 2 State 3
16-8

EXTERNAL MEMORY INTERFACE

Figure 16-8. External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)

Figure 16-9. External Data Write (Nonpage Mode, One WR# Wait State)

P0

A17/A16/P2

ALE

RD#/PSEN#

A4277-02

A7:0 D7:0

A17/A16/A15:8

State 1 State 3State 2

P0

A17/A16/P2

ALE

WR#

A4278-02

A7:0 D7:0

A17/A16/A15:8

State 1 State 2 State 4State 3
16-9

8x930Ax, 8x930Hx USER’S MANUAL

Fig-
wait
les, the
16.4.2 Extending ALE

Use the XALE# bit of configuration byte UCONFIG0 to extend the ALE pulse 1 wait state.
ure 16-10 shows the nonpage mode code fetch external bus cycle with ALE extended. The
state extends the bus cycle from two states to three. For read and write external bus cyc
extended ALE extends the bus cycle from three states to four.

Figure 16-10. External Code Fetch (Nonpage Mode, One ALE Wait State)

P0

A17/A16/P2

ALE

RD#/PSEN#

A4279-02

A7:0 D7:0

A17/A18/A15:8

State 1 State 2 State 3
16-10

EXTERNAL MEMORY INTERFACE

ol and
 en-
igure
16.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES

There are two ways of using real-time wait states: the WAIT# pin used as an input bus contr
the WAIT# signal used in conjunction with the WCLK output signal. These two signals are
abled with the WCON special function register in the SFR space at S:0A7H. Refer to F
16-11.

NOTE
The WCLK and WAIT# signals are alternate functions for the port 1.7:6 input
and output buffers. Use of the alternate functions may conflict with wait state
operation.

When WAIT# is enabled, PCA module 3 is disabled on port 1.6 (CEX3) and
resumes operation only when the WAIT# function is disabled. The same
relationship exists between WCLK on port 1.7 (CEX4) and PCA module 4. It
is not advisable to alternate between PCA operations and real-time wait-state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK).

Port 1.7 can also be configured to serve as address signal A17 (See
UNCONFIG0 on page 4-5). The A17 address signal always takes priority over
the alternate functions (CEX4 and WCLK). Even if RTWCE is enabled in
WCON.1, the WCLK output does not appear during bus cycles enabled to
drive address A17. The use of WAIT# as an input on port 1.6 is unaffected by
address signals.

Figure 16-11. WCON: Real-time Wait State Control Register

WCON Address: S:A7H
Reset: xxxx xx00B

Wait State Control Register. Use this register to enable the real-time wait state input signal and/or
the wait state output clock.

7 0

— — — — — — RTWCE RTWE

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

The values read from these bits are indeterminate. Write “0” to these
bits.

1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT
CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait
state input on port 1.6 (WAIT#).
16-11

8x930Ax, 8x930Hx USER’S MANUAL

 at
icro-
 of

bus

mod-
hold

e
e sig-
with
tput.

icts the
16.5.1 Real-time WAIT# Enable (RTWE)

The real-time WAIT# input is enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit
S:A7H. During bus cycles, the external memory system can signal “system ready” to the m
controller in real time by controlling the WAIT# input signal on the port 1.6 input. Sampling
WAIT# is coincident with the activation of RD#/PSEN# or WR# signals driven low during a
cycle. A “not-ready” condition is recognized by the WAIT# signal held at VIL by the external
memory system. Use of PCA module 3 may conflict with your design. Do not use the PCA
ule 3 I/O (CEX3) interchangeably with the WAIT# signal on the port 1.3 input. Setup and
times are illustrated in the current datasheet.

16.5.2 Real-time WAIT CLOCK Enable (RTWCE)

The real-time WAIT CLOCK output is driven at port 1.7 (WCLK) by writing a logical ‘1’ to th
WCON.1 (RTWCE) bit at S:A7H. When enabled, the WCLK output produces a square wav
nal with a period of one-half the oscillator frequency. Use of PCA module 4 may conflict
your design. Do not use the PCA module 4 I/O (CEX4) interchangeably with the WCLK ou
Use of address signal A17 inhibits both WCLK and PCA module 4 usage of port 1.7.

16.5.3 Real-time Wait State Bus Cycle Diagrams

Figure 16-12 shows the code fetch/data read bus cycle in nonpage mode. Figure 16-14 dep
data read cycle in page mode.

CAUTION
The real-time wait function has critical external timing for code fetch. For this
reason, it is not advisable to use the real-time wait feature for code fetch in
page mode.

The data write bus cycle in nonpage mode is shown in Figure 16-13. Figure 16-15 shows the data
write bus cycle in page mode.
16-12

EXTERNAL MEMORY INTERFACE

Figure 16-12. External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)

Figure 16-13. External Data Write (Nonpage Mode, Real-time Wait State)

A7:0

WCLK

	ALE

RD#/PSEN#

WAIT#

P0

P2 A15:8

A5007-02

State 1 State 2 State 3 State 1 (next cycle)

A7:0D7:0 stretched

A15:8 stretched

RD#/PSEN# stretched

A7:0

WCLK

	ALE

WR#

WAIT#

P0

P2

A5009-02

State 1 State 2 State 3 State 4

D7:0 stretched

A15:8 stretched

WR# stretched
16-13

8x930Ax, 8x930Hx USER’S MANUAL

Figure 16-14. External Data Read (Page Mode, Real-time Wait State)

Figure 16-15. External Data Write (Page Mode, Real-time W ait State)

A15:8

WCLK

	ALE

RD#/PSEN#

WAIT#

P2

P0 A7:0

A5008-02

State 1 State 2 State 3 State 1 (next cycle)

A15:8D7:0 stretched

A7:0 stretched

RD#/PSEN# stretched

A15:8

WCLK

	ALE

WR#

WAIT#

P2

P0

A5010-02

State 1 State 2 State 3 State 4

D7:0 stretched

A7:0 stretched

WR# stretched
16-14

EXTERNAL MEMORY INTERFACE

em-

-

eration,
 states
 P2
s not
page
s

 state.

d as the
ter 10,
16.6 CONFIGURATION BYTE BUS CYCLES

If EA# = 0, devices obtain configuration information from a configuration array in external m
ory. This section describes the bus cycles executed by the reset routine to fetch user configuration
bytes from external memory. Configuration bytes are discussed in Chapter 4, “Device Configu
ration.”

To determine whether the external memory is set up for page mode or nonpage mode op
the 8x930 accesses external memory using internal address FF:FFF8H (UCONFIG0). See
1–4 in Figure 16-16. If the external memory is set up for page mode, it places UCONFIG0 on
as D7:0, overwriting A15:8 (FFH). If external memory is set up for nonpage mode, A15:8 i
overwritten. The 8x930 examines P2 bit 1. Subsequent configuration byte fetches are in
mode if P2.1 = 0 and in nonpage mode if P2.1 = 1. The 8x930 fetches UCONFIG0 again (state
5–8 in Figure 16-16) and then UCONFIG1 via internal address FF:FFF9H.

The configuration byte bus cycles always execute with ALE extended and one PSEN# wait

Figure 16-16. Configuration Byte Bus Cycles

16.7 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are use
external bus. A more comprehensive description of the ports and their use is given in Chap
“Input/Output Ports.”

P0

P2

ALE

PSEN#

XTAL

A7:0 = F8H A7:0 = F8H A7:0 = F8H

A15:8 = FFH D7:0 D7:0A15:8 = FFH

Nonpage Mode

State 1

A4228-01

State 2 State 3 State 4 State 5 State 6 State 7 State 8

P0

P2

A7:0 = F8H D7:0

A15:8 = FFH

Page Mode
16-15

8x930Ax, 8x930Hx USER’S MANUAL

an orig-

e
nd the

external

2 are
mory.

lost. A
 at high

wever,
to the
external
us
rating
When port 0 and port 2 are used as the external memory bus, the signals on the port pins c
inate from three sources:

• the 8x930 CPU (address bits, data bits)

• the port SFRs: P0 and P2 (logic levels)

• an external device (data bits)

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Tabl16-3
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode a
external bus is idle or executing a bus cycle.

16.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode, the port pins have the same signals as those on the 8XC51FX. For an
memory instruction using a 16-bit address, the port pins carry address and data bits during the bus
cycle. However, if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P
driven onto the pins. These pin signals can be used to select 256-bit pages in external me

During a bus cycle, the CPU always writes FFH to P0, and the former contents of P0 are
bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held
impedance, and the contents of P2 are driven onto the port 2 pins.

16.7.2 Port 0 and Port 2 Pin Status in Page Mode

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. Ho
if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven on
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in
memory. During bus idle, the port 0 and port 2 pins are held at high impedance. For port pin stat
when the chip in is idle mode, powerdown mode, or reset, see Chapter 15, “Special Ope
Modes.”

Table 16-3. Port 0 and Port 2 Pin Status In Normal Operating Mode

Port 8-bit/16-bit
Addressing

Nonpage Mode Page Mode

 Bus Cycle Bus Idle Bus Cycle Bus Idle

Port 0 8 or 16 AD7:0 (1) High Impedance A7:0 (1) High Impedance

Port 2
8 P2 (2) P2 P2/D7:0 (2) High Impedance

16 A15:8 P2 A15:8/D7:0 High Impedance

NOTES:
1. During external memory accesses, the CPU writes FFH to the P0 register and the register

contents are lost.
2. The P2 register can be used to select 256-byte pages in external memory.
16-16

EXTERNAL MEMORY INTERFACE

-
 and

or
e” on
l mem-

-17).
ace.
16.8 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents several external memory designs for 8x930 systems. These examples illus
trate the design flexibility provided by the configuration options, especially for the PSEN#
RD# signals. Many designs are possible. The examples employ the 80930AD and 83930AE but
also apply to the other 8x930Hx devices if the differences in on-chip memory are allowed for. F
a general discussion on external memory see “Configuring the External Memory Interfac
page 4-7. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9 depict the mapping of interna
ory space into external memory.

16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM

In this example, an 80930AD operates in page mode with an 18-bit external address bus inter-
faced to 128 Kbytes of external flash memory and 128 Kbytes of external RAM (Figure 16
Figure 16-18 shows how the external flash and RAM are addressed in the internal memory sp
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:.

Figure 16-17. Bus Diagram for Example 1: 80930AD in Page Mode

Microcontroller

(without on-chip

 code memory)

A17

P2

P0

A16

EA#

WR# PSEN#

CE#

D7:0

A15:8

A7:0

A16

OE# WE#

CE#

D7:0

A15:8

A7:0

A16

OE# WE#

RAM

(128 Kbytes)

Flash

(128 Kbytes)

Latch

A4285-02
16-17

8x930Ax, 8x930Hx USER’S MANUAL

Figure 16-18. Address Space for Example 1

A4220-02

1056 Bytes On-chip RAM

01:

00:

FE:

FF:

128 Kbytes External Flash

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

FFFFH
128 Kbytes –1056 Bytes

External RAM

00:0000H
16-18

EXTERNAL MEMORY INTERFACE

6
ternal
n-chip
16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM

In this example, an 80930AD operates in page mode with a 17-bit external address bus interfaced
to 64 Kbytes of flash memory for code storage and 32 Kbytes of external RAM (Figure 16-19).
The 80930AD is configured so that PSEN# is asserted for all reads, and RD# functions as A1
(RD1:0 = 01). Figure 16-20 shows how the external flash and RAM are addressed in the in
memory space. Addresses 0420H–7FFFH in external RAM are addressed in region 00:. O
data RAM (1056 bytes) occupies the lowest addresses in region 00:.

Figure 16-19. Bus Diagram for Example 2: 80930AD in Page Mode

PSEN#WR#

RAM

(32 Kbytes)

OE#

FLASH

(64 Kbytes)

OE# WE#WE#

CE# CE#

A15:8/D7:0 A15:8

P2

P0

EA#

D7:0

A15:8

A7:0

A15:8

A7;0

D7:0
A16

A7:0

Latch

Data Code

A4286-02

Microcontroller

(without on-chip

 code memory)
16-19

8x930Ax, 8x930Hx USER’S MANUAL

-

Figure 16-20. Address Space for Example 2

16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM

In this example, an 83930AE operates in nonpage mode with a 17-bit external address bus inter
faced to 128 Kbytes of external RAM (Figure 16-21). The 83930AE is configured so that RD#
functions as A16, and PSEN# is asserted for all reads. Figure 16-22 shows how the external RAM
is addressed in the internal memory space.

A4168-03

1056 Bytes On-chip RAM

01:

00:

FE:

FF: 64 Kbytes External Flash

Address Space

(256 Kbytes)

0000H

FFFFH

0420H
32 Kbytes –1056 Bytes External RAM

00:0000H

7FFFH
16-20

EXTERNAL MEMORY INTERFACE

Figure 16-21. Bus Diagram for Example 3: 83930AE in Nonpage Mode

PSEN#

A5004-01

WR#

D7:0

A15:8

A7:0

A16

OE# WE#

A15:8

A16

P2

P0

A7:0

Microcontroller

(with on-chip

code memory)

RAM

(128 Kbytes)

CE#EA#

VCC

AD7:0

Latch

A16

Data
16-21

8x930Ax, 8x930Hx USER’S MANUAL

Figure 16-22. Memory Space for Example 3

A4169-03

1056 Bytes On-chip RAM

01:

00:

FE:

FF:

16 Kbytes On-chip Code Memory

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

FFFFH

128 Kbytes –1056 Bytes External RAM

00:0000H

3FFFH
16-22

EXTERNAL MEMORY INTERFACE

-
e
d all
igure
16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM

In this example, an 83930AE operates in nonpage mode with a 16-bit external address bus inter
faced to 64 Kbytes of RAM (Figure 16-23). This configuration leaves P3.7/RD#/A16 availabl
for general I/O (RD1:0 = 10). A maximum of 64 Kbytes of external memory can be used an
regions of internal memory map into the single 64-Kbyte region in external memory (see F
4-6 on page 4-9). Figure 16-24 shows how the external RAM is addressed in the internal memory
space. User code is stored in on-chip ROM.

Figure 16-23. Bus Diagram for Example 4: 83930AE in Nonpage Mode

PSEN#

A5005-01

WR#

D7:0

A15:8

A7:0

OE# WE#

P2

P0

Microcontroller

(with on-chip

code memory)

RAM

(64 Kbytes)

CE#EA#

VCC

Latch
16-23

8x930Ax, 8x930Hx USER’S MANUAL

Figure 16-24. Address Space for Example 4

A4224-02

1056 Bytes On-chip RAM

01:

00:

FE:

FF:

16 Kbytes On-chip Code Memory

Address Space

(256 Kbytes)

FFFFH

0420H

FFFFH
External RAM 64 Kbytes – 1056 Bytes

00:0000H

0000H 3FFFH
16-24

EXTERNAL MEMORY INTERFACE

r-

 mem-

ddress
nt
ll that

s have
are

ip data
e

 can be
 If the
ternal
16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80930AD operates in nonpage mode with a 16-bit external address bus inte
faced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 16-25). The 80930AD is config-
ured so that RD# is asserted for addresses ≤ 7F:FFFFH and PSEN# is asserted for addresses
≥ 80:0000H. Figure 16-26 shows two ways to address the external memory in the internal
ory space.

Addressing external RAM locations in either region 00: or region 01: produces the same a
at the external bus pins. However, if the external EPROM and the external RAM require differe
numbers of wait states, the external RAM must be addressed entirely in region 01:. Reca
the number of wait states for region 01: is independent of the remaining regions and alway
the same number of wait states (see Table 4-3 on page 4-11) unless the real-time wait states
selected (see Figure 16-11 on page 16-11).

The examples that follow illustrate two possibilities for addressing the external RAM.

16.8.5.1 An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-ch
RAM (00:0020H–00:041FH) and, when necessary, roll out into the slower external RAM. See th
left side of Figure 16-26. In this case, the external RAM can have wait states only if the EPROM
has wait states. Otherwise, if the stack rolls out above location 00:041FH, the external RAM
would be accessed with no wait state.

16.8.5.2 An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data
stored in the on-chip data RAM, and the stack can be located entirely in external memory.
external RAM requires a different number of wait states than the EPROM, address the ex
RAM entirely in region 01:. See the right side of Figure 16-26. Addresses above 00:041FH roll
out to external memory beginning at 0420H.
16-25

8x930Ax, 8x930Hx USER’S MANUAL

Figure 16-25. Bus Diagram for Example 5: 80930AD in Nonpage Mode

A7:0

Latch

A15:8

A/D7:0

EPROM

(64 Kbytes)

OE#

CE#

A15:8

A7:0

D7:0

PSEN#

Microcontroller

(without on-chip

code memory��)

RD#WR#

EA#

P2

P0

D7:0

A15:8

A7:0

RAM

(64 Kbytes)

CE#

OE# WE#

DataCode

A4287-02
16-26

EXTERNAL MEMORY INTERFACE

Figure 16-26. Address Space for Examples 5 and 6

1056 Bytes

On-chip RAM

01:

00:

FE:

FF:
64 Kbytes

External EPROM

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

FFFFH
External RAM

64 Kbytes –

1056 Bytes

1056 Bytes

On-chip RAM

01:

00:

FE:

FF:
64 Kbytes

External

EPROM

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

64 Kbytes

External

RAM

00:0000H

FFFFH

0000H

4175-03
16-27

8x930Ax, 8x930Hx USER’S MANUAL

-
 on ad-
16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80930AD operates in page mode with a 16-bit external address bus interfaced
to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 16-27). The 80930AD is configured so
that RD# is asserted for addresses ≤ 7F:FFFFH, and PSEN# is asserted for addresses ≥ 80:0000.

This system is the same as Example 5 (Figure 16-25) except that it operates in page mode. Ac
cordingly, the two systems have the same memory map (Figure 16-26), and the comments
dressing external RAM apply here also.

Figure 16-27. Bus Diagram for Example 6: 80930AD in Page Mode

A7:0

A15:8/D7:0 A15:8

Latch

PSEN#

Microcontroller

(without on-chip

code memory)

RD#WR#

P2

P0

EA#

EPROM

(64 Kbytes)

OE#

D7:0

A15:8

A7:0

CE# CE#

A15:8

A7;0

RAM

(64 Kbytes)

D7:0

OE# WE#

Code Data

A4288-02
16-28

EXTERNAL MEMORY INTERFACE

:0)

 inter-
16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash

In this example, an 80930AD operates in page mode with a 17-bit external address bus interfaced
to 128 Kbytes of flash memory (Figure 16-28). Port 2 carries both the upper address bits (A15
and the data (D7:0), while port 0 carries only the lower address bits (A7:0). The 80930AD is con-
figured for a single read signal (PSEN#). The 128 Kbytes of external flash are accessed via
nal memory regions FE: and FF: in the internal memory space.

Figure 16-28. Bus Diagram for Example 7: 80930AD in Page Mode

PSEN#

Microcontroller

(without on-chip

code memory)

WR#

FLASH

(128 Kbytes)

OE# WE#

A15:8/D7:0 A15:8

P2

P0

A15:8

A7:0

A7:0

Latch

D7:0

A16

CE#

A16

EA#

A16

Code

A4289-02
16-29

17
Verifying Nonvolatile
Memory

ed in

. Ver-
e, in-

r low
ete list

he

tion

e: for
t in-
gram

 1 and
highest
on,

 device
t
.
CHAPTER 17
VERIFYING NONVOLATILE MEMORY

This chapter provides instructions for verifying on-chip nonvolatile memory on the 8x930. The
verify instructions permit reading memory locations to verify their contents. Features cover
this chapter are:

• verifying the on-chip program code memory (8 Kbytes, 16 Kbytes)

• verifying the on-chip configuration bytes (8 bytes)

• verifying the lock bits (3 bits)

• using the encryption array (128 bytes)

• verifying the signature bytes (3 bytes)

17.1 GENERAL

The 8x930 is verified in the same manner as the 87C51FX and 87C251Sx microcontrollers
ify operations differ from normal operation. Memory accesses are made one byte at a tim
put/output port assignments are different, and ALE, EA#, and PSEN# are held high o
externally. See Tables 17-1 and 17-2 for lead usage during verify operations. For a compl
of device signal descriptions, see Appendix B.

In some applications, it is desirable that program code be secure from unauthorized access. T
8x930 offers two types of protection for program code stored in the on-chip array:

• Program code in the on-chip code memory area is encrypted when read out for verifica
if the encryption array is programmed.

• A three-level lock bit system restricts external access to the on-chip program code memory.

17.1.1 Considerations for On-chip Program Code Memory

On-chip, nonvolatile code memory is located at the lower end of the FF: region. (Exampl
devices with 16 Kbytes of ROM, code memory is located at FF:0000H-FF:3FFFH.) The firs
struction following device reset is fetched from FF:0000H. It is recommended that user pro
code start at address FF:0100H. Use a jump instruction to FF:0100H to begin execution of the
program. For information on address spaces, see Chapter 3, “Address Spaces.”

Addresses outside the range of on-chip code memory access external memory. With EA# =
both on-chip and external code memory implemented, you can place program code at the
on-chip memory addresses. When the highest on-chip address is exceeded during executipro-
gram code fetches automatically rollover from on-chip memory to external memory. See the dual
note on page 3-8.

The top eight bytes of the memory address space (FF:FFF8H–FF:FFFFH) are reserved for
configuration. Do not read or write program code at these locations. For EA# = 1, the reserou-
tine obtains configuration information from a configuration array located these addresses(For
17-1

8x930Ax, 8x930Hx USER’S MANUAL

xter-
on, see

s
ddress
resses
ote on
EA# = 0, the reset routine obtains configuration information from a configuration array in e
nal memory using these internal addresses.) For a detailed discussion of device configurati
Chapter 4, “Device Configuration”.

With EA# = 1 and only on-chip program code memory, multi-byte instructions and instruction
that result in call returns or prefetches should be located a few bytes below the maximum a
to avoid inadvertently exceeding the top address. Use an EJMP instruction, five or more add
below the top of memory, to continue execution in other areas of memory. See the dual n
page 3-8

CAUTION
Execution of program code located in the top few bytes of the on-chip memory
may cause prefetches from the next higher addresses (i.e., external memory).
External memory fetches make use of port 0 and port 2 and may disrupt
program execution if the program uses port 0 or port 2 for a different purpose.

.

Table 17-1. Signal Descriptions

Signal
Name Type Description Alternate

Function

P0.7:0 I/O Port 0 . Eight-bit, open-drain, bidirectional I/O port. For verify
operations, use to specify the verify mode. See Table 17-2 and
Figures 17-1 and 17-2.

AD7:0

P1.0
P1.1
P1.2
P1.5:3
P1.6
P1.7

I/O Port 1 . Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use for high byte of address. See Table 17-2 and
Figures 17-1 and 17-2.

T2
T2EX
ECI
CEX2:0
CEX3/WAIT#
CEX4/A17\WCLK

P2.7:0 I/O Port 2 . Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use as the data port. See Table 17-2 and Figures
17-1 and 17-2.

A15:8

P3.0
P3.1
P3.3:2
P3.5:4
P3.6
P3.7

I/O Port 3 . Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use for low byte of address. See Table 17-2 and
Figures 17-1 and 17-2.

RXD
TXD
INT1:0#
T1:0
WR#
RD#/A16

ALE — Address Latch Enable. For verify operations, connect this pin to
VCC

—

EA# — External Enable. For verify operations, connect this pin to VCC —

PSEN# — Program Store Enable . For verify operations, connect this pin to
VSS

—

17-2

VERIFYING NONVOLATILE MEMORY

 port

esses
yption
s

 ex-

r as
t
 2. Con-
17.2 VERIFY MODES

Table 17-2 lists the verify modes and provides details about the setup. The value applied to
0 determines the mode. The upper digit specifies verify and the lower digit selects the memory
function to verify (e.g., on-chip program code memory, configuration bytes, etc.). The addr
applied to port 1 and port 3 address locations in the selected memory function. The encr
array, lock bits, and signature bytes reside in nonvolatile memory outside the memory addres
space. Configuration bytes, UCONFIG0 and UCONFIG1, reside in nonvolatile memory at the top
of the memory address space (Figure 4-1 on page 4-2) for devices with on-chip ROM, and in
ternal memory as shown in (Figure 4-2 on page 4-3) for devices without on-chip ROM.

17.3 GENERAL SETUP

Figure 17-1 shows the general setup for verifying nonvolatile memory on the 8x930. The control-
ler must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controlle
shown in Table 17-2 with the mode of operation specified on port 0 and the address with respec
to the starting address of the memory area applied to ports 1 and 3. Data appears on port
nect RST, ALE, and EA# to VCC and PSEN# to ground.

Figure 17-2 shows the bus cycle waveforms for the verify operations. Timing symbols are defined
in Table 17-5 on page 17-6.

Table 17-2. Verify Modes

Mode RST PSEN# EA# ALE Port
0

Port
2

Address
Port 1 (high)
Port 3 (low)

Notes

Verify Mode. On-chip
program code Memory

High Low 5 V High 28H data 0000H-3FFFH 1

Verify Mode. Configuration
Bytes (UCONFIG0,
UCONFIG1)

High Low 5 V High 29H data FFF8H-FFFFH 1

Verify Mode. Lock bits High Low 5 V High 2BH data 0000H 2

Verify Mode. Signature
Bytes

High Low 5 V High 29H data
0030H, 0031H,
0060H, 0061H

NOTES:
1. For these modes, the internal address is FF:xxxxH.
2. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously

at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.
17-3

8x930Ax, 8x930Hx USER’S MANUAL

Figure 17-1. Setup for Verifying Nonvolatile Memory

Figure 17-2. Verify Bus Cycles

PSEN#

P1

P2

A4376-01

4 MHz

to

6 MHz

XTAL2

A0 - A7

A8 - A15

P3

P1

Data

(8 Bits)

VSS

VCC

VCC

XTAL1

Verify Modes

(8 Bits)

Address

(16 Bits) EA#

RST

ALE

P1, P3

 A4377-01

Address

P0

P2 Data Out

Mode

Verification Cycle

TELQV

TAVQV

TEHQV
17-4

VERIFYING NONVOLATILE MEMORY

k bits
yte
ck of

7-2.

y

-order
is read,
 ar-

de is
17.4 VERIFY ALGORITHM

Use this procedure to verify program code, signature bytes, configuration bytes, and loc
stored in nonvolatile memory on the 8x930. To preserve the secrecy of the encryption key b
sequence, the encryption array cannot be verified. Verification can be performed on a blo
bytes. The procedure for verifying the 8x930 is as follows:

1. Set up the microcontroller for operation in the appropriate mode according to Table 1

2. Input the 16-bit address on ports P1 and P3.

3. Wait for the data on port P2 to become valid (TAVQV = 48 clock cycles, Figure 17-5), then
compare the data with the expected value.

4. Repeat steps 1 through 3 until all memory locations are verified.

17.5 LOCK BIT SYSTEM

The 8x930 provides a three-level lock system for protecting program code stored in the on-chip
program code memory from unauthorized access. To verify that the lock bits are correctlpro-
grammed, perform the procedure described in “Verify Algorithm” on page 17-5 using the verify
lock bits mode (Table 17-2).

17.5.1 Encryption Array

The 8x930 includes a 128-byte encryption array located in nonvolatile memory outside the mem-
ory address space. During verification of the on-chip program code memory, the seven low
address bits also address the encryption array. As the byte of the program code memory
it is exclusive-NORed (XNOR) with the key byte from the encryption array. If the encryption
ray is not programmed (still all 1s), the program code is placed on the data bus in its original, un-
encrypted form. If the encryption array is programmed with key bytes, the program co
encrypted and can not be used without knowledge of the key byte sequence.

Table 17-3. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip program code
is encrypted when verified, if encryption array is programmed.

Level 2 U U P External program code is prevented from fetching program
code bytes from on-chip code memory.

Level 3 U P P Same as level 2, plus on-chip program code memory verify is
disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.
17-5

8x930Ax, 8x930Hx USER’S MANUAL

nature
CAUTION
If the encryption feature is implemented, the portion of the on-chip program
code memory that does not contain program code should be filled with
“random” byte values other than FFH to prevent the encryption key sequence
from being revealed. To preserve the secrecy of the encryption key byte
sequence, the encryption array cannot be verified.

17.6 SIGNATURE BYTES

The 8x930 contains factory-programmed signature bytes. These bytes are located in nonvolatile
memory outside the memory address space at 30H, 31H, 60H, and 61H. To read the sig
bytes, perform the procedure described in “Verify Algorithm” on page 17-5 using the verify sig-
nature mode (Table 17-2). Signature byte values are listed in Table 17-4.

Table 17-4. Contents of the Signature Bytes

ADDRESS CONTENTS DEVICE TYPE

30H 89H Indicates Intel devices

31H 41H Indicates USB core product

60H TBD Indicates 8x930 device

Table 17-5. Timing Definitions

Symbol Definition

1/TCLCL Oscillator Frequency

TAVQV Address to Data Valid

TEHQZ Data Float after ENABLE

TELQV ENABLE Low to Data Valid

NOTE: A = Address, E = Enable, H = High, L = Low,
Q = Data out, V = Valid, Z = Floating
17-6

A
Instruction Set
Reference

-
d
ng, in-

-5

.

for

he

.

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the 8x930 instruction set, which is identical to in
struction set for the MCS® 251 architecture . The appendix includes an opcode map, a detaile
description of each instruction, and the following tables that summarize notation, addressi
structions types, instruction lengths and execution times:

• Tables A-1 through A-4 describe the notation used for the instruction operands. Table A
describes the notation used for control instruction destinations.

• Table A-6 and Table A-7 on page A-5 comprise the opcode map for the instruction set

• Table A-8 on page A-6 through Table A-17 on page A-10 contain supporting material
the opcode map.

• Table A-18 on page A-11 lists execution times for a group of instructions that access t
port SFRs.

• The following tables list the instructions giving length (in bytes) and execution time:

Add and Subtract Instructions, Table A-19 on page A-13

Compare Instructions, Table A-20 on page A-14

Increment and Decrement Instructions, Table A-21 on page A-14

Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-15

Logical Instructions, Table A-23 on page A-16

Move Instructions, Table A-24 on page A-18

Exchange, Push, and Pop Instructions, Table A-25 on page A-21

Bit Instructions, Table A-26 on page A-22

Control Instructions, Table A-27 on page A-23

“Instruction Descriptions” on page A-25 contains a detailed description of each instruction

NOTE
The instruction execution times given in this appendix are for an internal
BASE_TIME using data that is read from and written to on-chip RAM. These
times do not include your application’s system bus performance time
necessary to fetch and execute code from external memory, accessing
peripheral SFRs, using wait states, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0–3, increases the
execution time beyond that of the BASE_TIME. These cases are listed in
Table A-18 and are noted in the instruction summary tables and the instruction
descriptions.
A-1

8x930Ax, 8x930Hx USER’S MANUAL
A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

Register Notation 8x930 MCS 51
Arch.

@Ri A memory location (00H–FFH) addressed indirectly via byte register
R0 or R1 4

Rn Byte register R0–R7 of the currently selected register bank

n Byte register index: n = 0–7

r r r Binary representation of n

4

Rm Byte register R0–R15 of the currently selected register file

Rmd Destination register

Rms Source register

m, md, ms Byte register index: m, md, ms = 0–15

s s s s Binary representation of m or md

S S S S Binary representation of ms

4

WRj Word register WR0, WR2, ..., WR30 of the currently selected register
file

WRjd Destination register

WRjs Source register

@WRj A memory location (00:0000H–00:FFFFH) addressed indirectly
through word register WR0–WR30

@WRj Data RAM location (00:0000H–00:FFFFH) addressed indirectly
+dis16 through a word register (WR0–WR30) + displacement value, where

the displacement value is from 0 to 64 Kbytes.

j, jd, js Word register index: j, jd, js = 0–30

t t t t Binary representation of j or jd

T T T T Binary representation of js

4

DRk Dword register DR0, DR4, ..., DR28, DR56, DR60 of the currently
selected register file

DRkd Destination Register

DRks Source Register

@DRk A memory location (00:0000H–FF:FFFFH) addressed Indirectly
through dword register DR0–DR28, DR56, DR60

@DRk Data RAM location (00:0000H–FF:FFFFH) addressed indirectly
+dis24 through a dword register (DR0–DR28, DR56, DR60) + displacement

value, where the displacement value is from 0 to 64 Kbytes

k, kd, ks Dword register index: k, kd, ks = 0, 4, 8, ..., 28, 56, 60

u u u u Binary representation of k or kd

U U U U Binary representation of ks

4

A-2

INSTRUCTION SET REFERENCE
Table A-2. Notation for Direct Addresses

Direct
Address. Description 8x930

Arch.
MCS 51
Arch.

dir8 An 8-bit direct address. This can be a memory address
(00:0000H–00:007FH) or an SFR address (S:00H - S:FFH). 4 4

dir16 A 16-bit memory address (00:0000H–00:FFFFH) used in direct
addressing. 4

Table A-3. Notation for Immediate Addressing

Immediate
Data Description 8x930

Arch.
MCS 51
Arch.

#data An 8-bit constant that is immediately addressed in an instruction. 4 4

#data16 A 16-bit constant that is immediately addressed in an instruction. 4

#0data16
#1data16

 A 32-bit constant that is immediately addressed in an instruction. The
upper word is filled with zeros (#0data16) or ones (#1data16). 4

#short

v v

A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction.

Binary representation of #short.
4

Table A-4. Notation for Bit Addressing

Bit
Address Description 8x930

Arch.
MCS 51
Arch.

bit

y y y

A directly addressed bit in memory locations 00:0020H–00:007FH or in
any defined SFR.
A binary representation of the bit number (0–7) within a byte.

4

bit51 A directly addressed bit (bit number = 00H–FFH) in memory or an SFR.
Bits 00H–7FH are the 128 bits in byte locations 20H–2FH in the on-chip
RAM. Bits 80H–FFH are the 128 bits in the 16 SFR’s with addresses
that end in 0H or 8H: S:80H, S:88H, S:90H, . . . , S:F0H, S:F8H.

4

Table A-5. Notation for Destinations in Control Instructions

Destination
Address Description 8x930

Arch.
MCS 51
Arch.

rel A signed (two's complement) 8-bit relative address. The destination is
-128 to +127 bytes relative to first byte of the next instruction. 4 4

addr11 An 11-bit destination address. The destination is in the same 2-Kbyte
block of memory as the first byte of the next instruction. 4 4

addr16 A 16-bit destination address. A destination can be anywhere within
the same 64-Kbyte region as the first byte of the next instruction. 4 4

addr24 A 24-bit destination address. A destination can be anywhere within
the 16-Mbyte address space. 4
A-3

8x930Ax, 8x930Hx USER’S MANUAL
A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-6. Instructions for MCS ® 51 Microcontrollers

Bin 0 1 2 3 4 5 6-7 8-F

Src 0 1 2 3 4 5 A5 x6–A5x7 A5x8–
A5xF

0 NOP AJMP
addr11

LJMP
addr16

RR
A

INC
A

INC
dir8

INC
@Ri

INC
Rn

1 JBC
bit,rel

ACALL
addr11

LCALL
addr16

RRC
A

DEC
A

DEC
dir8

DEC
@Ri

DEC
Rn

2 JB
bit,rel

AJMP
addr11

RET RLA ADD
A,#data

ADD
A,dir8

ADD
A,@Ri

ADD
A,Rn

3 JNB
bit,rel

ACALL
addr11

RETI RLCA ADDC
A,#data

ADDC
A,dir8

ADDC
A,@Ri

ADDC
A,Rn

4 JC
rel

AJMP
addr11

ORL
dir8,A

ORL
dir8,#data

ORL
A,#data

ORL
A,dir8

ORL
A,@Ri

ORL
A,Rn

5 JNC
rel

ACALL
addr11

ANL
dir8,A

ANL
dir8,#data

ANL
A,#data

ANL
A,dir8

ANL
A,@Ri

ANL
A,Rn

6 JZ
rel

AJMP
addr11

XRL
dir8,A

XRL
dir8,#data

XRL
A,#data

XRL
A,dir8

XRL
A,@Ri

XRL
A,Rn

7 JNZ
rel

ACALL
addr11

ORL
CY,bit

JMP
@A+DPTR

MOV
A,#data

MOV
dir8,
#data

MOV
@Ri,#data

MOV
Rn,#data

8 SJMP
rel

AJMP
addr11

ANL
CY,bit

MOVC
A,@A+PC

DIV
AB

MOV
dir8,dir8

MOV
dir8,@Ri

MOV
dir8,Rn

9 MOV
DPTR,
#data16

ACALL
addr11

MOV
bit,CY

MOVC
A,@A+DPTR

SUBB
A,#data

SUBB
A,dir8

SUBB
A,@Ri

SUBB
A,Rn

A ORL
CY,bit

AJMP
addr11

MOV
CY,bit

INC
DPTR

MUL
AB

ESC MOV
@Ri,dir8

MOV
Rn,dir8

B ANL
CY,bit

ACALL
addr11

CPL
bit

CPL
CY

CJNE
A,#data,rel

CJNE
A,dir8,rel

CJNE
@Ri,#data,
rel

CJNE
Rn,#data,
rel

C PUSH
dir8

AJMP
addr11

CLR
bit

CLR
CY

SWAP
A

XCH
A,dir8

XCH
A,@Ri

XCH
A,Rn

D POP
dir8

ACALL
addr11

SETB
bit

SETB
CY

DA
A

DJNZ
dir8,rel

XCHD
A,@Ri

DJNZ
Rn,rel

E MOVX
A,@DPTR

AJMP
addr11

MOVX
A,@Ri

CLR
A

MOV
A,dir8

MOV
A,@Ri

MOV
A,Rn

F MOV
@DPTR,A

ACALL
addr11

MOVX
@Ri,A

CPL
A

MOV
dir8,A

MOV
@Ri,A

MOV
Rn,A
A-4

INSTRUCTION SET REFERENCE

Table A-7. Instructions for the 8x930 Architecture

Bin A5 x8 A5x9 A5xA A5 xB A5xC A5xD A5xE A5xF

Src x8 x9 xA xB xC xD xE xF

0 JSLE
rel

MOV
Rm,@WRj+dis

MOVZ
WRj,Rm

INC R,#short
(1)
MOV reg,ind

SRA
reg

1 JSG
rel

MOV
@WRj+dis,Rm

MOVS
WRj,Rm

DEC R,#short (1)
MOV ind,reg

SRL
reg

2 JLE
rel

MOV
Rm,@DRk+dis

ADD
Rm,Rm

ADD
WRj,WRj

ADD
reg,op2 (2)

ADD
DRk,DRk

3 JG
rel

MOV
@DRk+dis,Rm

SLL
reg

4 JSL
rel

MOV
WRj,@WRj+dis

ORL
Rm,Rm

ORL
WRj,WRj

ORL
reg,op2 (2)

5 JSGE
rel

MOV
@WRj+dis,WRj

ANL
Rm,Rm

ANL
WRj,WRj

ANL
reg,op2 (2)

6 JE
rel

MOV
WRj,@DRk+dis

XRL
Rm,Rm

XRL
WRj,WRj

XRL
reg,op2 (2)

7 JNE
rel

MOV
@DRk+dis,WRj

MOV
op1,reg (2)

MOV
Rm,Rm

MOV
WRj,WRj

MOV
reg,op2 (2)

MOV
DRk,DRk

8 LJMP @WRj
EJMP @DRk

EJMP
addr24

DIV
Rm,Rm

DIV
WRj,WRj

9 LCALL@WRj
ECALL @DRk

ECALL
addr24

SUB
Rm,Rm

SUB
WRj,WRj

SUB
reg,op2 (2)

SUB
DRk,DRk

A Bit
Instructions (3)

ERET MUL
Rm,Rm

MUL
WRj,WRj

B TRAP CMP
Rm,Rm

CMP
WRj,WRj

CMP
reg,op2 (2)

CMP
DRk,DRk

C PUSH op1 (4)
MOV DRk,PC

D POP
op1 (4)

E

F

NOTES:
1. R = Rm/WRj/DRk.
2. op1, op2 are defined in Table A-8.
3. See Tables A-10 and A-11.
4. See Table A-12.
A-5

8x930Ax, 8x930Hx USER’S MANUAL

Table A-8. Data Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

Oper Rmd,Rms x C md ms

Oper WRjd,WRjs x D jd/2 js/2

Oper DRkd,DRks x F kd/4 ks/4

Oper Rm,#data x E m 0000 #data

Oper WRj,#data16 x E j/2 0100 #data (high) #data (low)

Oper DRk,#data16 x E k/4 1000 #data (high) #data (low)

MOV DRk(h),#data16

MOV DRk,#1data16

CMP DRk,#1data16

7

7

B

A

E

E

k/4 1100 #data (high) #data (low)

Oper Rm,dir8 x E m 0001 dir8 addr

Oper WRj,dir8 x E j/2 0101 dir8 addr

Oper DRk,dir8 x E k/4 1101 dir8 addr

Oper Rm,dir16 x E m 0011 dir16 addr (high) dir16 addr (low)

Oper WRj,dir16 x E j/2 0111 dir16 addr (high) dir16 addr (low)

Oper DRk,dir16 (1) x E k/4 1111 dir16 addr (high) dir16 addr (low)

Oper Rm,@WRj x E j/2 1001 m 00

Oper Rm,@DRk x E k/4 1011 m 00

NOTE:
1. For this instruction, the only valid operation is MOV.

Table A-9. High Nibble, Byte 0 of Data Instructions

x Operation Notes

2 ADD reg,op2

All addressing modes are
supported.

9 SUB reg,op2

B CMP reg,op2 (1)

4 ORL reg,op2 (2)

5 ANL reg,op2 (2)

6 XRL reg,op2 (2)

7 MOV reg,op2

8 DIV reg,op2 Two modes only:
reg,op2 = Rmd,Rms
reg,op2 = Wjd,WjsA MUL reg,op2

NOTES:
1. The CMP operation does not support DRk, direct16.
2. For the ORL, ANL, and XRL operations, neither reg nor op2

can be DRk.
A-6

INSTRUCTION SET REFERENCE

 as
en in
All of the bit instructions in the 8x930 architecture (Table A-7) have opcode A9, which serves
an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as giv
Table A-10.

Table A-10. Bit Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

1 Bit Instr (dir8) A 9 xxxx 0 bit dir8 addr rel addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

xxxx Bit Instruction

0001 JBC bit

0010 JB bit

0011 JNB bit

0111 ORL CY,bit

1000 ANL CY,bit

1001 MOV bit,CY

1010 MOV CY,bit

1011 CPL bit

1100 CLR bit

1101 SETB bit

1110 ORL CY, /bit

1111 ANL CY, /bit

Table A-12. PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

PUSH #data C A 0000 0010 #data

PUSH #data16 C A 0000 0110 #data16 (high) #data16 (low)

PUSH Rm C A m 1000

PUSH WRj C A j/2 1001

PUSH DRk C A k/4 1011

MOV DRk,PC C A k/4 0001

POP Rm D A m 1000

POP WRj D A j/2 1001

POP DRk D A k/4 1011
A-7

8x930Ax, 8x930Hx USER’S MANUAL
Table A-13. Control Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]

ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]

LJMP @WRj 8 9 j/2 0100

LCALL @WRj 9 9 j/2 0100

EJMP @DRk 8 9 k/4 1000

ECALL @DRk 9 9 k/4 1000

ERET A A

JE rel 8 8 rel

JNE rel 7 8 rel

JLE rel 2 8 rel

JG rel 3 8 rel

JSL rel 4 8 rel

JSGE rel 5 8 rel

JSLE rel 0 8 rel

JSG rel 1 8 rel

TRAP B 9
A-8

INSTRUCTION SET REFERENCE
Table A-14. Displacement/Extended MOVs

Instruction Byte 0 Byte 1 Byte 2 Byte 3

MOV Rm,@WRj+dis 0 9 m j/2 dis[15:8] dis[7:0]

MOV WRk,@WRj+dis 4 9 j/2 k2 dis[15:8] dis[7:0]

MOV Rm,@DRk+dis 2 9 m k/4 dis[15:8] dis[7:0]

MOV WRj,@DRk+dis 6 9 j/2 k/4 dis[15:8] dis[7:0]

MOV @WRj+dis,Rm 1 9 m j/2 dis[15:8] dis[7:0]

MOV @WRj+dis,WRk 5 9 j/2 k2 dis[15:8] dis[7:0]

MOV @DRk+dis,Rm 3 9 m k/4 dis[15:8] dis[7:0]

MOV @DRk+dis,WRj 7 9 j/2 k/4 dis[15:8] dis[7:0]

MOVS WRj,Rm 1 A j/2 m

MOVZ WRj,Rm 0 A j/2 m

MOV WRj,@WRj 0 B j/2 1000 j/2 0000

MOV WRj,@DRk 0 B k/4 1010 j/2 0000

MOV @WRj,WRj 1 B j/2 1000 j/2 0000

MOV @DRk,WRj 1 B k/4 1010 j/2 0000

MOV dir8,Rm 7 A m 0001 dir8 addr

MOV dir8,WRj 7 A j/2 0101 dir8 addr

MOV dir8,DRk 7 A k/4 1101 dir8 addr

MOV dir16,Rm 7 A m 0011 dir16 addr (high) dir16 addr (low)

MOV dir16,WRj 7 A j/2 0111 dir16 addr (high) dir16 addr (low)

MOV dir16,DRk 7 A k/4 1111 dir16 addr (high) dir16 addr (low)

MOV @WRj,Rm 7 A j/2 1001 m 0000

MOV @DRk,Rm 7 A k/4 1011 m 0000
A-9

8x930Ax, 8x930Hx USER’S MANUAL
Table A-15. INC/DEC

Instruction Byte 0 Byte 1

1 INC Rm,#short 0 B m 00 ss

2 INC WRj,#short 0 B j/2 01 ss

3 INC DRk,#short 0 B k/4 11 ss

4 DEC Rm,#short 1 B m 00 ss

5 DEC WRj,#short 1 B j/2 01 ss

6 DEC DRk,#short 1 B k/4 11 ss

Table A-16. Encoding for INC/DEC

ss #short

00 1

01 2

10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1

1 SRA Rm 0 E m 0000

2 SRA WRj 0 E j/2 0100

3 SRL Rm 1 E m 0000

4 SRL WRj 1 E j/2 0100

5 SLL Rm 3 E m 0000

6 SLL WRj 3 E j/2 0100
A-10

INSTRUCTION SET REFERENCE

re is a

t

E, and

_TIME.
A.3 INSTRUCTION SET SUMMARY

This section contains tables that summarize the instruction set. For each instruction the
short description, its length in bytes, and its execution time in states.

NOTE
Execution times are increased by executing code from external memory,
accessing peripheral SFRs, accessing data in external memory, using a wait
state, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0–3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions Accessing the Port SFRs

Table A-18 lists these instructions and the execution times.

• Case 1. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

• Case 2. Code executes from external memory with one wait state and a short ALE (no
extended) and accesses a port SFR.

• Case 3. Code executes from external memory with one wait state and an extended AL
accesses a port SFR.

Times for each case are expressed as the number of state times to be added to the BASE

Table A-18. State Times to Access the Port SFRs

Instruction
BASE_TIME Additional State Times

(Add to the BASE_TIME column)

Binary Source Case 1 Case 2 Case 3

ADD A,dir8 1 1 2 3 4

ADD Rm,dir8 3 2 2 3 4

ADDC A,dir8 1 1 2 3 4

ANL A,dir8 1 1 2 3 4

ANL CY,bit 3 2 2 3 4

ANL CY,bit51 1 1 2 3 4

ANL CY,/bit 3 2 2 3 4

ANL CY,/bit51 1 1 2 3 4

ANL dir8,#data 3 3 4 6 8

ANL dir8,A 2 2 4 6 8

ANL Rm,dir8 3 2 2 3 4

CLR bit 4 3 4 6 8

CLR bit51 2 2 4 6 8
A-11

8x930Ax, 8x930Hx USER’S MANUAL
CMP Rm,dir8 3 2 2 3 4

CPL bit 4 3 4 6 8

CPL bit51 2 2 4 6 8

DEC dir8 2 2 4 6 8

INC dir8 2 2 4 6 8

MOV A,dir8 1 1 2 3 4

MOV bit,CY 4 3 4 6 8

MOV bit51,CY 2 2 4 6 8

MOV CY,bit 3 2 2 3 4

MOV CY,bit51 1 1 2 3 4

MOV dir8,#data 3 3 2 3 4

MOV dir8,A 2 2 2 3 4

MOV dir8,Rm 4 3 2 3 4

MOV dir8,Rn 2 3 2 3 4

MOV Rm,dir8 3 2 2 3 4

MOV Rn,dir8 1 2 2 3 4

ORL A,dir8 1 1 2 3 4

ORL CY,bit 3 2 2 3 4

ORL CY,bit51 1 1 2 3 4

ORL CY,/bit 3 2 2 3 4

ORL CY,/bit51 1 1 2 3 4

ORL dir8,#data 3 3 2 3 4

ORL dir8,A 2 2 4 6 8

ORL Rm,dir8 3 2 2 3 4

SETB bit 4 3 4 6 8

SETB bit51 2 2 4 6 8

SUB Rm,dir8 3 2 2 3 4

SUBB A,dir8 1 1 2 3 4

XCH A,dir8 3 3 4 6 8

XRL A,dir8 1 1 2 3 4

XRL dir8,#data 3 3 4 6 8

XRL dir8,A 2 2 4 6 8

XRL Rm,dir8 3 2 2 3 4

Table A-18. State Times to Access the Port SFRs (Continued)

Instruction
BASE_TIME Additional State Times

(Add to the BASE_TIME column)

Binary Source Case 1 Case 2 Case 3
A-12

INSTRUCTION SET REFERENCE
A.3.2 Instruction Summaries

Table A-19. Summary of Add and Subtract Instructions

Add ADD <dest>,<src> dest opnd ← dest opnd + src opnd
Subtract SUB <dest>,<src> dest opnd ← dest opnd - src opnd
Add with Carry ADDC <dest>,<src> (A) ← (A) + src opnd + carry bit
Subtract with Borrow SUBB <dest>,<src> (A) ← (A) - src opnd - carry bit

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

ADD

A,Rn Reg to acc 1 1 2 2

A,dir8 Dir byte to acc 2 1 (2) 2 1 (2)

A,@Ri Indir addr to acc 1 2 2 3

A,#data Immediate data to acc 2 1 2 1

ADD;

SUB

Rmd,Rms Byte reg to/from byte reg 3 2 2 1

WRjd,WRjs Word reg to/from word reg 3 3 2 2

DRkd,DRks Dword reg to/from dword reg 3 5 2 4

Rm,#data Immediate 8-bit data to/from byte reg 4 3 3 2

WRj,#data16 Immediate 16-bit data to/from word reg 5 4 4 3

DRk,#0data16 16-bit unsigned immediate data to/from
dword reg

5 6 4 5

Rm,dir8 Dir addr to/from byte reg 4 3 (2) 3 2 (2)

WRj,dir8 Dir addr to/from word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to/from byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to/from word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to/from byte reg 4 3 3 2

Rm,@DRk Indir addr (16M) to/from byte reg 4 4 3 3

ADDC;

SUBB

A,Rn Reg to/from acc with carry 1 1 2 2

A,dir8 Dir byte to/from acc with carry 2 1 (2) 2 1 (2)

A,@Ri Indir RAM to/from acc with carry 1 2 2 3

A,#data Immediate data to/from acc with carry 2 1 2 1

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.
A-13

8x930Ax, 8x930Hx USER’S MANUAL
Table A-20. Summary of Compare Instructions

Compare CMP <dest>,<src> dest opnd – src opnd

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

CMP

Rmd,Rms Reg with reg 3 2 2 1

WRjd,WRjs Word reg with word reg 3 3 2 2

DRkd,DRks Dword reg with dword reg 3 5 2 4

Rm,#data Reg with immediate data 4 3 3 2

WRj,#data16 Word reg with immediate 16-bit data 5 4 4 3

DRk,#0data16 Dword reg with zero-extended 16-bit
immediate data

5 6 4 5

DRk,#1data16 Dword reg with one-extended 16-bit
immediate data

5 6 4 5

Rm,dir8 Dir addr from byte reg 4 3† 3 2†

WRj,dir8 Dir addr from word reg 4 4 3 3

Rm,dir16 Dir addr (64K) from byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) from word reg 5 4 4 3

Rm,@WRj Indir addr (64K) from byte reg 4 3 3 2

Rm,@DRk Indir addr (16M) from byte reg 4 4 3 3

† If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ← (DPTR) + 1
Increment INC byte byte ← byte + 1
Increment INC <dest>,<src> dest opnd ← dest opnd + src opnd
Decrement DEC byte byte ← byte – 1
Decrement DEC <dest>,<src> dest opnd ← dest opnd - src opnd

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

INC;

DEC

A acc 1 1 1 1

Rn Reg 1 1 2 2

dir8 Dir byte 2 2 (2) 2 2 (2)

@Ri Indir RAM 1 3 2 4

Rm,#short Byte reg by 1, 2, or 4 3 2 2 1

WRj,#short Word reg by 1, 2, or 4 3 2 2 1

DRk,#short Double word reg by 1, 2, or 4 3 4 2 3

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-14

INSTRUCTION SET REFERENCE
INC DPTR Data pointer 1 1 1 1

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instruct ions

Multiply MUL <reg1,reg2> (2)
MUL AB (B:A) = A x B

Divide DIV <reg1>,<reg2> (2)
DIV AB (A) = Quotient; (B) =Remainder

Decimal-adjust ACC DA A (2)
for Addition (BCD)

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

MUL

AB Multiply A and B 1 5 1 5

Rmd,Rms Multiply byte reg and byte reg 3 6 2 5

WRjd,WRjs Multiply word reg and word reg 3 12 2 11

DIV

AB Divide A by B 1 10 1 10

Rmd,Rms Divide byte reg by byte reg 3 11 2 10

WRjd,WRjs Divide word reg by word reg 3 21 2 20

DA A Decimal adjust acc 1 1 1 1

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. See “Instruction Descriptions” on page A-25.

Table A-21. Summary of Increment and Decrement Instructions (Continued)

Increment INC DPTR (DPTR) ← (DPTR) + 1
Increment INC byte byte ← byte + 1
Increment INC <dest>,<src> dest opnd ← dest opnd + src opnd
Decrement DEC byte byte ← byte – 1
Decrement DEC <dest>,<src> dest opnd ← dest opnd - src opnd

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-15

8x930Ax, 8x930Hx USER’S MANUAL
Table A-23. Summary of Logical Instructions

Logical AND ANL <dest>,<src> dest opnd ←dest opnd Λ src opnd
Logical OR ORL <dest>,<src> dest opnd ← dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ← dest opnd ∀ src opnd
Clear CLR A (A) ← 0
Complement CPL A (Ai) ← Ø(Ai)
Rotate RXX A (1)
Shift SXX Rm or Wj (1)
SWAP A A3:0 ↔ A7:4

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

ANL;

ORL;

XRL;

A,Rn Reg to acc 1 1 2 2

A,dir8 Dir byte to acc 2 1 (3) 2 1 (3)

A,@Ri Indir addr to acc 1 2 2 3

A,#data Immediate data to acc 2 1 2 1

dir8,A Acc to dir byte 2 2 (4) 2 2 (4)

dir8,#data Immediate data to dir byte 3 3 (4) 3 3 (4)

Rmd,Rms Byte reg to byte reg 3 2 2 1

WRjd,WRjs Word reg to word reg 3 3 2 2

Rm,#data 8-bit data to byte reg 4 3 3 2

WRj,#data16 16-bit data to word reg 5 4 4 3

Rm,dir8 Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dir8 Dir addr to word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to byte reg 4 3 3 2

Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

CLR A Clear acc 1 1 1 1

CPL A Complement acc 1 1 1 1

RL A Rotate acc left 1 1 1 1

RLC A Rotate acc left through the carry 1 1 1 1

RR A Rotate acc right 1 1 1 1

RRC A Rotate acc right through the carry 1 1 1 1

SLL
Rm Shift byte reg left 3 2 2 1

WRj Shift word reg left 3 2 2 1

NOTES:
1. See “Instruction Descriptions” on page A-25.
2. A shaded cell denotes an instruction in the MCS® 51 architecture.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-16

INSTRUCTION SET REFERENCE
SRA
Rm Shift byte reg right through the MSB 3 2 2 1

WRj Shift word reg right through the MSB 3 2 2 1

SRL
Rm Shift byte reg right 3 2 2 1

WRj Shift word reg right 3 2 2 1

SWAP A Swap nibbles within the acc 1 2 1 2

Table A-23. Summary of Logical Instructions (Continued)

Logical AND ANL <dest>,<src> dest opnd ←dest opnd Λ src opnd
Logical OR ORL <dest>,<src> dest opnd ← dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ← dest opnd ∀ src opnd
Clear CLR A (A) ← 0
Complement CPL A (Ai) ← Ø(Ai)
Rotate RXX A (1)
Shift SXX Rm or Wj (1)
SWAP A A3:0 ↔ A7:4

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. See “Instruction Descriptions” on page A-25.
2. A shaded cell denotes an instruction in the MCS® 51 architecture.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-17

8x930Ax, 8x930Hx USER’S MANUAL
Table A-24. Summary of Move Instructions

Move (2) MOV <dest>,<src> destination ← src opnd
Move with Sign Extension MOVS <dest>,<src> destination ← src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ← src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

MOV

A,Rn Reg to acc 1 1 2 2

A,dir8 Dir byte to acc 2 1 (3) 2 1 (3)

A,@Ri Indir RAM to acc 1 2 2 3

A,#data Immediate data to acc 2 1 2 1

Rn,A Acc to reg 1 1 2 2

Rn,dir8 Dir byte to reg 2 1 (3) 3 2 (3)

Rn,#data Immediate data to reg 2 1 3 2

dir8,A Acc to dir byte 2 2 (3) 2 2 (3)

dir8,Rn Reg to dir byte 2 2 (3) 3 3 (3)

dir8,dir8 Dir byte to dir byte 3 3 3 3

dir8,@Ri Indir RAM to dir byte 2 3 3 4

dir8,#data Immediate data to dir byte 3 3 (3) 3 3 (3)

@Ri,A Acc to indir RAM 1 3 2 4

@Ri,dir8 Dir byte to indir RAM 2 3 3 4

@Ri,#data Immediate data to indir RAM 2 3 3 4

DPTR,#data16 Load Data Pointer with a 16-bit const 3 2 3 2

Rmd,Rms Byte reg to byte reg 3 2 2 1

WRjd,WRjs Word reg to word reg 3 2 2 1

DRkd,DRks Dword reg to dword reg 3 3 2 2

Rm,#data 8-bit immediate data to byte reg 4 3 3 2

WRj,#data16 16-bit immediate data to word reg 5 3 4 2

DRk,#0data16 zero-extended 16-bit immediate data
to dword reg

5 5 4 4

DRk,#1data16 one-extended 16-bit immediate data
to dword reg

5 5 4 4

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.
A-18

INSTRUCTION SET REFERENCE
MOV

DRk,dir8 Dir addr to dword reg 4 6 3 5

DRk,dir16 Dir addr (64K) to dword reg 5 6 4 5

Rm,dir8 Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dir8 Dir addr to word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2

Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

WRjd,@WRjs Indir addr(64K) to word reg 4 4 3 3

WRj,@DRk Indir addr(16M) to word reg 4 5 3 4

dir8,Rm Byte reg to dir addr 4 4 (3) 3 3 (3)

dir8,WRj Word reg to dir addr 4 5 3 4

dir16,Rm Byte reg to dir addr (64K) 5 4 4 3

dir16,WRj Word reg to dir addr (64K) 5 5 4 4

@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3

@DRk,Rm Byte reg to indir addr (16M) 4 5 3 4

@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4

@DRk,WRj Word reg to indir addr (16M) 4 6 3 5

dir8,DRk Dword reg to dir addr 4 7 3 6

dir16,DRk Dword reg to dir addr (64K) 5 7 4 6

Rm,@WRj+dis16 Indir addr with disp (64K) to byte reg 5 6 4 5

WRj,@WRj+dis16 Indir addr with disp (64K) to word reg 5 7 4 6

Rm,@DRk+dis16 Indir addr with disp (16M) to byte reg 5 7 4 6

WRj,@DRk+dis16 Indir addr with disp (16M) to word reg 5 8 4 7

@WRj+dis16,Rm Byte reg to Indir addr with disp (64K) 5 6 4 5

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination ← src opnd
Move with Sign Extension MOVS <dest>,<src> destination ← src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ← src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.
A-19

8x930Ax, 8x930Hx USER’S MANUAL
MOV

@WRj+dis16,WRj Word reg to Indir addr with disp (64K) 5 7 4 6

@DRk+dis16,Rm Byte reg to Indir addr with disp (16M) 5 7 4 6

@DRk+dis16,WRj Word reg to Indir addr with disp
(16M)

5 8 4 7

MOVH DRk(hi), #data16 16-bit immediate data into upper
word of dword reg

5 3 4 2

MOVS WRj,Rm Byte reg to word reg with sign
extension

3 2 2 1

MOVZ WRj,Rm Byte reg to word reg with zeros
extension

3 2 2 1

MOVC
A,@A+DPTR Code byte relative to DPTR to acc 1 6 1 6

A,@A+PC Code byte relative to PC to acc 1 6 1 6

MOVX

A,@Ri External mem (8-bit addr) to acc (4) 1 4 2 5

A,@DPTR External mem (16-bit addr) to acc (4) 1 5 1 5

@Ri,A Acc to external mem (8-bit addr) (4) 1 4 1 4

@DPTR,A Acc to external mem (16-bit addr) (4) 1 5 1 5

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination ← src opnd
Move with Sign Extension MOVS <dest>,<src> destination ← src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ← src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.
A-20

INSTRUCTION SET REFERENCE
Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<src> A ↔ src opnd
Exchange Digit XCHD <dest>,<src> A3:0 ↔ on-chip RAM bits 3:0
Push PUSH <src> SP ← SP + 1; (SP) ← src
Pop POP <dest> dest ← (SP); SP ← SP – 1

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

XCH

A,Rn Acc and reg 1 3 2 4

A,dir8 Acc and dir addr 2 3 (2) 2 3 (2)

A,@Ri Acc and on-chip RAM (8-bit addr) 1 4 2 5

XCHD A,@Ri Acc and low nibble in on-chip RAM
(8-bit addr)

1 4 2 5

PUSH

dir8 Push dir byte onto stack 2 2 2 2

#data Push immediate data onto stack 4 4 3 3

#data16 Push 16-bit immediate data onto
stack

5 5 4 5

Rm Push byte reg onto stack 3 4 2 3

WRj Push word reg onto stack 3 6 2 5

DRk Push double word reg onto stack 3 10 2 9

POP

Dir Pop dir byte from stack 2 3/3 2 3/3

Rm Pop byte reg from stack 3 3 2 2

WRj Pop word reg from stack 3 5 2 4

DRk Pop double word reg from stack 3 9 2 8

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-21

8x930Ax, 8x930Hx USER’S MANUAL
Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit ← 0
Set Bit SETB bit bit ← 1
Complement Bit CPL bit bit ← Øbit
AND Carry with Bit ANL CY,bit CY ← CY Λ bit
AND Carry with Complement of Bit ANL CY,/bit CY ← CY Λ Øbit
OR Carry with Bit ORL CY,bit CY ← CY V bit
ORL Carry with Complement of Bit ORL CY,/bit CY ← CY V Øbit
Move Bit to Carry MOV CY,bit CY ← bit
Move Bit from Carry MOV bit,CY bit ← CY

Mnemonic <src>,<dest> Notes
Binary Mode Source Mode

Bytes States Bytes States

CLR

CY Clear carry 1 1 1 1

bit51 Clear dir bit 2 2 (2) 2 2 (2)

bit Clear dir bit 4 4 3 3

SETB

CY Set carry 1 1 1 1

bit51 Set dir bit 2 2 (2) 2 2 (2)

bit Set dir bit 4 4 (2) 3 3 (2)

CPL

CY Complement carry 1 1 1 1

bit51 Complement dir bit 2 2 (2) 2 2 (2)

bit Complement dir bit 4 4 (2) 3 3 (2)

ANL
CY,bit51 AND dir bit to carry 2 1 (3) 2 1 (3)

CY,bit AND dir bit to carry 4 3 (3) 3 2 (3)

ANL/
CY,/bit51 AND complemented dir bit to carry 2 1 (3) 2 1 (3)

CY,/bit AND complemented dir bit to carry 4 3 (3) 3 2 (3)

ORL
CY,bit51 OR dir bit to carry 2 1 (3) 2 1 (3)

CY,bit OR dir bit to carry 4 3 (3) 3 2 (3)

ORL/
CY,/bit51 OR complemented dir bit to carry 2 1 (3) 2 1 (3)

CY,/bit OR complemented dir bit to carry 4 3 (3) 3 2 (3)

MOV

CY,bit51 Move dir bit to carry 2 1 (3) 2 1 (3)

CY,bit Move dir bit to carry 4 3 (3) 3 2 (3)

bit51,CY Move carry to dir bit 2 2 (2) 2 2 (2)

bit,CY Move carry to dir bit 4 4 (2) 3 3 (2)

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
A-22

INSTRUCTION SET REFERENCE
Table A-27. Summary of Control Instructions

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States (2) Bytes States (2)

ACALL addr11 Absolute subroutine call 2 9 2 9

ECALL
@DRk Extended subroutine call, indirect 3 12 2 11

addr24 Extended subroutine call 5 14 4 13

LCALL
@WRj Long subroutine call, indirect 3 9 2 8

addr16 Long subroutine call 3 9 3 9

RET Return from subroutine 1 6 1 6

ERET Extended subroutine return 3 10 2 9

RETI Return from interrupt 1 6 1 6

AJMP addr11 Absolute jump 2 3 2 3

EJMP
addr24 Extended jump 5 6 4 5

@DRk Extended jump, indirect 3 7 2 6

LJMP
@WRj Long jump, indirect 3 6 2 5

addr16 Long jump 3 4 3 4

SJMP rel Short jump (relative addr) 2 3 2 3

JMP @A+DPTR Jump indir relative to the DPTR 1 5 1 5

JC rel Jump if carry is set 2 1/4 2 1/4

JNC rel Jump if carry not set 2 1/4 2 1/4

JB

bit51,rel Jump if dir bit is set 3 2/5 3 2/5

bit,rel Jump if dir bit of 8-bit addr location
is set

5 4/7 4 3/6

JNB

bit51,rel Jump if dir bit is not set 3 2/5 3 2/5

bit,rel Jump if dir bit of 8-bit addr location
is not set

5 4/7 4 3/6

JBC

bit51,rel Jump if dir bit is set & clear bit 3 4/7 3 4/7

bit,rel Jump if dir bit of 8-bit addr location
is set and clear bit

5 7/10 4 6/9

JZ rel Jump if acc is zero 2 2/5 2 2/5

JNZ rel Jump if acc is not zero 2 2/5 2 2/5

JE rel Jump if equal 3 2/5 2 1/4

JNE rel Jump if not equal 3 2/5 2 1/4

JG rel Jump if greater than 3 2/5 2 1/4

JLE rel Jump if less than or equal 3 2/5 2 1/4

JSL rel Jump if less than (signed) 3 2/5 2 1/4

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.
A-23

8x930Ax, 8x930Hx USER’S MANUAL
JSLE rel Jump if less than or equal (signed) 3 2/5 2 1/4

JSG rel Jump if greater than (signed) 3 2/5 2 1/4

JSGE rel Jump if greater than or equal
(signed)

3 2/5 2 1/4

CJNE

A,dir8,rel Compare dir byte to acc and jump
if not equal

3 2/5 3 2/5

A,#data,rel Compare immediate to acc and
jump if not equal

3 2/5 3 2/5

Rn,#data,rel Compare immediate to reg and
jump if not equal

3 2/5 4 3/6

@Ri,#data,rel Compare immediate to indir and
jump if not equal

3 3/6 4 4/7

DJNZ

Rn,rel Decrement reg and jump if not
zero

2 2/5 3 3/6

dir8,rel Decrement dir byte and jump if not
zero

3 3/6 3 3/6

TRAP — Jump to the trap interrupt vector 2 10 1 9

NOP — No operation 1 1 1 1

Table A-27. Summary of Control Instructions (Continued)

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States (2) Bytes States (2)

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.
A-24

INSTRUCTION SET REFERENCE

re-

the
 flag
A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the 8x930 architecture. See the note on page A-11
garding execution times.

Table A-28 defines the symbols (—, ✓, 1, 0,?) used to indicate the effect of the instruction on
flags in the PSW and PSW1 registers. For a conditional jump instruction, “!” indicates that a
influences the decision to jump.

ACALL <addr11>

Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15–11 of the incremented PC,
opcode bits 7–5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:

Example: The stack pointer (SP) contains 07H and the label "SUBRTN" is at program memory location
0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.

Binary Mode Source Mode

Bytes: 2 2

States: 9 9

Table A-28. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

3 The instruction sets or clears the flag, as appropriate.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

CY AC OV N Z

— — — — —
A-25

8x930Ax, 8x930Hx USER’S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC.10:0) ← page address

ADD <dest>,<src>

Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu-
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

Example: Register 1 contains 0C3H (11000011B) and register 0 contains 0AAH (10101010B). After
executing the instruction

ADD R1,R0

register 1 contains 6DH (01101101B), the AC flag is clear, and the CY and OV flags are set.

Variations

ADD A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

[Encoding] a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

CY AC OV N Z

3 3 3 3 3

[Encoding] 0 0 1 0 0 1 0 0 immed. data
A-26

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD
(A) ← (A) + #data

ADD A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD
(A) ← (A) + (dir8)

ADD A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADD
(A) ← (A) + ((Ri))

ADD A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADD
(A) ← (A) + (Rn)

ADD Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0 0 1 0 0 1 0 1 direct addr

[Encoding] 0 0 1 0 0 1 1 i

[Encoding] 0 0 1 0 1 r r r
A-27

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rmd) ← (Rmd) + (Rms)

ADD WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRjd) ← (WRjd) + (WRjs)

ADD DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRkd) ← (DRkd) + (DRks)

ADD Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + #data

[Encoding] 0 0 1 0 1 1 0 0 s s s s S S S S

[Encoding] 0 0 1 0 1 1 0 1 t t t t T T T T

[Encoding] 0 0 1 0 1 1 1 1 u u u u U U U U

[Encoding] 0 0 1 0 1 1 1 0 s s s s 0 0 0 0 #data
A-28

INSTRUCTION SET REFERENCE
ADD WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) ← (WRj) + #data16

ADD DRk,#0data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRk) ← (DRk) + #data16

ADD Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + (dir8)

ADD WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

0 0 1 0 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

0 0 1 0 1 1 1 0 u u u u 1 0 0 0 #data hi #data low

[Encoding] 0 0 1 0 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 0 1 0 1 1 1 0 t t t t 0 1 0 1 direct addr
A-29

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding

Operation: ADD
(WRj) ← (WRj) + (dir8)

ADD Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + (dir16)

ADD WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) ← (WRj) + (dir16)

ADD Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + ((WRj))

0 0 1 0 1 1 1 0 s s s s 0 0 1 1 direct addr direct add

0 0 1 0 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 0 1 0 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0
A-30

INSTRUCTION SET REFERENCE
ADD Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + ((DRk))

ADDC A,<src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit)

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

Example: The accumulator contains 0C3H (11000011B), register 0 contains 0AAH (10101010B), and
the CY flag is set. After executing the instruction

ADDC A,R0

the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

Variations

ADDC A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

0 0 1 0 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

3 3 3 3 3
A-31

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) ← (A) + (CY) + #data

ADDC A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) ← (A) + (CY) + (dir8)

ADDC A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) ← (A) + (CY) + ((Ri))

ADDC A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) ← (A) + (CY) + (Rn)

[Encoding] 0 0 1 1 0 1 0 0 immed. data

[Encoding] 0 0 1 1 0 1 0 1 direct addr

[Encoding] 0 0 1 1 0 1 1 i

[Encoding] 0 0 1 1 1 r r r
A-32

INSTRUCTION SET REFERENCE
AJMP addr11

Function: Absolute jump

Description: Transfers program execution to the specified address, which is formed at run time by concat-
enating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7–5, and
the second byte of the instruction. The destination must therefore be within the same 2-
Kbyte “page” of program memory as the first byte of the instruction following AJMP.

Flags:

Example: The label "JMPADR" is at program memory location 0123H. After executing the instruction

AJMP JMPADR

at location 0345H, the PC contains 0123H.

Binary Mode Source Mode

Bytes: 2 2

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: AJMP
(PC) ← (PC) + 2
(PC.10:0) ← page address

ANL <dest>,<src>

Function: Logical-AND

Description: Performs the bitwise logical-AND (Λ) operation between the specified variables and stores
the results in the destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CY AC OV N Z

— — — — —

[Encoding] a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

CY AC OV N Z

— — — 3 3
A-33

8x930Ax, 8x930Hx USER’S MANUAL
Example: Register 1 contains 0C3H (11000011B) and register 0 contains 55H (01010101B). After
executing the instruction

ANL R1,R0

register 1 contains 41H (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

Variations

ANL dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ← (dir8) Λ (A)

ANL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ← (dir8) Λ #data

ANL A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

[Encoding] 0 1 0 1 0 0 1 0 direct addr

[Encoding] 0 1 0 1 0 0 1 1 direct addr immed. data

[Encoding] 0 1 0 1 0 1 0 0 immed. data
A-34

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ← (A) Λ #data

ANL A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ← (A) Λ (dir8)

ANL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ANL
(A) ← (A) Λ ((Ri))

ANL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ANL
(A) ← (A) Λ (Rn)

ANL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0 1 0 1 0 1 0 1 direct addr

[Encoding] 0 1 0 1 0 1 1 i

[Encoding] 0 1 0 1 1 r r r

[Encoding] 0 1 0 1 1 1 0 0 s s s s S S S S
A-35

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rmd) ← (Rmd) Λ (Rms)

ANL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRjd) ← (WRjd) Λ (WRjs)

ANL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ #data

ANL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) ← (WRj) Λ #data16

ANL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding] 0 1 0 1 1 1 0 1 t t t t T T T T

[Encoding] 0 1 0 1 1 1 1 0 s s s s 0000 #data

0 1 0 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

[Encoding] 0 1 0 1 1 1 1 0 s s s s 0 0 0 1 direct addr
A-36

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ (dir8)

ANL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) ← (WRj) Λ (dir8)

ANL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ (dir16)

ANL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) ← (WRj) Λ (dir16)

[Encoding] 0 1 0 1 1 1 10 t t t t 0 1 0 1 direct addr

0 1 0 1 1 1 1 0 s s s s 0 0 1 1 direct direct

0 1 0 1 1 1 1 0 t t t t 0 1 1 1 direct direct
A-37

8x930Ax, 8x930Hx USER’S MANUAL
ANL Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ ((WRj))

ANL Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ ((DRk))

ANL CY,<src–bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

Flags:

Example: Set the CY flag if, and only if, P1.0 = 1, ACC. 7 = 1, and OV = 0:

MOV CY,P1.0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag

0 1 0 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 0 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

3 — — — —
A-38

INSTRUCTION SET REFERENCE
ANL CY,bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ (bit51)

ANL CY,/bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ Ø (bit51)

ANL CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

 [Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ (bit)

ANL CY,/bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding] 1 0 0 0 0 0 1 0 bit addr

[Encoding] 1 0 1 1 0 0 0 0 bit addr

1 0 1 0 1 0 0 1 1 0 0 0 0 y y y dir addr
A-39

8x930Ax, 8x930Hx USER’S MANUAL
 [Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ Ø (bit)

CJNE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not

equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

Flags:

Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CJNE R7,#60H,NOT_EQ

; ;R7 = 60H

NOT_EQ: JC REQ_LOW ; IF R7 < 60H

; ;R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,

WAIT: CJNE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

Variations

1 0 1 0 1 0 0 1 1 1 1 1 0 y y y dir addr

CY AC OV N Z

3 — — 3 3
A-40

INSTRUCTION SET REFERENCE
CJNE A,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: (PC) ← (PC) + 3
IF (A) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF (A) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE A,dir8,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 3 6 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: (PC) ← (PC) + 3
IF (A) ≠ dir8
THEN

(PC) ← (PC) + relative offset
IF (A) < dir8
THEN

(CY) ← 1
ELSE

(CY) ← 0

[Encoding] 1 0 1 1 0 1 0 0 immed. data rel. addr

[Encoding] 1 0 1 1 0 1 0 1 direct addr rel. addr
A-41

8x930Ax, 8x930Hx USER’S MANUAL
CJNE @Ri,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 4 4

States: 3 6 4 7

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) ← (PC) + 3
IF ((Ri)) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF ((Ri)) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE Rn,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 4 4

States: 2 5 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) ← (PC) + 3
IF (Rn) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF (Rn) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CLR A

Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).

Flags:

[Encoding] 1 0 1 1 0 1 1 i immed. data rel. addr

[Encoding] 1 01 1 1 r r r immed. data rel. addr

CY AC OV N Z

— — — 3 3
A-42

INSTRUCTION SET REFERENCE
Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

clears the accumulator to 00H (00000000B).

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(A) ← 0

CLR bit

Function: Clear bit

Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

Flags: Only for instructions with CY as the operand.

Example: Port 1 contains 5DH (01011101B). After executing the instruction

CLR P1.2

port 1 contains 59H (01011001B).

Variations

CLR bit51

Binary Mode Source Mode

Bytes: 4 3

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit51) ← 0

[Encoding] 1 1 1 0 0 1 0 0

CY AC OV N Z

3 — — — —

[Encoding] 1 1 0 0 0 0 1 0 Bit addr
A-43

8x930Ax, 8x930Hx USER’S MANUAL
CLR CY

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) ← 0

CLR bit

Binary Mode Source Mode

Bytes: 4 4

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit) ← 0

CMP <dest>,<src>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.

Flags:

[Encoding] 1 1 0 0 0 0 1 1

 1 0 1 0 1 0 0 1 1 1 0 0 0 y y y dir addr

CY AC OV N Z

3 3 3 3 3
A-44

INSTRUCTION SET REFERENCE
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). The
instruction

CMP R1,R0

clears the CY and AC flags and sets the OV flag.

Variations

CMP Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rmd) – (Rms)

CMP WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRjd) – (WRjs)

CMP DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRkd) – (DRks)

[Encoding] 1 0 1 1 1 1 0 0 s s s s S S S S

[Encoding] 1 0 1 1 1 1 1 0 t t t t T T T T

[Encoding] 1 0 1 1 1 1 1 1 u u u u UUUU
A-45

8x930Ax, 8x930Hx USER’S MANUAL
CMP Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – #data

CMP WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) – #data16

CMP DRk,#0data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRk) – #0data16

CMP DRk,#1data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

[Encoding] 1 0 1 1 1 1 1 0 s s s s 0 0 0 0 # data

1 0 1 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

1 0 1 1 1 1 1 0 u u u u 1 0 0 0 #data hi #data low

1 0 1 1 1 1 1 0 u u u u 1 1 0 0 #data hi #data hi
A-46

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRk) – #1data16

CMP Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – (dir8)

CMP WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) – (dir8)

CMP Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – (dir16)

[Encoding] 1 0 1 1 1 1 1 0 s s s s 0001 dir addr

[Encoding] 1 0 1 1 1 1 10 t t t t 0 1 0 1 dir addr

1 0 1 1 1 1 1 0 s s s s 0 0 1 1 dir addr dir addr
A-47

8x930Ax, 8x930Hx USER’S MANUAL
CMP WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) – (dir16)

CMP Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – ((WRj))

CMP Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – ((DRk))

CPL A

Function: Complement accumulator

Description: Logically complements (Ø) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.

1 0 1 1 1 1 1 0 t t t t 0 1 1 1 dir addr dir addr

1 0 1 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

1 0 1 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0
A-48

INSTRUCTION SET REFERENCE
Flags:

Example: The accumulator contains 5CH (01011100B). After executing the instruction

CPL A

the accumulator contains 0A3H (10100011B).

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(A) ← Ø(A)

CPL bit

Function: Complement bit
Description: Complements (Ø) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL

can operate on the CY or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.

Flags: Only for instructions with CY as the operand.

Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence

CPL P1.1
CPL P1.2

port 1 contains 5BH (01011011B).

Variations

CPL bit51

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

CY AC OV N Z

— — — 3 3

[Encoding] 1 1 1 1 0 1 0 0

CY AC OV N Z

3 — — — —

[Encoding] 1 0 1 1 0 0 1 0 bit addr
A-49

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit51) ← Ø(bit51)

CPL CY

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(CY) ← Ø(CY)

CPL bit

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit) ← Ø(bit)

DA A

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010–XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX–1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.

[Encoding] 1 0 1 1 0 0 1 1

1 0 1 0 1 0 0 1 1 0 1 1 0 y y y dir addr
A-50

INSTRUCTION SET REFERENCE
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

Flags:

Example: The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains 0BEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A,#99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 – 1 = 29.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]
 THEN (A.3:0) ← (A.3:0) + 6
 AND
IF [[(A.7:4) > 9] V [(CY) = 1]]
 THEN (A.7:4) ← (A.7:4) + 6

CY AC OV N Z

3 — — 3 3

[Encoding] 1 1 0 1 0 1 0 0
A-51

8x930Ax, 8x930Hx USER’S MANUAL
DEC byte

Function: Decrement

Description: Decrements the specified byte variable by 1. An original value of 00H underflows to 0FFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain 00H
and 40H, respectively. After executing the instruction sequence

DEC @R0
DEC R0
DEC @R0

register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to 0FFH and 3FH,
respectively.

Variations

DEC A

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(A) ← (A) – 1

DEC dir8

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

CY AC OV N Z

— — — 3 3

[Encoding] 0 0 0 1 0 1 0 0

[Encoding] 0 0 0 1 0 1 0 1 dir addr
A-52

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(dir8) ← (dir8) – 1

DEC @Ri

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DEC
((Ri)) ← ((Ri)) – 1

DEC Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DEC
(Rn) ← (Rn) – 1

DEC <dest>,<src>

Function: Decrement

Description: Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of 00H underflows to 0FFH.

Flags:

Example: Register 0 contains 7FH (01111111B). After executing the instruction sequence

DEC R0,#1

register 0 contains 7EH.

Variations

[Encoding] 0 0 0 1 0 1 1 i

[Encoding] 0 0 0 1 1 r r r

CY AC OV N Z

— — — 3 3
A-53

8x930Ax, 8x930Hx USER’S MANUAL
DEC Rm,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(Rm) ← (Rm) – #short

DEC WRj,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(WRj) ← (WRj) – #short

DEC DRk,#short

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(DRk) ← (DRk) – #short

DIV <dest>,<src>

Function: Divide

Description: Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

[Encoding] 0 0 0 1 1 0 1 1 s s s s 0 1 v v

[Encoding] 0 0 0 1 1 0 1 1 t t t t 0 1 v v

[Encoding] 0 0 0 1 1 0 1 1 u u u u 1 1 v v
A-54

INSTRUCTION SET REFERENCE
For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is
stored in the higher byte of the word where Rmd resides; the 8-bit remainder is stored in the
lower byte of the word where Rmd resides. For example: Register 1 contains 251 (0FBH or
11111011B) and register 5 contains 18 (12H or 00010010B). After executing the instruction

DIV R1,R5

register 1 contains 13 (0DH or 00001101B); register 0 contains 17 (11H or 00010001B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

Flags: The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.

Exception: if <src> contains 00H, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.

Variations

DIV Rmd Rms

Binary Mode Source Mode

Bytes: 3 2

States: 11 10

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DIV (8-bit operands)
(Rmd) ← remainder (Rmd) / (Rms) if <dest> md = 0,2,4,..,14
(Rmd+1) ← quotient (Rmd) / (Rms)

(Rmd–1) ← remainder (Rmd) / (Rms) if <dest> md = 1,3,5,..,15
(Rmd) ← quotient (Rmd) / (Rms)

DIV WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 22 21

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CY AC OV N Z

0 — 3 3 3

CY AC OV N Z

0 — 1 ? ?

[Encoding] 1 0 0 0 1 1 0 0 s s s s S S S S

[Encoding] 1 0 0 0 1 1 0 1 t t t t T T T T
A-55

8x930Ax, 8x930Hx USER’S MANUAL
Operation: DIV (16-bit operands)
(WRjd) ← remainder (WRjd) / (WRjs) if <dest> jd = 0, 4, 8,... 28
(WRjd+2) ← quotient (WRjd) / (WRjs)

(WRjd–2) ← remainder (WRjd) / (WRjs) if <dest> jd = 2, 6, 10,... 30
(WRjd) ← quotient (WRjd) / (WRjs)

For word operands (<dest>,<src> = WRjd,WRjs) the 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register
file locations:

DIV AB

Function: Divide

Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

Flags:

For division by zero:

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Example: The accumulator contains 251 (0FBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIV AB

the accumulator contains 13 (0DH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Binary Mode Source Mode

Bytes: 1 1

States: 10 10

Location 4 5 6 7

Contents 33H 44H 11H 22H

CY AC OV N Z

0 — 3 3 3

CY AC OV N Z

0 — 1 ? ?

[Encoding] 1 0 0 0 0 1 0 0
A-56

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DIV
(A) ← quotient (A)/(B)
(B) ← remainder (A)/(B)

DJNZ <byte>,<rel–addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to 0FFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence

DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DJNZ and one to alter the pin.

Variations

CY AC OV N Z

— — — 3 3

TOGGLE:
MOV R2,#8
CPL P1.7
DJNZ R2,TOGGLE
A-57

8x930Ax, 8x930Hx USER’S MANUAL
DJNZ dir8,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 3 6 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DJNZ
(PC) ← (PC) + 2
(dir8) ← (dir8) – 1
IF (dir8) > 0 or (dir8) < 0
 THEN
 (PC) ← (PC) + rel

DJNZ Rn,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 3 3

States: 2 5 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DJNZ
(PC) ← (PC) + 2
(Rn) ← (Rn) – 1
IF (Rn) > 0 or (Rn) < 0
 THEN
 (PC) ← (PC) + rel

ECALL <dest>

Function: Extended call

Description: Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

Flags:

[Encoding] 1 1 0 1 0 1 0 1 direct addr rel. addr

[Encoding] 1 1 0 1 1 r r r rel. addr

CY AC OV N Z

— — — — —
A-58

INSTRUCTION SET REFERENCE
Example: The stack pointer contains 07H and the label “SUBRTN” is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains 0AH; on-chip RAM locations 08H, 09H and 0AH contain
01H, 23H and 45H, respectively; and the PC contains 123456H.

Variations

ECALL addr24

Binary Mode Source Mode

Bytes: 5 4

States: 14 13

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ECALL
(PC) ← (PC) + 4
(SP) ← (SP) + 1
((SP)) ← (PC.23:16)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(PC) ← (addr.23:0)

ECALL @DRk

Binary Mode Source Mode

Bytes: 3 2

States: 12 11

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ECALL
(PC) ← (PC) + 4
(SP) ← (SP) + 1
((SP)) ← (PC.23:16)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(PC) ← ((DRk))

 EJMP <dest>

Function: Extended jump

[Encoding] 1 0 0 1 1 0 1 0 addr23–
addr16

addr15–
addr8

addr7–addr0

[Encoding] 1 0 0 1 1 0 0 1 u u u u
A-59

8x930Ax, 8x930Hx USER’S MANUAL
Description: Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte
memory space.

Flags:

Example: The label "JMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is

EJMP JMPADR
Variations

EJMP addr24

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: EJMP
(PC) ← (addr.23:0)

EJMP @DRk

Binary Mode Source Mode

Bytes: 3 2

States: 7 6

Hex Code in: Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

Operation: EJMP
(PC) ← ((DRk))

ERET

Function: Extended return

Description: Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and decrements
the stack pointer by 3. Program execution continues at the resulting address, which normally
is the instruction immediately following ECALL.

Flags: No flags are affected.

CY AC OV N Z

— — — — —

[Encoding] 1 0 0 0 1 0 1 0 addr23–
addr16

addr15–
addr8

addr7–addr0

[Encoding] 1 0 0 0 1 0 0 1 u u u u
A-60

INSTRUCTION SET REFERENCE
Example: The stack pointer contains 0BH. On-chip RAM locations 08H, 09H and 0AH contain 01H,
23H and 49H, respectively. After executing the instruction

ERET

the stack pointer contains 08H and program execution continues at location 012349H.

Binary Mode Source Mode

Bytes: 3 2

States: 10 9

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ERET

(PC.23:16) ← ((SP))
(SP) ← (SP) – 1
(PC.15:8) ← ((SP))
(SP) ← (SP) – 1
(PC.7:0) ← ((SP))
(SP) ← (SP) – 1

INC <Byte>

Function: Increment

Description: Increments the specified byte variable by 1. An original value of FFH overflows to 00H.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
0FFH and 40H, respectively. After executing the instruction sequence

INC @R0
INC R0
INC @R0

register 0 contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.

Variations

INC A

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

[Encoding] 1 0 1 0 1 0 1 0

CY AC OV N Z

— — — 3 3

[Encoding] 0 0 0 0 0 1 0 0
A-61

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(A) ← (A) + 1

INC dir8

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(dir8) ← (dir8) + 1

INC @Ri

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC
((Ri) ← ((Ri)) + 1

INC Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC
(Rn) ← (Rn) + 1

INC <dest>,<src>

Function: Increment

Description : Increments the specified variable by 1, 2, or 4. An original value of 0FFH overflows to 00H.

[Encoding] 0 0 0 0 0 1 0 1 direct addr

[Encoding] 0 0 0 0 0 1 1 i

[Encoding] 0 0 0 0 1 r r r
A-62

INSTRUCTION SET REFERENCE
Flags:

Example: Register 0 contains 7EH (011111110B). After executing the instruction

INC R0,#1

register 0 contains 7FH.
Variations

INC Rm,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(Rm) ← (Rm) + #short

INC WRj,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(WRj) ← (WRj) + #short

INC DRk,#short

Binary Mode Source Mode

Bytes: 3 2

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(DRk) ← (DRk) + #shortdata pointer

CY AC OV N Z

— — — 3 3

[Encoding] 0 0 0 0 1 0 1 1 s s s s 00 v v

[Encoding] 0 0 0 0 1 0 1 1 t t t t 01 v v

[Encoding] 0 0 0 0 1 0 1 1 u u u u 11 v v
A-63

8x930Ax, 8x930Hx USER’S MANUAL
INC DPTR

Function: Increment data pointer

Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from 0FFH to 00H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).

Flags:

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. After the instruction
sequence

INC DPTR
INC DPTR
INC DPTR

DPH and DPL contain 13H and 01H, respectively.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(DPTR) ← (DPTR) + 1

JB bit51,rel
JB bit,rel

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC OV N Z

— — — 3 3

[Encoding] 1 0 1 0 0 0 1 1

CY AC OV N Z

— — — — —
A-64

INSTRUCTION SET REFERENCE
Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL2.
Variations

JB bit51,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JB
(PC) ← (PC) + 3
IF (bit51) = 1
 THEN
 (PC) ← (PC) + rel

JB bit,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 5 5 4 4

States: 4 7 3 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JB
(PC) ← (PC) + 3
IF (bit) = 1
 THEN
 (PC) ← (PC) + rel

[Encoding] 0 0 1 0 0 0 0 0 bit addr rel. addr

1 0 1 0 1 0 0 1 0 0 1 0 0 y y direct addr rel. addr
A-65

8x930Ax, 8x930Hx USER’S MANUAL
JBC bit51,rel
JBC bit,rel

Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next

instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.

Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.

Flags:

Example: The accumulator contains 56H (01010110B). After the instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.

Variations

JBC bit51,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 4 7 4 7

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JBC
(PC) ← (PC) + 3
IF (bit51) = 1
 THEN
 (bit51) ← 0
 (PC) ← (PC) + rel

JBC bit,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 5 5 4 4

States: 4 7 3 6

CY AC OV N Z

— — — — —

[Encoding] 0 0 0 1 0 0 0 0 bit addr rel. addr
A-66

INSTRUCTION SET REFERENCE
[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JBC
(PC) ← (PC) + 3
IF (bit51) = 1
THEN
(bit51) ← 0
(PC) ← (PC) + rel

JC rel

Function: Jump if carry is set

Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The CY flag is clear. After the instruction sequence

JC LABEL1
CPL CY
JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 1 4 1 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JC
(PC) ← (PC) + 2
IF (CY) = 1
 THEN
 (PC) ← (PC) + rel

1 0 1 0 1 0 0 1 0 0 0 1 0 y y y direct addr rel. addr

CY AC OV N Z

! — — — —

[Encoding] 0 1 0 0 0 0 0 0 rel. addr
A-67

8x930Ax, 8x930Hx USER’S MANUAL
JE rel

Function: Jump if equal

Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The Z flag is set. After executing the instruction

JE LABEL1

program execution continues at label LABEL1.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JE
(PC) ← (PC) + 2
IF (Z) = 1
 THEN (PC) ← (PC) + rel

JG rel

Function: Jump if greater than

Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

Example: The instruction

JG LABEL1

causes program execution to continue at label LABEL1 if the Z flag and the CY flag are both
clear.

CY AC OV N Z

— — — — !

[Encoding] 0 1 1 0 1 0 0 0 rel. addr

CY AC OV N Z

— — — ! —
A-68

INSTRUCTION SET REFERENCE
Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JG
(PC) ← (PC) + 2
IF (Z) = 0 AND (CY) = 0
 THEN (PC) ← (PC) + rel

JLE rel

Function: Jump if less than or equal

Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The instruction

JLE LABEL1

causes program execution to continue at LABEL1 if the Z flag or the CY flag is set.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JLE
(PC) ← (PC) + 2
IF (Z) = 1 OR (CY) = 1
 THEN (PC) ← (PC) + rel

[Encoding] 0 0 1 1 1 0 0 0 rel. addr

CY AC OV N Z

— — — ! !

[Encoding] 0 0 1 0 1 0 0 0 rel. addr
A-69

8x930Ax, 8x930Hx USER’S MANUAL
JMP @A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are not
affected.

Flags:

Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JMP_TBL:

If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JMP
(PC.15:0) ← (A) + (DPTR)

JNB bit51,rel
JNB bit,rel

Function: Jump if bit not set

Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

CY AC OV N Z

— — — — —

JMP_TBL:

MOV
JMP
AJMP
AJMP
AJMP
AJMP

DPTR,#JMP_TBL
@A+DPTR
LABEL0
LABEL1
LABEL2
LABEL3

[Encoding] 0 1 1 1 0 0 1 1
A-70

INSTRUCTION SET REFERENCE
Flags:

Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After
executing the instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

program execution continues at label LABEL2.

Variations

JNB bit51,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNB
(PC) ← (PC) + 3
IF (bit51) = 0
 THEN (PC) ← (PC) + rel

JNB bit,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 5 5 4 4

States: 4 7 3 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNB
(PC) ← (PC) + 3
IF (bit) = 0
 THEN
 (PC) ← (PC) + rel

CY AC OV N Z

— — — — —

[Encoding] 0 0 1 1 0 0 0 0 bit addr rel. addr

1 0 1 0 1 0 0 1 0 0 1 1 0 y y direct addr rel. addr
A-71

8x930Ax, 8x930Hx USER’S MANUAL
JNC rel

Function: Jump if carry not set

Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.

Flags:

Example: The CY flag is set. The instruction sequence

JNC LABEL1
CPL CY
JNC LABEL2

clears the CY flag and causes program execution to continue at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 1 4 1 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNC
(PC) ← (PC) + 2
IF (CY) = 0
 THEN (PC) ← (PC) + rel

JNE rel

Function: Jump if not equal

Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The instruction

JNE LABEL1

causes program execution to continue at LABEL1 if the Z flag is clear.

CY AC OV N Z

! — — — —

[Encoding] 0 1 0 1 0 0 0 0 rel. addr

CY AC OV N Z

— — — — !
A-72

INSTRUCTION SET REFERENCE
Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNE
(PC) ← (PC) + 2
IF (Z) = 0
 THEN (PC) ← (PC) + rel

JNZ rel

Function: Jump if accumulator not zero

Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.

Flags:

Example: The accumulator contains 00H. After executing the instruction sequence

JNZ LABEL1
INC A
JNZ LABEL2

the accumulator contains 01H and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNZ
(PC) ← (PC) + 2
IF (A) ≠ 0
 THEN (PC) ← (PC) + rel

[Encoding] 0 1 1 1 1 0 0 0 rel. addr

CY AC OV N Z

— — — — !

[Encoding] 0 1 1 1 0 0 0 0 rel. addr
A-73

8x930Ax, 8x930Hx USER’S MANUAL
JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

Example: The instruction

JSG LABEL1

causes program execution to continue at LABEL1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSG
(PC) ← (PC) + 2
IF [(N) = 0 AND (N) = (OV)]
 THEN (PC) ← (PC) + rel

JSGE rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

CY AC OV N Z

— — ! ! !

[Encoding] 0 0 0 1 1 0 0 0 rel. addr

CY AC OV N Z

— — ! ! !
A-74

INSTRUCTION SET REFERENCE
Example: The instruction

JSGE LABEL1

causes program execution to continue at LABEL1 if the N flag and the OV flag have the
same value.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSGE
(PC) ← (PC) + 2
IF [(N) = (OV)]
 THEN (PC) ← (PC) + rel

JSL rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

Example: The instruction

JSL LABEL1

causes program execution to continue at LABEL1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

[Encoding] 0 1 0 1 1 0 0 0 rel. addr

CY AC OV N Z

— — ! ! !

[Encoding] 0 1 0 0 1 0 0 0 rel. addr
A-75

8x930Ax, 8x930Hx USER’S MANUAL
Operation: JSL
(PC) ← (PC) + 2
IF (N) ≠ (OV)
 THEN (PC) ← (PC) + rel

JSLE rel

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

Example: The instruction

JSLE LABEL1

causes program execution to continue at LABEL1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSLE
(PC) ← (PC) + 2
IF {(Z) = 1 OR [(N) ≠ (OV)]}
 THEN (PC) ← (PC) + rel

JZ rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

CY AC OV N Z

— — ! ! !

[Encoding] 0 0 0 0 1 0 0 0 rel. addr

CY AC OV N Z

— — — — !
A-76

INSTRUCTION SET REFERENCE
Example: The accumulator contains 01H. After executing the instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

the accumulator contains 00H and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JZ
(PC) ← (PC) + 2
IF (A) = 0
 THEN (PC) ← (PC) + rel

LCALL <dest>

Function: Long call

Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Flags:

Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.

LCALL addr16

Binary Mode Source Mode

Bytes: 3 3

States: 9 9

[Encoding] 0 1 1 0 0 0 0 0 rel. addr

CY AC OV N Z

— — — — —

[Encoding] 0 0 0 1 0 0 1 0 addr15–
addr8

addr7–addr0
A-77

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← (addr.15:0)

LCALL @WRj

Binary Mode Source Mode

Bytes: 3 2

States: 9 8

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← ((WRj))

LJMP <dest>

Function: Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction

LJMP JMPADR

at location 0123H, the program counter contains 1234H.

[Encoding] 1 0 0 1 1 0 0 1 t t t t 0 1 0 0

CY AC OV N Z

— — — — —
A-78

INSTRUCTION SET REFERENCE
LJMP addr16

Binary Mode Source Mode

Bytes: 3 3

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LJMP
(PC) ← (addr.15:0)

LJMP @WRj

Binary Mode Source Mode

Bytes: 3 2

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LJMP
(PC) ← ((WRj))

MOV <dest>,<src>

Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

This is by far the most flexible operation. Twenty-four combinations of source and destination
addressing modes are allowed.

Flags:

[Encoding] 0 0 0 0 0 0 1 0 addr15–
addr8

addr7–addr0

[Encoding] 1 0 0 0 1 0 0 1 t t t t 0 1 0 0

CY AC OV N Z

— — — — —
A-79

8x930Ax, 8x930Hx USER’S MANUAL
Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (0CAH). After executing the instruction sequence

register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain 0CAH (11001010B).

Variations

MOV A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ← #data

MOV dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← #data

MOV @Ri,#data

Binary Mode Source Mode

Bytes: 2 3

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
MOV
MOV
MOV
MOV
MOV

R0,#30H
A,@R0
R1,A
B,@R1
@R1,P1
P2,P1

;R0 < = 30H
;A < = 40H
;R1 < = 40H
;B < = 10H
;RAM (40H) < = 0CAH
;P2 #0CAH

[Encoding] 0 1 1 1 0 1 0 0 immed. data

[Encoding] 0 1 1 1 0 1 0 1 direct addr immed. data

[Encoding] 0 1 1 1 0 1 1 i immed. data
A-80

INSTRUCTION SET REFERENCE
Operation: MOV
((Ri)) ← #data

MOV Rn,#data

Binary Mode Source Mode

Bytes: 2 3

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ← #data

MOV dir8,dir8

Binary Mode Source Mode

Bytes: 3 3

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (dir8)

MOV dir8,@Ri

Binary Mode Source Mode

Bytes: 2 3

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) ← ((Ri))

MOV dir8,Rn

Binary Mode Source Mode

Bytes: 2 3

States: 2† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding] 0 1 1 1 1 r r r r immed. data

[Encoding] 1 0 0 0 0 1 0 1 direct addr direct addr

[Encoding] 1 0 0 0 0 1 1 i direct addr

[Encoding] 1 0 0 0 1 r r r direct addr
A-81

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) ← (Rn)

MOV @Ri,dir8

Binary Mode Source Mode

Bytes: 2 3

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
((Ri)) ← (dir8)

MOV Rn,dir8

Binary Mode Source Mode

Bytes: 2 3

States: 1† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ← (dir8)

MOV A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ← (dir8)

[Encoding] 1 0 1 0 0 1 1 i direct addr

[Encoding] 1 0 1 0 1 r r r direct addr

[Encoding] 1 1 1 0 0 1 0 1 direct addr
A-82

INSTRUCTION SET REFERENCE
MOV A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(A) ← ((Ri))

MOV A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(A) ← (Rn)

MOV dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (A)

MOV @Ri,A

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

[Encoding] 1 1 1 0 0 1 1 i

[Encoding] 1 1 1 0 1 r r r

[Encoding] 1 1 1 1 0 1 0 1 direct addr

[Encoding] 1 1 1 1 0 1 1 i
A-83

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: MOV
((Ri)) ← (A)

MOV Rn,A

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: MOV
(Rn) ← (A)

MOV Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rmd) ← (Rms)

MOV WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ← (WRjs)

[Encoding] 1 1 1 1 1 1 1 r

[Encoding] 0 1 1 1 1 1 0 0 s s s s S S S S

[Encoding] 0 1 1 1 1 1 0 1 t t t t T T T T
A-84

INSTRUCTION SET REFERENCE
MOV DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRkd) ← (DRks)

MOV Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← #data

MOV WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← #data16

MOV DRk,#0data16

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

[Encoding] 0 1 1 1 1 1 1 1 u u u u UUUU

[Encoding] 0 1 1 1 1 1 1 0 s s s s 0 0 0 0 #data

0 1 1 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

0 1 1 1 1 1 1 0 u u u u 1 0 0 0 #data hi #data low
A-85

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← #0data16

MOV DRk,#1data16

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← #1data16

MOV Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← (dir8)

MOV WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← (dir8)

0 1 1 1 1 1 1 0 u u u u 1 1 0 0 #data hi #data low

[Encoding] 0 1 1 1 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 1 1 1 1 1 1 0 t t t t 0 1 0 1 direct addr
A-86

INSTRUCTION SET REFERENCE
MOV DRk,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← (dir8)

MOV Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← (dir16)

MOV WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← (dir16)

MOV DRk,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

[Encoding] 0 1 1 1 1 1 1 0 u u u u 1 1 0 1 direct addr

0 1 1 1 1 1 1 0 s s s s 0 0 1 1 direct addr direct addr

0 1 1 1 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 1 1 1 1 1 0 u u u u 1 1 1 1 direct addr direct addr
A-87

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← (dir16)

MOV Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 2 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((WRj))

MOV Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((DRk))

MOV WRjd,@WRjs

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ← ((WRjs))

0 1 1 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 1 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

0 0 0 0 1 0 1 1 T T T T 1 0 0 0 t t t t 0 0 0 0
A-88

INSTRUCTION SET REFERENCE
MOV WRj,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← ((DRk))

MOV dir8,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (Rm)

MOV dir8,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (WRj)

MOV dir8,DRk

Binary Mode Source Mode

Bytes: 4 3

States: 7 6

0 0 0 0 1 0 1 1 u u u u 1 0 1 0 t t t t 0 0 0 0

[Encoding] 0 1 1 1 1 0 1 0 s s s s 0 0 1 1 direct addr

[Encoding] 0 1 1 1 1 0 1 0 t t t t 0 1 0 1 direct addr

[Encoding] 0 1 1 1 1 0 1 0 u u u u 1 1 0 1 direct addr
A-89

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (DRk)

MOV dir16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ← (Rm)

MOV dir16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ← (WRj)

MOV dir16,DRk

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ← (DRk)

0 1 1 1 1 0 1 0 s s s s 0 0 1 1 direct addr direct addr

0 1 1 1 1 0 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 1 1 1 0 1 0 u u u u 1 1 1 1 direct addr direct addr
A-90

INSTRUCTION SET REFERENCE
MOV @WRj,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) ← (Rm)

MOV @DRk,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) ← (Rm)

MOV @WRjd,WRjs

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRjd)) ← (WRjs)

MOV @DRk,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 6 5

0 1 1 1 1 0 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 1 1 1 0 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

0 0 0 1 1 0 1 1 t t t t 1 0 0 0 T T T T 0 0 0 0
A-91

8x930Ax, 8x930Hx USER’S MANUAL
[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) ← (WRj)

MOV Rm,@WRj + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((WRj)) + (dis)

MOV WRj,@WRj + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← ((WRj)) + (dis)

MOV Rm,@DRk + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((DRk)) + (dis)

0 0 0 1 1 0 1 1 u u u u 1 0 1 0 t t t t 0 0 0 0

0 0 0 0 1 0 0 1 s s s s t t t t dis hi dis low

0 1 0 0 1 0 0 1 t t t t T T T T dis hi dis low

0 0 1 0 1 0 0 1 s s s s u u u u dis hi dis low
A-92

INSTRUCTION SET REFERENCE
MOV WRj,@DRk + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 8 7

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← ((DRk)) + (dis)

MOV @WRj + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) ← (Rm)

MOV @WRj + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) ← (WRj)

MOV @DRk + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 1 1 0 1 0 0 1 t t t t u u u u dis hi dis low

0 0 0 1 1 0 0 1 t t t t s s s s dis hi dis low

0 1 0 1 1 0 0 1 t t t t T T T T dis hi dis low

0 0 1 1 1 0 0 1 u u u u s s s s dis hi dis low
A-93

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) + (dis) ← (Rm)

MOV @DRk + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 8 7

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) + (dis) ← (WRj)

MOV <dest–bit>,<src–bit>

Function: Move bit data

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:

Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence

MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY

the CY flag is clear and Port 1 contains 39H (00111001B).
Variations

MOV bit51,CY

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

0 1 1 1 1 0 0 1 u u u u t t t t dis hi dis low

CY AC OV N Z

3 — — — —

[Encoding] 1 0 0 1 0 0 1 0 bit addr
A-94

INSTRUCTION SET REFERENCE
Operation: MOV
(bit51) ← (CY)

MOV CY,bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) ← (bit51)

MOV bit,CY

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit) ← (CY)

MOV CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) ← (bit)

[Encoding] 1 0 1 0 0 0 1 0 bit addr

1 0 1 0 1 0 0 1 1 0 0 1 0 y y y direct addr

1 0 1 0 1 0 0 1 1 0 1 0 0 y y y direct addr
A-95

8x930Ax, 8x930Hx USER’S MANUAL
MOV DPTR,#data16

Function: Load data pointer with a 16-bit constant

Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

Flags:

Example: After executing the instruction

MOV DPTR,#1234H

DPTR contains 1234H (DPH contains 12H and DPL contains 34H).

Binary Mode Source Mode

Bytes: 3 3

States: 2 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(DPTR) ← #data16

MOVC A,@A+<base–reg>

Function: Move code byte

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

Flags:

CY AC OV N Z

— — — — —

[Encoding] 1 0 0 1 0 0 0 0 data hi data low

CY AC OV N Z

— — — — —
A-96

INSTRUCTION SET REFERENCE
Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Variations

MOVC A,@A+PC

Binary Mode Source Mode

Bytes: 1 1

States: 6 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

MOVC A,@A+DPTR

Binary Mode Source Mode

Bytes: 1 1

States: 6 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(A) ← ((A) + (DPTR))

MOVH DRk,#data16

Function: Move immediate 16-bit data to the high word of a dword (double-word) register

Description: Moves 16-bit immediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

RELPC: INC
MOVC
RET
DB
DB
DB
DB

A
A,@A+PC

66H
77H
88H
99H

[Encoding] 1 0 0 0 0 0 1 1

[Encoding] 1 0 0 1 0 0 1 1
A-97

8x930Ax, 8x930Hx USER’S MANUAL
Flags:

Example: The dword register DRk contains 5566 7788H. After the instruction

MOVH DRk,#1122H

executes, DRk contains 1122 7788H.
Variations

MOVH DRk,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVH
(DRk).31:16 ← #data16

MOVS WRj,Rm

Function: Move 8-bit register to 16-bit register with sign extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.

Flags:

Example: Eight-bit register Rm contains 055H (01010101B) and the 16-bit register WRj contains
0FFFFH (11111111 11111111B). The instruction

MOVS WRj,Rm

moves the contents of register Rm (01010101B) to register WRj (i.e., WRj contains
00000000 01010101B).

Variations

CY AC OV N Z

— — — — —

0 1 1 1 1 0 1 0 u u u u 1 1 0 0 #data hi #data low

CY AC OV N Z

— — — — —
A-98

INSTRUCTION SET REFERENCE
MOVS WRj,Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVS
(WRj).7–0 ← (Rm).7–0
(WRj).15–8 ← MSB

MOVX <dest>,<src>

Function: Move external

Description: Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of R0 or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its upper
address lines driven by P2 can be addressed via the data pointer, or with code to output
upper address bits to P2 followed by a MOVX instruction using R0 or R1.

Flags:

Example: The 8x930 controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal I/O. R0
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

MOVX A,@R1
MOVX @R0,A

the accumulator and external RAM location 12H contain 56H.
Variations

[Encoding] 0 0 0 1 1 0 1 0 t t t t s s s s

CY AC OV N Z

— — — — —
A-99

8x930Ax, 8x930Hx USER’S MANUAL
MOVX A,@DPTR

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX
(A) ← ((DPTR))

MOVX A,@Ri

Binary Mode Source Mode

Bytes: 1 1

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: MOVX
(A) ← ((Ri))

MOVX @DPTR,A

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX
((DPTR)) ← (A)

MOVX @Ri,A

Binary Mode Source Mode

Bytes: 1 1

States: 4 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

[Encoding] 1 1 1 0 0 0 0 0

[Encoding] 1 1 1 0 0 0 1 i

[Encoding] 1 1 1 1 0 0 0 0

[Encoding] 1 1 1 1 0 0 1 i
A-100

INSTRUCTION SET REFERENCE
Operation: MOVX
((Ri)) ← (A)

MOVZ WRj,Rm

Function: Move 8-bit register to 16-bit register with zero extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of

the 16-bit register is filled with zeros.

Flags:

Example: Eight-bit register Rm contains 055H (01010101B) and 16-bit register WRj contains 0FFFFH
(11111111 11111111B). The instruction

MOVZ WRj,Rm

moves the contents of register Rm (01010101B) to register WRj. At the end of the operation,
WRj contains 00000000 01010101B.

Variations

MOVZ WRj,Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVZ
(WRj)7–0 ← (Rm)7–0
(WRj)15–8 ← 0

MUL <dest>,<src>

Function: Multiply

Description: Multiplies the unsigned integer in the source register with the unsigned integer in the
destination register. Only register addressing is allowed.

For 8-bit operands, the result is 16 bits. The most significant byte of the result is stored in the
low byte of the word where the destination register resides. The least significant byte is
stored in the following byte register. The OV flag is set if the product is greater than 255
(0FFH); otherwise it is cleared.

For 16-bit operands, the result is 32 bits. The most significant word is stored in the low word
of the dword where the destination register resides. The least significant word is stored in
the following word register. In this operation, the OV flag is set if the product is greater than
0FFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.

CY AC OV N Z

— — — — —

[Encoding] 0 0 0 0 1 0 1 0 t t t t s s s s
A-101

8x930Ax, 8x930Hx USER’S MANUAL
Flags:

Example: Register R1 contains 80 (50H or 10010000B) and register R0 contains 160 (0A0H or
10010000B). After executing the instruction

MUL R1,R0

which gives the product 12,800 (3200H), register R0 contains 32H (00110010B), register R1
contains 00H, the OV flag is set, and the CY flag is clear.

MUL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (8-bit operands)
if <dest> md = 0, 2, 4, .., 14
Rmd ← high byte of the Rmd X Rms
Rmd+1 ← low byte of the Rmd X Rms
if <dest> md = 1, 3, 5, .., 15
Rmd–1 ← high byte of the Rmd X Rms
Rmd ← low byte of the Rmd X Rms

MUL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 12 11

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (16-bit operands)
if <dest> jd = 0, 4, 8, .., 28
WRjd ← high word of the WRjd X WRjs
WRjd+2 ← low word of the WRjd X WRjs
if <dest> jd = 2, 6, 10, .., 30
WRjd–2 ← high word of the WRjd X WRjs
WRjd ← low word of the WRjd X WRjs

CY AC OV N Z

0 — 3 3 3

[Encoding] 1 0 1 0 1 1 0 0 s s s s S S S S

[Encoding] 1 0 1 0 1 1 0 1 t t t t t t t t
A-102

INSTRUCTION SET REFERENCE
MUL AB

Function: Multiply

Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (0FFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.

Flags:

Example: The accumulator contains 80 (50H) and register B contains 160 (0A0H). After executing the
instruction

MUL AB

which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MUL
(A) ← low byte of (A) X (B)
(B) ← high byte of (A) X (B)

NOP

Function: No operation

Description: Execution continues at the following instruction. Affects the PC register only.

Flags:

CY AC OV N Z

0 — 3 3 3

[Encoding] 1 0 1 0 0 1 0 0

CY AC OV N Z

— — — — —
A-103

8x930Ax, 8x930Hx USER’S MANUAL
Example: You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P2.7
NOP
NOP
NOP
SETB P2.7

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: NOP
(PC) ← (PC) + 1

ORL <dest> <src>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: The accumulator contains 0C3H (11000011B) and R0 contains 55H (01010101B). After
executing the instruction

ORL A,R0

the accumulator contains 0D7H (11010111B).

[Encoding] 0 0 0 0 0 0 0 0

CY AC OV N Z

— — — 3 3
A-104

INSTRUCTION SET REFERENCE
When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ← (dir8) V (A)

ORL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ← (dir8) V #data

ORL A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) ← (A) V #data

[Encoding] 0 1 0 0 0 0 1 0 direct addr

[Encoding] 0 1 0 0 0 0 1 1 direct addr immed. data

[Encoding] 0 1 0 0 0 1 0 0 immed. data
A-105

8x930Ax, 8x930Hx USER’S MANUAL
ORL A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) ← (A) V (dir8)

ORL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: ORL
(A) ← (A) V ((Ri))

ORL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: ORL
(A) ← (A) V (Rn)

ORL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0 1 0 0 0 1 0 1 direct addr

[Encoding] 0 1 0 0 0 1 1 i

[Encoding] 0 1 0 0 1 r r r

[Encoding] 0 1 0 0 1 1 0 0 s s s s S S S S
A-106

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) ← (Rmd) V (Rms)

ORL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRjd)←(WRjd) V (WRjs)

ORL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V #data

ORL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ← (WRj) V #data16

[Encoding] 0 1 0 0 1 1 0 1 t t t t T T T T

[Encoding] 0 1 0 0 1 1 1 0 s s s s 0 0 0 0 #data

0 1 0 0 1 1 1 0 t t t t 0 1 0 0 #data hi #data low
A-107

8x930Ax, 8x930Hx USER’S MANUAL
ORL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V (dir8)

ORL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ← (WRj) V (dir8)

ORL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V (dir16)

ORL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding] 0 1 0 0 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 1 0 0 1 1 1 1 t t t t 0101 direct addr

0 1 0 0 1 1 1 0 s s s s 0 0 1 1 direct addr direct addr
A-108

INSTRUCTION SET REFERENCE
[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ← (WRj) V (dir16)

ORL Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V ((WRj))

ORL Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V ((DRk))

ORL CY,<src–bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

0 1 0 0 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 0 0 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 0 0 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

3 — — — —
A-109

8x930Ax, 8x930Hx USER’S MANUAL
Example: Set the CY flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:

MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.

Variations

ORL CY,bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V (bit51)

ORL CY,/bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V¬ (bit51)

ORL CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V (bit)

[Encoding] 0 1 1 1 0 0 1 0 bit addr

[Encoding] 1 0 1 0 0 0 0 0 bit addr

1 0 1 0 1 0 0 1 0 1 1 1 0 y y y direct addr
A-110

INSTRUCTION SET REFERENCE
ORL CY,/bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V ¬ (bit)

POP <src>
Function: Pop from stack

Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence

POP DPH
POP DPL

the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction

POP SP

the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Variations

POP dir8

Binary Mode Source Mode

Bytes: 2 2

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

1 0 1 0 1 0 0 1 1 1 1 0 0 y y y direct addr

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 1 0 0 0 0 direct addr
A-111

8x930Ax, 8x930Hx USER’S MANUAL
Operation: POP
(dir8) ← ((SP))
(SP) ← (SP) – 1

POP Rm

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(Rm) ← ((SP))
(SP) ← (SP) – 1

POP WRj

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) ← (SP) – 1
(WRj) ← ((SP))
(SP) ← (SP) – 1

POP DRk

Binary Mode Source Mode

Bytes: 3 2

States: 10 9

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) ← (SP) – 3
(DRk) ← ((SP))
(SP) ← (SP) – 1

PUSH <dest>
Function: Push onto stack

Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

[Encoding] 1 1 0 1 1 0 1 0 s s s s 1 0 0 0

[Encoding] 1 1 0 1 1 0 1 0 t t t t 1 0 0 1

[Encoding] 1 1 0 1 1 0 1 0 u u u u 1 0 1 1
A-112

INSTRUCTION SET REFERENCE
Flags:

Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence

PUSH DPL
PUSH DPH

the stack pointer contains 0BH and on-chip RAM locations 0AH and 0BH contain 01H and
23H, respectively.

Variations

PUSH dir8

Binary Mode Source Mode

Bytes: 2 2

States: 4 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (dir8)

PUSH #data

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← #data

PUSH #data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 0 0 0 0 0 direct addr

[Encoding] 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 #data

1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 #data hi #data lo
A-113

8x930Ax, 8x930Hx USER’S MANUAL
Operation: PUSH
(SP) ← (SP) + 2
((SP)) ← MSB of #data16
((SP)) ← LSB of #data16

PUSH Rm

Binary Mode Source Mode

Bytes: 3 2

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (Rm)

PUSH WRj

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (WRj)
(SP) ← (SP) + 1

PUSH DRk

Binary Mode Source Mode

Bytes: 3 2

States: 9 8

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (DRk)
(SP) ← (SP) + 3

RET
Function: Return from subroutine

Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack

pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

[Encoding] 1 1 0 0 1 0 1 0 s s s s 1 0 0 0

[Encoding] 1 1 0 0 1 0 1 0 t t t t 1 0 0 1

[Encoding] 1 1 0 0 1 0 1 0 u u u u 1 0 1 1
A-114

INSTRUCTION SET REFERENCE
Flags:

Example: The stack pointer contains 0BH and on-chip RAM locations 0AH and 0BH contain 01H and
23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode

Bytes: 1 1

States: 7 7

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RET
(PC).15:8 ← ((SP))
(SP) ← (SP) – 1
(PC).7:0 ← ((SP))
(SP) ← (SP) – 1

RETI

Function: Return from interrupt

Description: This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:. The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre-
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts
at the same priority level as the one just processed. Program execution continues at the
return address, which normally is the instruction immediately after the point at which the
interrupt request was detected. If an interrupt of the same or lower priority is pending when
the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

Flags:

CY AC OV N Z

— — — — —

[Encoding] 0 0 1 0 0 0 1 0

CY AC OV N Z

— — — — —
A-115

8x930Ax, 8x930Hx USER’S MANUAL
Example: INTR = 0. The stack pointer contains 0BH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations 0AH and 0BH contain 01H and 23H,
respectively. After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode

Bytes: 1 1

States (INTR = 0): 9 9

States (INTR = 1): 12 12

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for INTR = 0:
RETI
(PC).15:8 ←((SP))
(SP) ← (SP) – 1
(PC).7:0 ¨ ((SP))
(SP) ←(SP) – 1

Operation for INTR = 1:
RETI
(PC).15:8 ← ((SP))
(SP) ← (SP) – 1
PC).7:0 ← ((SP))
(SP) ← (SP) – 1
(PC).23:16 ← ((SP))
(SP) ← (SP) – 1
PSW1 ← ((SP))
(SP) ← (SP) – 1

RL A

Function: Rotate accumulator left

Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0
position.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction,

RL A

the accumulator contains 8BH (10001011B); the CY flag is unaffected.

[Encoding] 0 0 1 1 0 0 1 0

CY AC OV N Z

— — — 3 3
A-116

INSTRUCTION SET REFERENCE
Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RL
(A).a+1 ← (A).a
(A).0 ← (A).7

RLC A

Function: Rotate accumulator left through the carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit 0 position.

Flags:

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RLC A

the accumulator contains 8AH (10001010B) and the CY flag is set.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RLC
(A).a+1 ← (A).a
(A).0 ← (CY)
(CY) ← (A).7

RR A

Function: Rotate accumulator right

Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 or
15 position.

Flags:

[Encoding] 0 0 1 0 0 0 1 1

CY AC OV N Z

3 — — 3 3

[Encoding] 0 0 1 1 0 0 1 1

CY AC OV N Z

— — — 3 3
A-117

8x930Ax, 8x930Hx USER’S MANUAL
Example: The accumulator contains 0C5H (11000101B). After executing the instruction

RR A

the accumulator contains 0E2H (11100010B) and the CY flag is unaffected.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RR
(A).a ← (A).a+1
(A).7 ← (A) .0

RRC A

Function: Rotate accumulator right through carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.

Flags:

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RRC A

the accumulator contains 62 (01100010B) and the CY flag is set.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RRC
(A).a ← (A).a+1
(A).7 ← (CY)
(CY) ← (A).0

SETB <bit>

Function: Set bit

[Encoding] 0 0 0 0 0 0 1 1

CY AC OV N Z

3 — — 3 3

[Encoding] 0 0 0 1 0 0 1 1
A-118

INSTRUCTION SET REFERENCE
Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.

Flags: No flags are affected except the CY flag for instruction with CY as the operand.

Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence

SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35H (00110101B).

SETB bit51

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit51) ← 1

SETB CY

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(CY) ← 1

SETB bit

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

CY AC OV N Z

3 — — — —

[Encoding] 1 1 0 1 0 0 1 0 bit addr

[Encoding] 1 1 0 1 0 0 1 1

1 0 1 0 1 0 0 1 1 1 0 1 0 y y y direct addr
A-119

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit) ← 1

SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction

SJMP RELADR

assembles into location 0100H. After executing the instruction, the PC contains 0123H.

(Note: In the above example, the instruction following SJMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H–0102H) = 21H. Put
another way, an SJMP with a displacement of 0FEH would be a one-instruction infinite loop.)

Binary Mode Source Mode

Bytes: 2 2

States: 4 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel

SLL <src>

Function: Shift logical left by 1 bit

Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted
out (MSB) is stored in the CY bit.

Flags:

CY AC OV N Z

— — — — —

[Encoding] 1 0 0 0 0 0 0 0 rel. addr

CY AC OV N Z

3 — — 3 3
A-120

INSTRUCTION SET REFERENCE
Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SLL register 1

Register 1 contains 8AH (10001010B) and CY = 1.
Variations

SLL Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL
(Rm).a+1 ← (Rm).a
(Rm).0 ← 0
CY ← (Rm).7

SLL WRj

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL
WRj).b+1 ← (WRj).b
(WRj).0 ← 0
CY← (WRj).15

SRA <src>

Function: Shift arithmetic right by 1 bit

Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

[Encoding] 0 0 1 1 1 1 1 0 s s s s 0 0 0 0

[Encoding] 0 0 1 1 1 1 1 0 t t t t 0 1 0 0

CY AC OV N Z

3 — — 3 3
A-121

8x930Ax, 8x930Hx USER’S MANUAL
Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRA register 1

Register 1 contains 0E2H (11100010B) and CY = 1.
Variations

SRA Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(Rm).7 ← (Rm).7
(Rm).a ← (Rm).a+1
CY← (Rm).0

SRA WRj

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(WRj).15 ← (WRj).15
(WRj).b ← (WRj).b+1
CY← (WRj).0

SRL <src>

Function: Shift logical right by 1 bit

Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRL register 1

Register 1 contains 62H (01100010B) and CY = 1.

[Encoding] 0 0 0 0 1 1 1 0 s s s s 0 0 0 0

[Encoding] 0 0 0 0 1 1 1 0 t t t t 0 1 0 0

CY AC OV N Z

3 — — 3 3
A-122

INSTRUCTION SET REFERENCE
SRL Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL
(Rm).7 ← 0
(Rm).a ← (Rm).a+1
CY← (Rm).0

SRL WRj

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL
(WRj).15 ← 0
(WRj).b ← (WRj).b+1
CY← (WRj).0

SUB <dest>,<src>

Function: Subtract

Description: Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY is clear.

When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit).

The source operand allows four addressing modes: immediate, indirect, register and direct.

Flags:

†For word and dword subtractions, AC is not affected.

[Encoding] 0 0 0 1 1 1 1 0 s s s s 0 0 0 0

[Encoding] 0 0 0 1 1 1 1 0 t t t t 0 1 0 0

CY AC OV N Z

3 ✓† 3 3 3
A-123

8x930Ax, 8x930Hx USER’S MANUAL
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction

SUB R1,R0

register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.
Variations

SUB Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rmd) ← (Rmd) – (Rms)

SUB WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRjd) ← (WRjd) – (WRjs)

SUB DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRkd) ← (DRkd) – (DRks)

[Encoding] 1 0 0 1 1 1 0 0 s s s s S S S S

[Encoding] 1 0 0 1 1 1 0 1 t t t t T T T T

[Encoding] 1 0 0 1 1 1 1 1 u u u u U U U U
A-124

INSTRUCTION SET REFERENCE
SUB Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – #data

SUB WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ← (WRj) – #data16

SUB DRk,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRk) ← (DRk) – #data16

SUB Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

[Encoding] 1 0 0 1 1 1 1 0 s s s s 0 0 0 0 #data

1 0 0 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

1 0 0 1 1 1 1 0 u u u u 1 0 0 0 #data hi #data low

[Encoding] 1 0 0 1 1 1 1 0 s s s s 0 0 0 1 direct addr
A-125

8x930Ax, 8x930Hx USER’S MANUAL
Operation: SUB
(Rm) ← (Rm) – (dir8)

SUB WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ← (WRj) – (dir8)

SUB Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – (dir16)

SUB WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ← (WRj) – (dir16)

SUB Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

[Encoding] 1 0 0 1 1 1 1 0 t t t t 0 1 0 1 direct addr

1 0 0 1 1 1 1 0 s s s s 0 0 1 1 direct addr direct addr

1 0 0 1 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

1 0 0 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0
A-126

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – ((WRj))

SUB Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – ((DRk))

SUBB A,<src–byte>

Function: Subtract with borrow

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

Flags:

Example: The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction

SUBB A,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

1 0 0 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

3 3 3 3 3
A-127

8x930Ax, 8x930Hx USER’S MANUAL
Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Variations

SUBB A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ← (A) – (CY) – #data

SUBB A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ← (A) – (CY) – (dir8)

SUBB A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: SUBB
(A) ← (A) – (CY) – ((Ri))

SUBB A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

[Encoding] 1 0 0 1 0 1 0 0 immed. data

[Encoding] 1 0 0 1 0 1 0 1 direct addr

[Encoding] 1 0 0 1 0 1 1 i

[Encoding] 1 0 0 1 1 r r r
A-128

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: SUBB
(A) ← (A) – (CY) – (Rn)

SWAP A

Function: Swap nibbles within the accumulator

Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3–0 and bits 7–
4). This operation can also be thought of as a 4-bit rotate instruction.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction

SWAP A

the accumulator contains 5CH (01011100B).

Binary Mode Source Mode

Bytes: 1 1

States: 2 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SWAP
(A).3:0 → ← (A).7:4

TRAP

Function: Causes interrupt call

Description: Causes an interrupt call that is vectored through location 0FF007BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSW0 and PSW1.
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.

Flags:

Example: The instruction

TRAP

causes an interrupt call to location 0FF007BH during normal operation.

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 0 0 1 0 0

CY AC OV N Z

— — — — —
A-129

8x930Ax, 8x930Hx USER’S MANUAL
Binary Mode Source Mode

Bytes: 2 1

States (2 bytes): 11 10

States (4 bytes): 16 15

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: TRAP
SP ← SP – 2
(SP) ← PC
PC ← (0FF007BH)

XCH A,<byte>

Function: Exchange accumulator with byte variable

Description: Loads the accumulator with the contents of the specified variable, at the same time writing

the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:

Example: R0 contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction

XCH A,@R0

RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).

Variations

XCH A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 3† 3†

†f this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCH
(A) → ← (dir8)

[Encoding] 1 0 1 1 1 0 0 1

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 0 0 1 0 1 direct addr
A-130

INSTRUCTION SET REFERENCE
XCH A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 4 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XCH
(A) → ← ((Ri))

XCH A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: XCH
(A) → ← (Rn)

Variations

XCHD A,@Ri

Function: Exchange digit

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a

hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.

Flags:

Example: R0 contains the address 20H, the accumulator contains 36H (00110110B), and on-chip
RAM location 20H contains 75H (01110101B). After executing the instruction

XCHD A,@R0

on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-
lator.

Binary Mode Source Mode

Bytes: 1 2

States: 4 5

[Encoding] 1 1 0 0 0 1 1 i

[Encoding] 1 1 0 0 1 r r r

CY AC OV N Z

— — — — —
A-131

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCHD
(A).3:0 → ← ((Ri)).3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation (∀) between the specified variables,

storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

Flags:

Example: The accumulator contains 0C3H (11000011B) and R0 contains 0AAH (10101010B). After
executing the instruction

XRL A,R0

the accumulator contains 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.
Variations

XRL dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding] 1 1 0 1 0 1 1 i

CY AC OV N Z

— — — 3 3

[Encoding] 0 1 1 0 0 0 1 0 direct addr
A-132

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ← (dir8) ∀ (A)

XRL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ← (dir8) ∀ #data

XRL A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) ← (A) ∀ #data

XRL A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) ← (A) ∀ (dir8)

XRL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 0 1 1 0 0 0 1 1 direct addr immed. data

[Encoding] 0 1 1 0 0 1 0 0 immed. data

[Encoding] 0 1 1 0 0 1 0 1 direct addr
A-133

8x930Ax, 8x930Hx USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XRL
(A) ← (A) ∀ ((Ri))

XRL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XRL
(A) ← (A) ∀ (Rn)

XRL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rmd) ← (Rmd) ∀ (Rms)

XRL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRds) ← (WRjd) ∀ (WRjs)

XRL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding] 0 1 1 0 0 1 1 i

[Encoding] 0 1 1 0 1 r r r

[Encoding] 0 1 1 0 1 1 0 0 s s s s S S S S

[Encoding] 0 1 1 0 1 1 0 1 t t t t T T T T
A-134

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ #data

XRL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) ← (WRj) ∀ #data16

XRL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ (dir8)

XRL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) ← (WRj) ∀ (dir8)

[Encoding] 0 1 1 0 1 1 1 0 s s s s 0 0 0 0 #data

0 1 1 0 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

[Encoding] 0 1 1 0 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 1 1 0 1 1 1 0 t t t t 0 1 0 1 direct addr
A-135

8x930Ax, 8x930Hx USER’S MANUAL
XRL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ (dir16)

\XRL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) ← (WRj) ∀ (dir16)

XRL Rm,@Wrj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ ((WRj))

XRL Rm,@Drk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0 1 1 0 1 1 1 0 s s s s 0 0 1 1 direct addr dir8 addr

0 1 1 0 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 1 0 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 1 0 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0
A-136

INSTRUCTION SET REFERENCE
Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ ((DRk))
A-137

B
Signal Descriptions

o

xter-
APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the external signals of the 8x930. Pin assign-
ments for the device are shown in Figure B-1 (8x930Ax) and Figure B-2 (8x930Hx) and are listed
by functional category in Table B-1.

Table B-2 describes each of the signals. It lists the signal type (input, output, power, or grund)
and the alternative functions of multi-function pins. Table B-3 shows how configuration bits
RD1:0 (referred to in Table B-2) configure the A17, A16, RD#, WR# and PSEN# pins for e
nal memory accesses.

Figure B-1. 8 x930Ax 68-pin PLCC Package

Reserved

Reserved

Reserved

Reserved

Reserved

DP0

DM0

ECAP

VSSP

VCCP

SOF#

Reserved

Reserved

Reserved

Reserved

Reserved

PLLSEL0

A
8

/ P
2.

0

A

9
/ P

2.
1

A
10

 /
P

2.
2

A
11

 /
P

2.
3

A
12

 /
P

2.
4

A
13

 /
P

2.
5

A
14

 /
P

2.
6

A
15

 /
P

2.
7

V
S

S

V
C

C

E
A

#

A

LE

P
S

E
N

#

R

es
er

ve
d

R
es

er
ve

d

R

es
er

ve
d

R
es

er
ve

d

A4392-02

AD7 / P0.7

AD6 / P0.6

AD5 / P0.5

AD4 / P0.4

AD3 / P0.3

AD2 / P0.2

AD1 / P0.1

AD0 / P0.0

VSSP

VCCP

P3.0 / RXD

P3.1 / TXD

P3.2 / INT0#

P3.3 / INT1#

P3.4 / T0

P3.5 / T1

P3.6 / WR#

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

View of component as

mounted on PC board

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

P
3.

7
/ R

D

/ A
16

P

1.
0

/ T
2

P
1.

1
/ T

2E
X

P

1.
2

/ E
C

I

P

1.
3

/ C
E

X
0

P
1.

4
/ C

E
X

1

P

1.
5

/ C
E

X
2

P
1.

6
/ C

E
X

3
/ W

A
IT

#

P

1.
7

 /
C

E
X

4
/ A

17
 /

W
C

LK

V
C

C

V
S

S

X
T

A
L1

X

T
A

L2

A
V

C
C

R

S
T

P

LL
S

E
L1

P

LL
S

E
L2

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

9
 8
 7
 6
 5
 4
 3
 2
 1
 68

67

66

65

64

63

62

61

Note: Reserved pins must be left unconnected.
B-1

8x930Ax, 8x930Hx USER’S MANUAL

Figure B-2. 8 x930Hx 68-pin PLCC Package

UPWEN#

OVRI#

DP1

DM1

Reserved

DP0

DM0

ECAP

VSSP

VCCP

SOF#

DP3

DM3

Reserved

DP2

DM2

PLLSEL0

A
8

/ P
2.

0

A

9
/ P

2.
1

A
10

 /
P

2.
2

A
11

 /
P

2.
3

A
12

 /
P

2.
4

A
13

 /
P

2.
5

A
14

 /
P

2.
6

A
15

 /
P

2.
7

V
S

S

V
C

C

E
A

#

A

LE

P
S

E
N

#

R

es
er

ve
d

R
es

er
ve

d

R

es
er

ve
d

R
es

er
ve

d

A4375-02

AD7 / P0.7

AD6 / P0.6

AD5 / P0.5

AD4 / P0.4

AD3 / P0.3

AD2 / P0.2

AD1 / P0.1

AD0 / P0.0

VSSP

VCCP

P3.0 / RXD

P3.1 / TXD

P3.2 / INT0#

P3.3 / INT1#

P3.4 / T0

P3.5 / T1

P3.6 / WR#

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

View of component as

mounted on PC board

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

P
3.

7
/ R

D

/ A
16

P

1.
0

/ T
2

P
1.

1
/ T

2E
X

P

1.
2

/ E
C

I

P

1.
3

/ C
E

X
0

P
1.

4
/ C

E
X

1

P

1.
5

/ C
E

X
2

P
1.

6
/ C

E
X

3
/ W

A
IT

#

 P

1.
7

/ C
E

X
4

/ A
17

 /
W

C
LK

V

C
C

V

S
S

X

T
A

L1

X
T

A
L2

A

V
C

C

R
S

T

P
LL

S
E

L1

P
LL

S
E

L2

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

9
 8
 7
 6
 5
 4
 3
 2
 1
 68

67

66

65

64

63

62

61

Note: Reserved pins must be left unconnected.
B-2

SIGNAL DESCRIPTIONS

Table B-1. 68-pin PLCC Signal Assignments Arranged by Functional Category

Address & Data Input/Output USB

Name Pin Name Pin Name Pin

AD0/P0.0 17 P1.0/T2 28 PLLSEL0 44

AD1/P0.1 16 P1.1/T2EX 29 PLLSEL1 42

AD2/P0.2 15 P1.2/ECI 30 PLLSEL2 43

AD3/P0.3 14 P1.3/CEX0 31 DM0 54

AD4/P0.4 13 P1.4/CEX1 32 DP0 55

AD5/P0.5 12 P1.5/CEX2 33 DM1
† 57

AD6/P0.6 11 P1.6/CEX3/WAIT# 34 DP1
† 58

AD7/P0.7 10 P1.7/CEX4/A17/WCLK 35 DM2
† 45

A8/P2.0 9 P3.0/RXD 20 DP2
† 46

A9/P2.1 8 P3.1/TXD 21 DM3
† 48

A10/P2.2 7 P3.4/T0 24 DP3
† 49

A11/P2.3 6 P3.5/T1 25 SOF# 50

A12/P2.4 5 ECAP 53

A13/P2.5 4 OVRI#
† 59

A14/P2.6 3 UPWEN#
† 60

A15/P2.7 2

P3.7/RD#/A16 27

P1.7/CEX4/A17/WCLK 35

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin

P3.2/INT0# 22 VCC 36, 68 P3.6/WR# 26

P3.3/INT1# 23 VCCP 19, 51 P3.7/RD#/A16 27

EA# 67 AVCC 40 ALE 66

RST 41 EA# 67

XTAL1 38 VSS 1, 37

XTAL2 39 VSSP 18, 52

† 8x930Hx only.
B-3

8x930Ax, 8x930Hx USER’S MANUAL

Table B-2. Signal Descriptions

Signal
Name Type Description Alternate

Function

A17 O Address Line 17. Output to memory as 18th external address
bit in extended bus applications. Selected with bits RD1:0 in
configuration byte UCONFIG0. See Table B-3.

P1.7/CEX4/WCLK

A16 O Address Line 16 . Output to memory as 17th external address
bit in extended bus applications. Selected with bits RD1:0 in
configuration byte UCONFIG0. See Table B-3 and RD#, WR#,
and PSEN#.

RD#

A15:8† O Address Lines . Upper address lines for external memory. P2.7:0

AD7:0† I/O Address/Data Lines . Multiplexed lower address lines and data
lines for external memory.

P0.7:0

ALE O Address Latch Enable . ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

—

AVCC PWR Analog V CC. A separate VCC input for the phase-locked loop
circuitry.

—

CEX2:0
CEX3
CEX4

I/O Programmable Counter Array (PCA) Input/Output Pins .
These are input signals for the PCA capture mode and output
signals for the PCA compare mode and PCA PWM mode.

P1.5:3
P1.6/WAIT#
P1.7/A17/WCLK

DM0, DP0 I/O USB Port 0 . DP0 and DM0 are the data plus and data minus
lines of USB port 0, the upstream differential port. These lines
do not have internal pullup resistors. For low-speed devices,
provide an external 1.5 KΩ pullup resistor at DM0. For full-speed
devices, provide an external 1.5 KΩ pullup resistor at DP0.

NOTE: For the 8x930Ax, either DP0 or DM0 must be pulled high.
Otherwise a continuous SEO (USB reset) will be applied to
these inputs causing the 8x930Ax to stay in reset.

For the 8x930Hx, provide an external 1.5 KΩ pullup resistor at
DP0 so the device indicates to the host that it is a full-speed
device.

—

DM1, DP1

DM2, DP2

DM3, DP3

I/O USB Ports 1, 2, 3 (8X930Hx only). DP1, DP2, DP3, DM1, DM2,
and DM3, are the data plus and data minus lines of USB ports 1,
2, and 3, the three downstream differential ports. These lines do
not have internal pulldown resistors. Provide an external 15 KΩ
pulldown resistor at each of these pins.

—

EA# I External Access . Directs program memory accesses to on-
chip or off-chip code memory. For EA# strapped to ground, all
program memory accesses are off-chip. For EA# strapped to
VCC, program accesses on-chip ROM if the address is within the
range of the on-chip ROM; otherwise the access is off-chip. The
value of EA# is latched at reset. For devices without on-chip
ROM, EA# must be strapped to ground.

—

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).
B-4

SIGNAL DESCRIPTIONS
ECAP I External Capacitor . Connect a 1 µF or larger capacitor
between this pin and VSS to ensure proper operation of the
differential line drivers.

—

ECI I PCA External Clock Input . External clock input to the 16-bit
PCA timer.

P1.2

INT1:0# I External Interrupts 0 and 1 . These inputs set the IE1:0
interrupt flags in the TCON register. Bits IT1:0 in TCON select
the triggering method: edge-triggered (high-to-low) or level
triggered (active low). INT1:0 also serves as external run
control for timer1:0 when selected by GATE1:0# in TCON.

P3.3:2

OVRI# I Overcurrent Sense (8X930Hx only). Sense input to indicate an
overcurrent condition for a bus-powered USB device on an
external down-stream port. Active low.

—

P0.7:0 I/O Port 0 . This is an 8-bit, open-drain, bidirectional I/O port. AD7:0

P1.0
P1.1
P1.2
P1.5:3
P1.6
P1.7

I/O Port 1 . This is an 8-bit, bidirectional I/O port with internal
pullups.

T2
T2EX
ECI
CEX2:0
CEX3/WAIT#
CEX4/A17/WCLK

P2.7:0 I/O Port 2 . This is an 8-bit, bidirectional I/O port with internal
pullups.

A15:8

P3.0
P3.1
P3.3:2
P3.5:4
P3.6
P3.7

I/O Port 3 . This is an 8-bit, bidirectional I/O port with internal
pullups.

RXD
TXD
INT1:0#
T1:0
WR#
RD#/A16

PLLSEL2:0 I Phase-locked Loop Select . Three-bit code selects USB data
rate (see Table 2-4 on page 2-10).

—

PSEN# O Program Store Enable . Read signal output. Asserted for the
memory address range determined by bits RD0:1 in
configuration byte UCONFIG0 (see RD# and Table B-3).

—

RD# O Read. Read signal output to external data memory. Asserted as
determined by bits RD0:1 in configuration byte UCONFIG0.
(See PSEN# and Table B-3).

P3.7/A16

Table B-2. Signal Descriptions (Cont inued)

Signal
Name Type Description Alternate

Function

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).
B-5

8x930Ax, 8x930Hx USER’S MANUAL
RST I Reset . Reset input to the chip. Holding this pin high for 64
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than VIH1 is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor
which allows the device to be reset by connecting a capacitor
between this pin and VCC.

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

—

RXD I/O Receive Serial Data . RXD sends and receives data in serial
I/O mode 0 and receives data in serial I/O modes 1, 2, and 3.

P3.0

SOF# O Start of Frame . Start of frame pulse. Active low. Asserted for 8
states (see Table 2-4 on page 2-10) when frame timer is locked
to USB frame timing and SOF token or artificial SOF is
detected.

—

T1:0 I Timer 1:0 External Clock Input . When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4

T2 I/O Timer 2 Clock Input/Output . For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

P1.0

T2EX I Timer 2 External Input . In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, 0 = down.

P1.1

TXD O Transmit Serial Data . TXD outputs the shift clock in serial I/O
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P3.1

UPWEN# O USB Power Enable (8X930Hx only). A low signal on this pin
applies power to all three external downstream ports.

—

VCC PWR Supply Voltage . Connect this pin to the +5V supply voltage. —

VCCP PWR Supply Voltage for I/O buffers . Connect this pin to the +5V
supply voltage.

—

VSS GND Circuit Ground . Connect this pin to ground. —

VSSP GND Circuit Ground for I/O buffers . Connect this pin to ground. —

WAIT# I Real-time Wait State Input. The real-time WAIT# input is
enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit at
S:A7H. During bus cycles, the external memory system can
signal ‘system ready’ to the microcontroller in real time by
controlling the WAIT# input signal on the port 1.6 input.

P1.6/CEX3

Table B-2. Signal Descriptions (Cont inued)

Signal
Name Type Description Alternate

Function

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).
B-6

SIGNAL DESCRIPTIONS

WCLK O Wait Clock Output. The real-time WCLK output is driven at
port 1.7 (WCLK) by writing a logical ‘1’ to the WCON.1
(RTWCE) bit at S:A7H. When enabled, the WCLK output
produces a square wave signal with a period of one-half the
oscillator frequency.

P1.7/CEX4/A17

WR# O Write. Write signal output to external memory (Table B-3) P3.6

XTAL1 I Oscillator Amplifier Input . When implementing the on-chip
oscillator, connect the external crystal/resonator across XTAL1
and XTAL2. If an external clock source is used, connect it to this
pin.

—

XTAL2 O Oscillator Amplifier Output . When implementing the on-chip
oscillator, connect the external crystal/resonator across XTAL1
and XTAL2. If an external oscillator is used, leave XTAL2
unconnected.

—

Table B-3. Memory Signal Selections (RD1:0)

RD1:0 A17/P1.7/
CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features

0 0 A17 A16 Asserted for
all addresses

Asserted for writes to
all memory locations

256-Kbyte external
memory

0 1 P1.7/CEX4/
WCLK

A16 Asserted for
all addresses

Asserted for writes to
all memory locations

128-Kbyte external
memory

1 0 P1.7/CEX4/
WCLK

P3.7 only Asserted for
all addresses

Asserted for writes to
all memory locations

64-Kbyte external
memory. One
additional port pin.

1 1 P1.7/CEX4/
WCLK

RD# asserted
for addresses
≤ 7F:FFFFH

Asserted for
addresses
≥ 80:0000H

Asserted only for
writes to MCS® 51
microcontroller data
memory locations.

64-Kbyte external
memory. Compatible
with MCS 51
microcontrollers.

NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIG0 (Figure 4-3 on page 4-5).

Table B-2. Signal Descriptions (Cont inued)

Signal
Name Type Description Alternate

Function

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the
chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).
B-7

C
Registers

).

isters

ou-

e C-8
APPENDIX C
REGISTERS

This appendix contains reference information for the 8x930 special function registers (SFRs
The SFR map in Table C-1 provides the address and reset value for 8x930Ax SFRs. SFRs with
double borders are endpoint-indexed. For further information, see “Special Function Reg
(SFRs)” on page 3-15.

Table C-2 depicts the 8x930Hx SFRs. SFRs with bold borders are port-indexed. SFRs with d
ble borders are endpoint-indexed.

Tables C-3 through C-10 list the SFRs by functional category. “SFR Descriptions” on pag
contains descriptive tables of the SFRs arranged alphabetically.

NOTE
Use the prefix “S:” with SFR addresses to distinguish them from other
addresses.

“Configuration Bytes” on page C-78 shows the two configuration bytes, UCONFIG0 and
UCONFIG1. For information on device configuration, see Chapter 4.
C-1

8x930Ax, 8x930Hx USER’S MANUAL

Table C-1. 8x930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH
00000000

CCAP0H
xxxxxxxx

CCAP1H
xxxxxxxx

CCAP2H
xxxxxxxx

CCAP3H
xxxxxxxx

CCAP4H
xxxxxxxx

FF

F0 B
00000000

EPINDEX
1xxxx000

TXSTAT
00000000

TXDAT
xxxxxxxx

TXCON
000x0100†

TXFLG
00xx1000

TXCNTL
00000000†

TXCNTH
xxxxxx00

F7

E8 CL
00000000

CCAP0L
xxxxxxxx

CCAP1L
xxxxxxxx

CCAP2L
xxxxxxxx

CCAP3L
xxxxxxxx

CCAP4L
xxxxxxxx

EF

E0 ACC
00000000

EPCON
00x10000†

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0x000100

RXFLG
00xx1000

RXCNTL
00000000†

RXCNTH
xxxxxx00

E7

D8 CCON
00x00000

CMOD
00xxx000

CCAPM0
x0000000

CCAPM1
x0000000

CCAPM2
x0000000

CCAPM3
x0000000

CCAPM4
x0000000

PCON1
xxx00000

DF

D0 PSW
00000000

PSW1
00000000

SOFL
00000000

SOFH
00000000

D7

C8 T2CON
00000000

T2MOD
xxxxxx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

CF

C0 FIFLG
00000000

FIFLG1
00000000

EPCONFIG
xxxxxxx0

C7

B8 IPL0
x0000000

SADEN
00000000

SPH
0000000

BF

B0 P3
11111111

IEN1
xxxx0000

IPL1
x0000000

IPH1
x0000000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

AF

A0 P2
11111111

FIE
00000000

FIE1
00000000

WDTRST
xxxxxxxx

WCON
xxxxxx00

A7

98 SCON
00000000

SBUF
xxxxxxxx

9F

90 P1
11111111

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

DPXL
00000001

PCON
00XX0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs Endpoint-indexed SFRs

† For EPCON, TXCON, TXCNTL, and RXCNTL, the reset value depends on the endpoint pair selected.
Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”
C-2

REGISTERS

Table C-2. 8X930Hx SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH
00000000

CCAP0H
xxxxxxxx

CCAP1H
xxxxxxxx

CCAP2H
xxxxxxxx

CCAP3H
xxxxxxxx

CCAP4H
xxxxxxxx

FF

F0 B
00000000

EPINDEX
1xxxxx00

TXSTAT
00000000

TXDAT††

xxxxxxxx†
TXCON
000x0100†

TXFLG
00xx1000

TXCNTL
00000000†

TXCNTH
xxxxxx00

F7

E8 HIFLG
0xxxxx00

CL
00000000

CCAP0L
xxxxxxxx

CCAP1L
xxxxxxxx

CCAP2L
xxxxxxxx

CCAP3L
xxxxxxxx

CCAP4L
xxxxxxxx

EF

E0 ACC
00000000

EPCON
00x10000†

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0x000100

RXFLG
00xx1000

RXCNTL
00000000†

RXCNTH
xxxxxx00

E7

D8 CCON
00x00000

CMOD
00xxx000

CCAPM0
x0000000

CCAPM1
x0000000

CCAPM2
x0000000

CCAPM3
x0000000

CCAPM4
x0000000

PCON1
xxx00000

DF

D0 PSW
00000000

PSW1
00000000

SOFL
00000000

SOFH
00000000

HPINDEX
xxxxx000

HPSC
xxx00000

HPSTAT
0x000100

D7

C8 T2CON
00000000

T2MOD
xxxxxx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

HPCON
xxxxx000

CF

C0 FIFLG
00000000

C7

B8 IPL0
x0000000

SADEN
00000000

SPH
0000000

BF

B0 P3
11111111

IEN1
xxxxx000

IPL1
x0000000

IPH1
x0000000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

HSTAT
x0000000

AF

A0 P2
11111111

HIE
0xxxxx00

FIE
00000000

WDTRST
xxxxxxxx

WCON
xxxxxx00

A7

98 SCON
00000000

SBUF
xxxxxxxx

HPPWR
xxx1000x

9F

90 P1
11111111

HADDR
00000000

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

DPXL
00000001

PCON
00XX0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs Port-indexed SFRs

Endpoint-indexed SFRs

† For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset value depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

†† For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate
TXDAT register definition table is provided for this endpoint (see Chapter 8, “USB Hub.”)
C-3

8x930Ax, 8x930Hx USER’S MANUAL
C.1 SFRS BY FUNCTIONAL CATEGORY

Table C-3. Core SFRs

Mnemonic Name Address

ACC† Accumulator S:E0H

B† B register S:F0H

PSW Program Status Word S:D0H

PSW1 Program Status Word 1 S:D1H

SP† Stack Pointer – LSB of SPX S:81H

SPH† Stack Pointer High – MSB of SPX S:BEH

DPTR† Data Pointer (2 bytes) —

DPL† Low Byte of DPTR S:82H

DPH† High Byte of DPTR S:83H

DPXL† Data Pointer Extended, Low S:85H

PCON Power Control S:87H

PCON1 USB Power Control. S:DFH

WCON Wait State Control Register S:A7H
†These SFRs can also be accessed by their corresponding registers in the
register file.

Table C-4. Interrupt System SFRs

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. S:A2H

FIE1 USB Function Interrupt Enable Register. S:A3H

FIFLG USB Function Interrupt Flag Register. S:C0H

FIFLG1 USB Function Interrupt Flag Register. S:C1H

HIE Hub Interrupt Enable Register. S:A1H

HIFLG Hub Interrupt Flag Register. S:E8H

IEN0 Interrupt Enable Register 0. S:A8H

IEN1 Interrupt Enable Register1. S:B1H

IPL0 Interrupt Priority Low Register 0. S:B8H

IPH0 Interrupt Priority High Register 0. S:B7H

IPL1 Interrupt Priority Low Register 1. S:B2H

IPH1 Interrupt Priority High Register 1. S:B3H

SOFH Start of Frame High Register. S:D3H

SOFL Start of Frame Low Register. S:D2H
C-4

REGISTERS

Table C-5. I/O Port SFRs

Mnemonic Name Address

P0 Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:A0H

P3 Port 3 S:B0H

Table C-6. Serial I/O SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SADDR Slave Address S:A9H

Table C-7. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H

EPCONFIG Endpoint Configuration Register S:C7H

EPINDEX Endpoint Index Register. S:F1H

FADDR Function Address Register. S:8FH

RXCNTH Receive FIFO Byte-Count High Register. S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. S:E6H

RXCON Receive FIFO Control Register. S:E4H

RXDAT Receive FIFO Data Register. S:E3H

RXFLG Receive FIFO Flag Register. S:E5H

RXSTAT Endpoint Receive Status Register. S:E2H

TXCNTH Transmit Count High Register. S:F7H

TXCNTL Transmit Count Low Register. S:F6H

TXCON Transmit FIFO Control Register. S:F4H

TXDAT Transmit FIFO Data Register. S:F3H

TXFLG Transmit Flag Register. S:F5H

TXSTAT Endpoint Transmit Status Register. S:FAH
C-5

8x930Ax, 8x930Hx USER’S MANUAL

Table C-8. USB Hub SFRs

Mnemonic Name Address

HADDR Hub Address Register. S:97H

HPCON Hub Port Control. S:CFH

HPINDEX Hub Port Index Register. S:D4H

HPPWR Hub Port Power Control. S:9AH

HPSC Hub Port Status Change. S:D5H

HPSTAT Hub Port Status. S:D7H

HSTAT Hub Status and Configuration. S:AEH

Table C-9. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TL0 Timer/Counter 0 Low Byte S:8AH

TH0 Timer/Counter 0 High Byte S:8CH

TL1 Timer/Counter 1 Low Byte S:8BH

TH1 Timer/Counter 1 High Byte S:8DH

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:88H

TMOD Timer/Counter 0 and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:C8H

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H
C-6

REGISTERS
Table C-10. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:D8H

CMOD PCA Timer/Counter Mode S:D9H

CCAPM0 PCA Timer/Counter Mode 0 S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAP0L PCA Compare/Capture Module 0 Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAP0H PCA Compare/Capture Module 0 High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH

CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH
C-7

8x930Ax, 8x930Hx USER’S MANUAL

r.
C.2 SFR DESCRIPTIONS

This section contains descriptions of all 8x930 SFRs. They are presented in alphabetical orde

NOTE
SFR bits are firmware read/write unless otherwise noted in the bit definition.
SFRs may be accessed only as bytes; they may not be accessed as words or
dwords

ACC Address: S:E0H
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCS® 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0–15) interchangeably.

7 0

Accumulator Contents

Bit
Number

Bit
Mnemonic Function

7:0 ACC.7:0 Accumulator.

B Address: S:F0H
Reset State: 0000 0000B

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0–15.

7 0

B Register Contents

Bit
Number

Bit
Mnemonic Function

7:0 B.7:0 B Register.
C-8

REGISTERS

CCAPxH, CCAPxL (x = 0–4) Address: CCAP0H,L S:FAH, S:EAH
CCAP1H,L S:FBH, S:EBH
CCAP2H,L S:FCH, S:ECH
CCAP3H,L S:FDH, S:EDH
CCAP4H,L S:FEH, S:EEH

Reset State: xxxx xxxxB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0

High/Low Byte of Compare/Capture Values

Bit
Number

Bit
Mnemonic Function

7:0 CCAPxH.7:0

CCAPxL.7:0

High byte of PCA comparison or capture values.

Low byte of PCA comparison or capture values.
C-9

8x930Ax, 8x930Hx USER’S MANUAL

CCAPMx (x = 0–4) Address: CCAPM0 S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: x000 0000B

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0

— ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:

ECOMx = 1 enables the module comparator function. The comparator is
used to implement the firmware timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMx and MATx to implement the firmware timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:

Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.
C-10

REGISTERS

CCON Address: S:D8H
Reset State: 00x0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0

CF CR — CCF4 CCF3 CCF2 CCF1 CCF0

Bit
Number

Bit
Mnemonic Function

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or firmware but can be cleared only by firmware.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by firmware to turn the PCA timer/counter on and off.

5 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by firmware.

CH, CL Address: S:F9H
S:E9H

Reset State: 0000 0000B

CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.

7 0

High/Low Byte PCA Timer/Counter

Bit
Number

Bit
Mnemonic Function

7:0 CH.7:0

CL.7:0

High byte of the PCA timer/counter

Low byte of the PCA timer/counter
C-11

8x930Ax, 8x930Hx USER’S MANUAL
CMOD Address: S:D9H
Reset State: 00xx x000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 0

CIDL WDTE — — — CPS1 CPS0 ECF

Bit
Number

Bit
Mnemonic Function

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPS0

0 0 FCLK /6
0 1 FCLK /2
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = FOSC /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.
C-12

REGISTERS

DPH Address: S:83H
Reset State: 0000 0000B

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use DPTR
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

7 0

DPH Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPH.7:0 Data Pointer High:

Bits 8–15 of the extended data pointer, DPX (DR56).

DPL Address: S:82H
Reset State: 0000 0000B

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use the 16-bit data
pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and
DPXL.

7 0

DPL Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPL.7:0 Data Pointer Low:

Bits 0–7 of the extended data pointer, DPX (DR56).
C-13

8x930Ax, 8x930Hx USER’S MANUAL

DPXL Address: S:85H
Reset State: 0000 0001B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7 0

DPXL Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPXL.7:0 Data Pointer Extended Low:

Bits 16–23 of the extended data pointer, DPX (DR56).
C-14

REGISTERS

EPCON
(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2, 3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK

5 CTLEP Control Endpoint:†

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

4 RXSPM Receive Single Packet Mode:†

Set this bit to configure the receive endpoint for single data packet operation.
When enabled, only a single data packet is allowed to reside in the receive
FIFO.
NOTE: For control endpoints (CTLEP=1), this bit should be set for single

packet mode operation as the recommended firmware model.
However, it is possible to have a control endpoint configured in dual
packet mode as long as the firmware handles the endpoint
correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet overrides this bit if it is cleared, and
place the receive data in the FIFO.

† For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.
C-15

8x930Ax, 8x930Hx USER’S MANUAL
2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

1 TXOE Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the endpoint
does not respond to a valid IN token. This bit is hardware read only. Note
that endpoint 0 is enabled for transmission upon reset.

EPCON (Continued)
(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B

Function Endpoints 1, 2, 3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

† For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.
C-16

REGISTERS

EPCONFIG† Address: S:C7H
Reset State: xxxx xxx0B

Endpoint Configuration Register. Selects the six-endpoint pair option or four-endpoint pair option as
the 8x930Ax function endpoint pair configuration.

7 0

— — — — — — — SIXEPPEN

Bit
Number

Bit
Mnemonic Function

7:1 — Reserved:

Write zeroes to these bits.

0 SIXEPPEN Six-endpoint pair enable:††

Set this bit to select the six-endpoint pair (6EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0

0xxx x000 xx
0xxx x001 00†††

0xxx x010 xx
0xxx x011 xx
0xxx x100 xx
0xxx x101 xx

Transmit
FIFO

16
256
32
32
32
16

Receive
FIFO

16
256
32
32
32
16

Clear this bit to select the four-endpoint pair (4EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0

0xxx xx00 xx
0xxx xx01 00

01
10
11

0xxx xx10 xx
0xxx xx11 xx

Transmit
FIFO

16
256
512
1024

0
16
16

Receive
FIFO

16
256
512
0

1024
16
16

† 8x930Ax only. Early sample devices did not have this SFR.
†† Select the endpoint configuration during initialization and do not change during program execution.
††† When using function endpoint 1 in the six-endpoint pair configuration, clear the FFSZ1:0 bits in

TXCON to select the 256-byte size for the transmit and receive FIFOs.
C-17

8x930Ax, 8x930Hx USER’S MANUAL

EPINDEX Address: S:F1H
Reset State: 1xxx x000B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0

8X930Hx HORF — — — — — EPINX1 EPINX0

7 0

8X930Ax
4 EPP

— — — — — — EPINX1 EPINX0

7 0

8X930Ax
6 EPP

— — — — — EPINX2 EPINX1 EPINX0

Bit
Number

Bit
Mnemonic Function

7 HORF

(8X930Hx)

Hub/function Bit:

1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.

—
(8X930Ax)

Reserved:

Although the reset state for this bit is “1”, always write a zero to this bit for
8X930Ax applications.

6:3 — Reserved:

Write zeros to these bits.

2 —

8X930Hx or
8X930Ax
(4 EPP)

Reserved:

Write a zero to this bit. 8x930Hx

1:0 EPINX1:0

8X930Hx
or

8X930Ax
(4 EPP)

Endpoint Index:

EPINDEX†

0xxx xx00 Function Endpoint 0
0xxx xx01 Function Endpoint 1
0xxx xx10 Function Endpoint 2
0xxx xx11 Function Endpoint 3

EPINDEX† (8x930Hx only)
1xxx xx00 Hub Endpoint 0
1xxx xx01 Hub Endpoint 1

2:0 EPINX2:0

8X930Ax
(6 EPP)

Endpoint Index:

EPINDEX†

0xxx x000 Function Endpoint 0
0xxx x001 Function Endpoint 1
0xxx x010 Function Endpoint 2
0xxx x011 Function Endpoint 3
0xxx x100 Function Endpoint 4
0xxx x101 Function Endpoint 5

† The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive
FIFO pair. The value in this register plus SFR addresses select the associated bank of endpoint-
indexed SFRs (TXDAT, TXCON, TXFLG, TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L,
EPCON, TXSTAT, and RXSTAT).
C-18

REGISTERS

FADDR Address: S:8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB function. During bus enumeration
it is written with a unique value assigned by the host.

7 0

— A6:0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.
C-19

8x930Ax, 8x930Hx USER’S MANUAL

FIE Address: S:A2H
Reset State: 0000 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0

FRXIE3 FTXIE3 FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

Bit
Number

Bit
Mnemonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).

6 FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIE0 Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXD0).

0 FTXIE0 Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint 0 (FTXD0).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value is still reflected in the FIFLG register.
C-20

REGISTERS

FIE1 Address: S:A3H
Reset State: 0000 0000B

Function Interrupt Enable Register 1. Available on the 8x930Ax only, this register enables and
disables the receive and transmit done interrupts for function endpoints four and five.

7 0

— — — — FRXIE5 FTXIE5 FRXIE4 FTXIE4

Bit
Number

Bit
Mnemonic Function

7:4 — Reserved:

3 FRXIE5 Function Receive Done Interrupt Enable 5:

Enables receive done interrupt for endpoint 5 (FTXD5).

2 FTXIE5 Function Transmit Interrupt Enable 5:

Enables the transmit done interrupt for endpoint 5 (FTXD5).

1 FRXIE4 Function Receive Interrupt Enable 4:

Enables the receive done interrupt for endpoint 4 (FRXD4).

0 FTXIE4 Function Transmit Interrupt Enable 4:

Enables the transmit done interrupt for endpoint 4 (FTXD4).

NOTE: When the FRXIE.5:4 or FTXIE.5:4 is set, the interrupt is enabled and it will cause an
interrupt to the CPU, when a transmit of receive done flag is set. If the FRXIE.5:4 and
FTXIE.5:4 is cleared, the interrupt is disabled. All these bits can be read/write by firmware.
C-21

8x930Ax, 8x930Hx USER’S MANUAL

FIFLG Address: S:C0H
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0

FRXD3 FTXD3 FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

Bit
Number

Bit
Mnemonic Function

7 FRXD3 Function Receive Done Flag, Endpoint 3

6 FTXD3 Function Transmit Done Flag, Endpoint 3

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXD0 Function Receive Done Flag, Endpoint 0

0 FTXD0 Function Transmit Done Flag, Endpoint 0

NOTES:
1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.
C-22

REGISTERS

FIFLG1 Address: S:C1H
Reset State: 0000 0000B

Function Interrupt Flag Register 1. Available on the 8x930Ax only, this register contains the USB
Function’s Transmit and Receive Done interrupt flags for non-isochronous endpoints.

7 0

— — — — FRXD5 FTXD5 FRXD4 FTXD4

Bit
Number

Bit
Mnemonic Function

7:4 — Reserved:

Write zeros to these bits.

3 FTXD5 Function Receive Done Flag, Endpoint 5:

2 FTXD5 Function Transmit Done Flag, Endpoint 5:

1 FRXD4 Function Receive Done Flag, Endpoint 4:

0 FTXD4 Function Transmit Done Flag, Endpoint 4:

NOTES:
1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.
C-23

8x930Ax, 8x930Hx USER’S MANUAL

HADDR Address: S:97H
Reset State: 0000 0000B

Hub Address Register. This SFR holds the address for the hub device. During bus enumeration it is
written with a unique value assigned by the host.

7 0

— Hub Address

Bit
Number Function

7 Reserved.

Write a zero to this bit.

6:0 Hub address register:

Updated using a SET_ADDRESS USB host request. This address is used by the HIU to
perform token decoding.

HIE Address: S:A1H
Reset State: 0xxx xx00B

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7 0

— — — — — HRXE0 HTXE0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXE0 HRXE0:

Enable the hub endpoint 0 receive done interrupt (HRXD0).†

0 HTXE0 HTXE0:

Enable the hub endpoint 0 transmit done interrupt (HTXD0).†

† For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.
C-24

REGISTERS

HIFLG Address: S:E8H
Reset State: 0xxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0

— — — — — HRXD0 HTXD0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

1 HRXD0 Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXD0 Hub Transmit Done, Endpoint 0:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:
1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits

are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXD0 and HTXD0, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.
C-25

8x930Ax, 8x930Hx USER’S MANUAL

HPCON Address: S:CFH
Reset State: xxxx x000B

Hub Port Control Register. Firmware writes to this register to disable, enable, reset, suspend, and
resume a port.

7 0

— — — — — HPCON2 HPCON1 HPCON0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPCON.2:0 Encoded Hub Port Control Commands:

All bits should be set and cleared by firmware after receiving the USB
requests ClearPortFeature and SetPortFeature from the host. The bits are
encoded as follows (all other bit combinations are ignored by the hardware):

000 — Disable port
001 — Enable port
010 — Reset and enable port
011 — Suspend port
100 — Resume port

See Table 8-6 for a complete description of the encoded hub port control
commands.
C-26

REGISTERS

HPINDEX Address S:D4H
Reset State xxxx x000B

Hub Port Index Register. This register contains the binary value of the port whose HPSC, HPSTAT,
and HPCON registers are to be accessed.

7 0

— — — — — HPIDX2 HPIDX1 HPIDX0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Write zeros to these bits.

2:0 HPIDX.2:0 Port Index Select:

Used to select the port to be indexed by the following registers: HPSC,
HPSTAT, and HPCON. This register is hardware read-only. The ports are
addressed using the following HPID.2:0 bit combinations:

Port 1 = “001”
Port 2 = “010”
Port 3 = “011”
Port 4 = “100” (internal port)

NOTE: Port 0 = “000” (the root port) and all other combinations not shown above are not valid port indexes
and are ignored.
C-27

8x930Ax, 8x930Hx USER’S MANUAL
HPPWR Address: S:9AH
Reset State: xxx1 000xB

Hub Port Power Control Register. This register is used to control power to the hub’s downstream ports.

7 0

— — — HPPWR.4 HPPWR.3 HPPWR.2 HPPWR.1 —

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

The value read from these bits is indeterminate. Write zeros to these bits.

4 HPPWR.4 Port Power Control Register for USB Port 4 (read-only):

Port 4 is an internal port and is always powered on. This bit is hard-wired to
‘1.’

3:1 HPPWR.3.1 Port Power Control Register for USB Ports 1-3:

Bit 3 is power control for port 3, bit 2 for port 2, and bit 1 for port 1. These
bits are set and cleared by firmware via a USB host request SetPortFeature
with the PORT_POWER feature selector. These bits will also be cleared by
hardware upon detection of an over-current condition. This is done to
prevent oscillation of the UPWEN# pin during an over-current condition with
bus-powered devices.

A value of ‘1’ enables power to the downstream port and puts the port in a
disconnected state. A value of ‘0’ turns the downstream port power off.
NOTE: The UPWEN# pin is set to ‘1’ only if all three port power enable

bits (bits 3:1) are ‘0,’ due to the use of a ganged (shared) power
enable scheme.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.
C-28

REGISTERS

HPSC Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Write zeros to these bits.

4 RSTSC Reset Status Change (read-, clear-only):

This bit is cleared in firmware via the USB host request ClearPortFeature
with a C_PORT_RESET feature selector. ‘1’ indicates reset of port
complete; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware approximately 10 msec after
receipt of a port reset and enable command (SetPortFeature with
PORT_RESET feature selector).

Port 4: This bit is set by hardware at the EOF2 point near the end of a frame
after completion of the hardware-timed reset due to firmware execution of a
port reset and enable command (SetPortFeature with PORT_RESET
feature selector).

3 — Reserved:

Write a zero to this bit.

2 PSSC Port Suspend Status Change (read-, clear-only):

This bit is cleared by firmware upon a USB host request ClearPortFeature
with C_PORT_SUSPEND feature selector. ‘1’ = resume process complete;
‘0’ = no change. The resume process is initiated by firmware upon reception
of a SetPortFeature request with a PORT_SUSPEND feature selector.

Port x (x=1,2,3): This bit is set by hardware upon completion of the firmware-
initiated resume process.

Port 4: This bit is set by hardware 20 msec after the next EOF2 point after
completion of the resume process.

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)
C-29

8x930Ax, 8x930Hx USER’S MANUAL
1 PESC Port Enable/Disable Status Change (read, clear-only):

This bit’s status does not change due to USB requests. This bit is cleared by
firmware via the USB host request ClearPortFeature with a
C_PORT_ENABLE feature selector. ‘1’ indicates port enabled/ disabled
status change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware due to hardware events only
(this bit indicates the port was disabled due to babble, physical disconnects,
or overcurrent).

Port 4: This bit is set by hardware at the EOF2 point near the end of frame
due to hardware events only (e.g., the port was disabled due to babble).

0 PCSC Port Connect Status Change (read-, clear-only):

This bit is cleared by firmware via a USB host request ClearPortFeature with
C_PORT_CONNECTION feature selector. ‘1’ indicates connect status
change; ‘0’ indicates no change.

Port x (x=1,2,3): This bit is set by hardware at the EOF2 point near the end
of a frame due to hardware connects and disconnects.

Port 4: This bit is set by hardware at the next EOF2 after completion of a hub
reset (since the internal port is always connected).

HPSC (Continued) Address: S:D5H
Reset State: xxx0 0000B

Hub Port Status Change Register. This register indicates a change in status for a port, including over-
current, reset, suspend, enable and connect status.

7 0

— — — RSTSC — PSSC PESC PCSC

Bit
Number

Bit
Mnemonic Function

NOTE: Bits are returned as part of the second word (2 bytes) in response to a Get Port Status request
from the USB host. The upper 11 MSbs are reserved and always ‘0’ per USB 1.0: 0000 0000
000.4.3.2.1.0 (MSB at left)
C-30

REGISTERS
HPSTAT Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

7 DPSTAT DP Status (read-only):

Value of DP for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to ’1’, since there is no DP signal for the embedded port

6 DMSTAT DM Status (read-only):

Value of DM for port x at end of last frame. Firmware must return this bit in
response to a GetBusState request from the host.

Port x (x=1,2,3): Set and cleared by hardware at the EOF2 point near the
end of a frame (used for diagnostics).

Port 4: Hard-wired to ’0’, since there is no DM signal for the embedded port.

4 PPSTAT Port Power Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware based on the present power
status of the port, as controlled either by firmware using the HPPWR
register, or by an overcurrent condition in hardware. ‘1’ = port x is powered
on. ‘0’ = port x is powered off. The port x power status is only sampled at the
EOF2 point near end-of-frame.

Port 4: Hard-wired to ’1’, since the internal function is always powered-on.

5 LSSTAT Low-speed Device Attach Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware upon detection of the
presence or absence of a low-speed device at the EOF2 point near end-of-
frame. ‘1’ = low-speed device is attached to port x. ‘0’ = full-speed device is
attached to port x.

Port 4: Hard-wired to ’0’ (full-speed), since port 4 is permanently attached to
the embedded USB function.

NOTES:

Firmware returns the bits of this register in the first word of the 8x930Hx’ response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8x930Hx supports ganged power
control and overcurrent indication.
C-31

8x930Ax, 8x930Hx USER’S MANUAL
3 PRSTAT Port Reset Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as a result of initiating a port x
reset by writing to HPCON. ‘1’ = reset signaling is currently asserted for port
x. ‘0’ = reset signaling is not asserted. Sampled only at the EOF2 point near
end of frame.

Port 4: Same as port x.

2 PSSTAT Port Suspend Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently suspended. ‘0’ = not suspended. Sampled
only at the EOF2 point near end of frame.

Port 4: Same as port x.

1 PESTAT Port Enable/Disable Status (read-only):

Port x (x=1,2,3): Set and cleared by hardware as controlled by firmware via
HPCON. ‘1’ = port x is currently enabled. ‘0’ = port is disabled. Sampled only
at the EOF2 point near end of frame.

Port 4: Same as port x.

0 PCSTAT Port Connect Status (read-only):

Port x connect status from previous frame time.

Port x (x=1,2,3): Set and cleared by hardware after sampling the connect
state at EOF2 near the end of the present frame. ‘1’ = device is present on
port x. ‘0’ = device is not present. This bit will be set if either a physical
connection is detected, or during a hub reset when a downstream device is
already connected. This bit will be cleared if a disconnect is detected.

Port 4: Hard-wired to ‘1’, since the internal function is permanently
connected.

HPSTAT (Continued) Address: S:D7H
Reset State: 0x00 0100B

Hub Port Status Register. This register indicates the current status for a port, including power, reset,
suspend, low-speed device, enable, connect, DP, and DM status.

7 0

DPSTAT DMSTAT LSSTAT PPSTAT PRSTAT PSSTAT PESTAT PCSTAT

Bit
Number

Bit
Mnemonic Function

NOTES:

Firmware returns the bits of this register in the first word of the 8x930Hx’ response to the host’s
GetPortStatus request. See “GetPortStatus Request Firmware” on page 9-24.

Overcurrent indication is not represented on a per-port basis because the 8x930Hx supports ganged power
control and overcurrent indication.
C-32

REGISTERS
HSTAT Address: S:AEH
Reset State: x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

— HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 HRWUPE Hub Remote Wake-up Enable Bit:

Set if the device is currently enabled to request remote wake-up. This bit
is modified through the SetFeature and ClearFeature requests using the
DEVICE_REMOTE_WAKEUP feature selector. When ‘0,’ a hub cannot
propagate resume signaling for connect/disconnect and resume events
detected on downstream ports.
NOTE: Do not set this bit until after the hub is enumerated and the host

issues a SET_FEATURE command with a DEVICE_
REMOTE_WAKEUP feature selector.

5 EP1STL Hub Endpoint 1 Stall Field:

Set to ‘1’ via the USB SetFeature request with endpoint stall feature
selector. When ‘1,’ will force a stall response when endpoint 1 is
addressed. Reset with USB ClearFeature request with endpoint stall
feature selector.

4 EP1EN Hub Endpoint 1 Enable:

Set to ‘1’ upon receipt of a USB SetConfiguration request value of
0001H. Endpoint 1 cannot respond unless this bit is set. Bit is reset upon
receipt of configuration value other than 0001H or a system or USB
reset.
NOTE: This bit must be set in order for the UPWEN# pin to enable

power to the downstream ports. Downstream power cannot be
applied until this is done.

3 OVISC Hub Over-current Indicator Status Change (read/clear-only): †

Set to ‘1’ if change is detected in the over-current status, even if the
condition goes away before it is detected by firmware. Cleared via a
USB ClearFeature request with C_HUB_OVER_CURRENT feature
selector. Cleared to ‘0’ if no change.

2 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.
† Bits 3:0 are returned in response to a Get Hub Status request from the USB host. This response is a

four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.
C-33

8x930Ax, 8x930Hx USER’S MANUAL
1 OVI Latest Over-current Indicator (read-only): †

Hardware sets and clears this bit via the OVRI# input pin.‘1’ indicates an
over-current condition. ‘0’ indicates normal power operation.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

HSTAT (Continued) Address: S:AEH
Reset State: x000 0000B

Hub Status and Configuration Register. This SFR contains bits for remote wake-up request, status
and status change indicators for over-current and hub endpoint 1 stall and enable.

7 0

— HRWUPE EP1STL EP1EN OVISC — OVI —

Bit
Number

Bit
Mnemonic Function

† Bits 3:0 are returned in response to a Get Hub Status request from the USB host. This response is a
four-byte field with zero padding (MSB at left): 0000 0000 0000 00[3] 0 0000 0000 0000 00[1] 0.
C-34

REGISTERS

IEN0 Address: S:A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IEN0 contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

7 0

EA EC ET2 ES ET1 EX1 ET0 EX0

Bit
Number

Bit
Mnemonic Function

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0–6 of this register, as well as the interrupts enabled by the bits in the
IEN1 SFR.

Clearing this bit disables all interrupts, except the TRAP interrupt, which
is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ET0 Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EX0 External Interrupt 0 Enable:

Setting this bit enables external interrupt 0.
C-35

8x930Ax, 8x930Hx USER’S MANUAL

IEN1 Address: S:B1H
Reset State: xxxx x000H

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.

7 0

— — — — — ESR EF ESOF

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 ESR Enable Suspend/Resume:

USB global suspend/resume interrupt enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.
C-36

REGISTERS

IPH0 Address: S:B7H
Reset State: x000 0000B

Interrupt Priority High Control Register 0. IPH0, together with IPL0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0.x IPL0.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPH0.6 IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPH0.6 PCA Interrupt Priority Bit High

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPH0.4 Serial I/O Port Interrupt Priority Bit High

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPH0.2 External Interrupt 1 Priority Bit High

1 IPH0.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPH0.0 External Interrupt 0 Priority Bit High
C-37

8x930Ax, 8x930Hx USER’S MANUAL

IPH1 Address: S:B3H
Reset State: x000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — — — — IPH1.2 IPH1.1 IPH1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High

1 IPH1.1 USB Function Interrupt Priority Bit High

0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High
C-38

REGISTERS

IPL0 Address: S:B8H
Reset State: x000 0000B

Interrupt Priority Low Control Register 0. IPL0, together with IPH0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0.x IPL0.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPL0.6 IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPL0.6 PCA Interrupt Priority Bit Low

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPL0.4 Serial I/O Port Interrupt Priority Bit Low

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPL0.2 External Interrupt 1 Priority Bit Low

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPL0.0 External Interrupt 0 Priority Bit Low
C-39

8x930Ax, 8x930Hx USER’S MANUAL

IPL1 Address: S:B2H
Reset State: x000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — — — — IPL1.2 IPL1.1 IPL1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low

1 IPL1.1 USB Function Interrupt Priority Bit Low

0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low

P0 Address: S:80H
Reset State: 1111 1111B

Port 0. P0 is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port 0 read this register. The other instructions that read port 0 read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to P0, and the former
contents of P0 are lost.

7 0

P0 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P0.7:0 Port 0 Register:

Write data to be driven onto the port 0 pins to these bits.
C-40

REGISTERS
P1 Address: S:90H
Reset State: 1111 1111B

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0

P1 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P1.7:0 Port 1 Register:

Write data to be driven onto the port 1 pins to these bits.

P2 Address: S:A0H
Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0

P2 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P2.7:0 Port 2 Register:

Write data to be driven onto the port 2 pins to these bits.
C-41

8x930Ax, 8x930Hx USER’S MANUAL
P3 Address: S:B0H
Reset State: 1111 1111B

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0

P3 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P3.7:0 Port 3 Register:

Write data to be driven onto the port 3 pins to these bits.
C-42

REGISTERS

PCON Address: S:87H
Reset State: 00xx 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial I/O
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SM0 bit.

7 0

SMOD1 SMOD0 LC POF GF1 GF0 PD IDL

Bit
Number

Bit
Mnemonic Function

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 13-10.

6 SMOD0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SM0 bit.
See the SCON register (Figure 13-2 on page 13-4).

5 LC Low-clock Mode Enable:

Setting this bit forces the internal clock (FCLK) distributed to the CPU and
peripherals (but not the USB module) to 3 MHz. This bit is automatically
set after a reset. Clearing this bit through firmware returns FCLK to the
clock frequency determined by pins PLLSEL2:0.

4 POF Power Off Flag:

Set by hardware as VCC rises above 3 V to indicate that power has been
off or VCC had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by firmware.

3 GF1 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GF0 General Purpose Flag:

Set or cleared by firmware. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode. This bit should only be set if the
GSUS bit is also set. Cleared by hardware when an interrupt or reset
occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.
C-43

8x930Ax, 8x930Hx USER’S MANUAL

PCON1 Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x930.

7 0

— — — URDIS URST RWU GRSM GSUS

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

4 URDIS
(8x930Ax)

USB Reset Disable:

When clear by firmware, a chip reset occurs upon receiving of a USB
reset signal. This resets the MCS® 251 core, USB blocks and all
peripherals.

When set by firmware, the MCS 251 core and peripherals will not reset
when a USB reset signal is detected. Upon detecting a USB reset signal,
the 8x930Ax resets all the USB blocks (FIFOs, FIU, SIE, and
transceiver), sets the URST bit and generates a USB reset interrupt
(refer to the description of URST).

URDIS
(8X930Hx)

Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

3 URST
(8x930Ax)

USB Reset Flag:

This flag will be set by hardware when a USB reset occurs, regardless of
whether the ESR bit in the IEN1 register is enabled or disabled. The
URST also serves as the interrupt bit, ORed with GRSM and GSUS bits
to generate an interrupt. Should be cleared by firmware when serving
the USB reset interrupt.

URST
(8x930Hx)

Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

2 RWU Remote Wake-up Bit:

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1 and GRSM = 0). See
Figure 15-3 on page 15-11.

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.
C-44

REGISTERS
1 GRSM Global Resume Bit:

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt†
Cleared by firmware when servicing the global suspend/resume
interrupt. (This bit can also be set/cleared by firmware for testability.)
This bit is not set if remote wakeup is used (see RWU). See Figure 15-3
on page 15-11.

0 GSUS Global Suspend Bit:

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.† During this ISR, firmware should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 15-3 on page 15-11.

PCON1 (Continued) Address: S:0DFH
Reset State: xxx0 0000B

USB Power Control Register. Facilitates the control and status relating to global suspend and
resume, USB reset separation, and remote wake-up of the 8x930.

7 0

— — — URDIS URST RWU GRSM GSUS

† Firmware should prioritize GRSM over GSUS if both bits are set simultaneously.
C-45

8x930Ax, 8x930Hx USER’S MANUAL
.

PSW Address: S:D0H
Reset State: 0000 0000B

7 0

CY AC F0 RS1 RS0 OV UD P

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 F0 Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0–R7).

RS1 RS0 Bank Address

0 0 0 00H–07H
0 1 1 08H–0FH
1 0 2 10H–17H
1 1 3 18H–1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).
C-46

REGISTERS
.

PSW1 Address: S:D1H
Reset State: 0000 0000B

7 0

CY AC N RS1 RS0 OV Z —

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

Identical to the CY bit in the PSW register.

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4–3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.

2 OV Overflow Flag:

Identical to the OV bit in the PSW register.

1 Z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

RCAP2H, RCAP2L Address: RCAP2H S:CBH
RCAP2L S:CAH

Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0

High/Low Byte of Timer 2 Reload/Capture Value

Bit
Number

Bit
Mnemonic Function

7:0 RCAP2H.7:0

RCAP2L.7:0

High byte of the timer 2 reload/recapture register

Low byte of the timer 2 reload/recapture register
C-47

8x930Ax, 8x930Hx USER’S MANUAL

RXCNTH,
RXCNTL
(Endpoint-indexed)

Address: S:E7H
 S:E6H

Reset States:
Endpoint 1 RXCNTH xxxx xx00B

RXCNTL 0000 0000B
Other

Endpoints† RXCNTL xxx0 0000B

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8

— — — — — — BC9 BC8

7 (RXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (RXCNTL) Other Endpoints† 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Endpoint 1

15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte. Stores receive byte count (RXCNT). Implemented
for function endpoint 1 only.

Other Endpoints†

7:0 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer. Stores receive byte count (RXCNT). 3.

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.
C-48

REGISTERS

RXCON
(Endpoint-indexed)

Address: S:E4H
Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

6 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

5 RXWS Receive FIFO Wait-state Read:

At the 8x930 core frequency of 12 MHz, not all instructions that access the
receive FIFO are guaranteed to work due to critical paths inherent in the
8x930 architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:†

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:†

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by firmware.

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,
C-49

8x930Ax, 8x930Hx USER’S MANUAL
2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker

X ACK Unchanged Advanced

0 NAK Reversed Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.
NOTE: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker: †

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: †

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

RXCON (Continued)
(Endpoint-indexed)

Address: S:E4H
Reset State: 0x00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

† ARM mode is recommended. ADVWM and REVWP, which control the write marker and write pointer
when ARM = 0, are used for test purposes,
C-50

REGISTERS

RXDAT
(Endpoint-indexed)

Address: S:E3H
Reset: xxxx xxxxB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

RXDAT.7:0

Bit
Number

Bit
Mnemonic Function

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8x930 reads from this register. The write
pointer and read pointer are incremented automatically after a write and
read, respectively.
C-51

8x930Ax, 8x930Hx USER’S MANUAL

RXFLG
(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

7:6 RXFIF1:0 Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-5 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF1:0 Operation Flag Next RXFIF1:0 Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements” RXFIF
immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.
NOTE: To simplify firmware development, it is recommended that you

utilize control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer and the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

† When set, all transmissions are NAKed.
C-52

REGISTERS
2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals the
read pointer. Hardware clears the bit when the full condition no longer exists.
This is not a sticky bit and always tracks the current status of the receive
FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag†:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.
NOTE: When this bit is set, the FIFO is in an unknown state. It is

recommended that you reset the FIFO in the error management
routine using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag†:

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through firmware, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.†

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.†

RXFLG (Continued)
(Endpoint-indexed)

Address: S:E5H
Reset State: 00xx 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
C-53

8x930Ax, 8x930Hx USER’S MANUAL

RXSTAT
(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): †

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
along with the new RXSEQ value.
NOTE: Always verify this bit after writing to ensure that there is no conflict

with hardware, which could occur if a new SETUP token is
received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware at the end of
handshake phase transmission of the setup stage.

This bit is used only for control endpoints.
† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
C-54

REGISTERS
4 EDOVW End Overwrite Flag:† This flag is set by hardware during the handshake
phase of a SETUP stage. It is set after every SETUP packet is received and
must be cleared prior to reading the contents of the FIFO. When set, the
FIFO state (FIF and read pointer) remains locked for this endpoint until this
bit is cleared. This prevents a prior, ongoing firmware read from corrupting
the read pointer after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
NOTE: Make sure the EDOVW bit is cleared prior to reading the contents

of the FIFO.

3 RXSOVW Receive Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on RXSEQ. This bit always returns ‘0’
when read. †††

2 RXVOID Receive Void Condition (read-only):††

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked

2. The EPCON register’s RXSTL bit is set

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in response to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

RXSTAT
(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
C-55

8x930Ax, 8x930Hx USER’S MANUAL
1 RXERR Receive Error (read-only):††

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXACK bit at the end of data
reception and is mutually exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):††

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG or FIFLG1 (8x930Ax with 6EPP) is
set when active. This bit is updated with the RXERR bit at the end of data
reception and is mutually exclusive with RXERR.

RXSTAT
(Endpoint-indexed)

Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX. (Endpoint-indexed SFR)

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
††† The SIE will handle all sequence bit tracking. This bit should be used only when initializing a new

configuration or interface.
C-56

REGISTERS

SADDR Address: S:A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit
Number

Bit
Mnemonic Function

7:0 SADDR.7:0

SADEN Address: S:B9H
Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given
address for multiprocessor communication.

7 0

Mask for SADDR

Bit
Number

Bit
Mnemonic Function

7:0 SADEN.7:0

SBUF Address: S:99H
Reset State: xxxx xxxxB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial I/O port. Reading SBUF
reads the receive buffer of the serial I/O port.

7 0

Data Sent/Received by Serial I/O Port

Bit
Number

Bit
Mnemonic Function

7:0 SBUF.7:0
C-57

8x930Ax, 8x930Hx USER’S MANUAL
SCON Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

7 FE

SM0

Framing Error Bit:

To select this function, set the SMOD0 bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by firmware, not by valid
frames.

Serial Port Mode Bit 0:

To select this function, clear the SMOD0 bit in the PCON register.
Firmware writes to bits SM0 and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Firmware writes to bits SM1 and SM0 (above) to select the serial port
operating mode.

SM0 SM1 Mode Description Baud Rat e†

0 0 0 Shift register FCLK/6
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FCLK/16†† or FCLK/32††

1 1 3 9-bit UART Variable
†See note on page page 13-1.
††Select by programming the SMOD bit in the PCON register (see
section “Baud Rates” on page 13-10).

5 SM2 Serial Port Mode Bit 2:

Firmware writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, firmware writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.
C-58

REGISTERS
2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
firmware.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by firmware.

SCON (Continued) Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function
C-59

8x930Ax, 8x930Hx USER’S MANUAL

SOFH Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TCLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight TCLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.
C-60

REGISTERS

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0

TS7:0

Bit
Number

Bit
Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

SP Address: S:81H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0

SP Contents

Bit
Number

Bit
Mnemonic Function

7:0 SP.7:0 Stack Pointer:

Bits 0–7 of the extended stack pointer, SPX (DR60).
C-61

8x930Ax, 8x930Hx USER’S MANUAL
SPH Address: S:BEH
Reset State: 0000 0000B

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0

SPH Contents

Bit
Number

Bit
Mnemonic Function

7:0 SPH.7:0 Stack Pointer High:

Bits 8–15 of the extended stack pointer, SPX (DR(60)).
C-62

REGISTERS

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit
Number

Bit
Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by firmware. TF2 is not set if
RCLK = 1 or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.
C-63

8x930Ax, 8x930Hx USER’S MANUAL

T2MOD Address: S:C9H
Reset State: xxxx xx00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0

— — — — — — T2OE DCEN

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T2OE Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.
C-64

REGISTERS

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Function

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

Set/cleared by firmware to turn timer 1 on/off.

5 TF0 Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TR0 Timer 0 Run Control Bit:

Set/cleared by firmware to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IE0 Interrupt 0 Flag:

Set by hardware when an external interrupt is detected on the INT0# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 IT0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).
C-65

8x930Ax, 8x930Hx USER’S MANUAL

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

Bit
Number

Bit
Mnemonic Function

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATE0 Timer 0 Gate:

When GATE0 = 0, run control bit TR0 gates the input signal to the timer
register. When GATE0 = 1 and TR0 = 1, external signal INT0 gates the
timer input.

2 C/T0# Timer 0 Counter/Timer Select:

C/T0# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/T0# = 1 selects counter operation: timer 0 counts
negative transitions on external pin T0.

1, 0 M10, M00 Timer 0 Mode Select:

M10 M00
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TL0)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL0). Reloaded

from TH0 at overflow.
1 1 Mode 3: TL0 is an 8-bit timer/counter. TH0 is an 8-bit

timer using timer 1’s TR1 and TF1 bits.
C-66

REGISTERS

TH0, TL0 Address: TH0 S:8CH
TL0 S:8AH

Reset State: 0000 0000B

TH0, TL0 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 0 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH0.7:0

TL0.7:0

High byte of the timer 0 timer register.

Low byte of the timer 0 timer register.

TH1, TL1 Address: TH1 S:8DH
TL1 S:8BH

Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 1 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH1.7:0

TL1.7:0

High byte of the timer 1 timer register.

Low byte of the timer 1 timer register.
C-67

8x930Ax, 8x930Hx USER’S MANUAL

TH2, TL2 Address: TH2 S:CDH
TL2 S:CCH

Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
2.

7 0

High/Low Byte of Timer 2 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH2.7:0

TL2.7:0

High byte of the timer 2 timer register.

Low byte of the timer 2 timer register.
C-68

REGISTERS

TXCNTH,
TXCNTL
(Endpoint-indexed)

Address: S:F7H
S:F6H

Reset States: Endpoint 1 TXCNTH xxxx xx00B
TXCNTL 0000 0000B

Other
Endpoints† TXCNTL xxx0 0000B

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints.

15 (TXCNTH) Endpoint 1 8

— — — — — — BC9 BC8

7 (TXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (TXCNTL) Other Endpoints 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Function Endpoint 1

15:10 — Reserved.

Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count. (write, conditional read††)
Ten-bit, ring buffer. Stores transmit byte count (TXCNT). Implemented for
function endpoint 1 only.

Other Endpoints†

7:0 — Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count. (write, conditional read††)
Five-bit, ring buffer. Stores transmit byte count (TXCNT) for endpoints 0, 2,
and 3.

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (6EPP option, 8x930Ax only). Byte
count registers are not implemented for hub endpoint 1.

†† Read these bits only if TXFIF1:0 = 0; otherwise underrun errors may occur.
C-69

8x930Ax, 8x930Hx USER’S MANUAL

TXCON
(Endpoint-indexed)

Address: S:F4H
Reset State: Function Endpoint 1 000x 0100B

Other Endpoints† 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

Function
Endpoint 1

TXCLR FFSZ1 FFSZ0 — TXISO ATM ADVRM REVRP

7 0

Other
Endpoints †

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, resets all the read/write pointers
and markers, sets the EMPTY bit in TXFLG, and clears all other bits in
TXFLG. After the flush, hardware clears this bit. Setting this bit does not
affect the ATM, TXISO, and FFSZ bits, or the TXSEQ bit in the TXSTAT
register.

6:5 FFSZ1:0

Function
Endpoint 1
only

FIFO Size:

For function endpoint 1 only (EPINDEX = 0000 0001B), these bits select
the sizes of both the transmit and receive FIFOs. (There are no FFSZ bits
in the corresponding RXCON.) These bits are not reset when the TXCLR
bit is set in the TXCON register.

FFSZ1:0 Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

—

Other End-
points †

Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

4 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Firmware sets this bit to indicate that the transmit FIFO contains
isochronous data. The FIU uses this bit to set up the handshake protocol at
the end of a transmission. This bit is not reset when TXCLR is set and
must be cleared by firmware.

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8x930Ax
only).

†† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read
pointer when ATM = 0, are used for test purposes,
C-70

REGISTERS
2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

TXISOTX Status Read Pointer Read Marker

X ACK Unchanged Advanced (1)
0 NAK Reversed (2) Unchanged
1 NAK Unchanged Advanced (1)

1. to origin of next data set 2. to origin of the data set last read

This bit should always be set, except for test purposes. Setting this bit
disables ADVRM and REVRP. This is a sticky bit that is not reset when
TXCLR is set, but can be set and cleared by firmware. Hardware neither
clears nor sets this bit.

1 ADVRM Advance Read Marker Control (non-ATM mode only)††:

Setting this bit prepares for the next packet transmission by advancing the
read marker to the origin of the next data packet (the position of the read
pointer). Hardware clears this bit after the read marker is advanced. This
bit is effective only when the REVRP, ATM, and TXCLR bits are all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only)††:

In the case of a bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the
FIU can reread the last set for retransmission. Hardware clears this bit
after the read pointer is reversed. This bit is effective only when the
ADVRM, ATM, and TXCLR bits are all clear.

TXCON (Continued)
(Endpoint-indexed)

Address: S:F4H
Reset State: Function Endpoint 1 000x 0100B

Other Endpoints† 0xxx 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

Function
Endpoint 1

TXCLR FFSZ1 FFSZ0 — TXISO ATM ADVRM REVRP

7 0

Other
Endpoints †

TXCLR — — — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

† Other endpoints = Hub endpoint 0; function endpoints 0, 3:2 or 0, 5:2 (for 6EPP option, 8x930Ax
only).

†† ATM mode is recommended. ADVRM and REVRP, which control the read marker and read
pointer when ATM = 0, are used for test purposes,
C-71

8x930Ax, 8x930Hx USER’S MANUAL

TXDAT
(Endpoint-indexed)†

Address: S:F3H
Reset State: xxxx xxxxB

USB Transmit FIFO Data Register. Data to be transmitted by the FIFO specified by EPINDEX is first
written to this register.

7 0

Transmit Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 TXDAT.7:0 Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer is
incremented automatically after a write.

† For hub endpoint 1, TXDAT is used in a different manner. See Figure 8-6 on page 8-12.

TXDAT (For hub endpoint 1 only) EPINDEX=81H† Address: S:F3H
Reset State: 0000 0000B

7 0

— — — TXDAT.4 TXDAT.3 TXDAT.2 TXDAT.1 TXDAT.0

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Values read from these bits are indeterminate.

4:0 TXDAT.4:0 Hub Endpoint 1 Status Change (read-only††):

Hardware communicates status changes to the host by setting the
appropriate bit:

TXDAT.0 hub status change
TXDAT.1 port 1 status change
TXDAT.2 port 2 status change
TXDAT.3 port 3 status change
TXDAT.4 port 4 status change

A ‘1’ indicates a status change and ‘0’ indicates no status change. When
endpoint 1 is addressed via an IN token, the entire byte is sent if at least one
bit is a ‘1’. If all bits are zero, a NAK handshake is returned.

† TXDAT SFRs are also used for function (and hub endpoint 0) data transmission (EPINDEX=0xH or
80H). In that case, the bits are defined differently as shown in Figure 7-8 on page 7-18.

†† Bits 4-0 can be set indirectly by firmware by writing to port x’s HPSC SFR. Setting any bit in port x’s
HPSC results in the hardware setting bit x in TXDAT. Bits can be cleared indirectly in firmware by
clearing the condition that caused the status change.
C-72

REGISTERS

TXFLG
(Endpoint-indexed)

Address: S:F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

7:6 TXFIF1:0 FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIF0 are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
firmware (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF1:0 Operation Flag Next TXFIF1:0 Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF = 1

00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF. You must check the TXFIF flags
before and after writes to the transmit FIFO and TXCNT for traceability. See
the TXFLUSH bit in TXSTST.
NOTE: To simplify firmware development, configure control endpoints in

single-packet mode.

5:4 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

† When set, all transmissions are NAKed.
C-73

8x930Ax, 8x930Hx USER’S MANUAL
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag†:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through firmware. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.

If the TXCNT doesn’t agree with the data, hardware sets TXURF. This
indicates that the transmitted data was corrupted by a bit-stuffing or CRC
error.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag†:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
firmware. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

TXFLG (Continued)
(Endpoint-indexed)

Address: S:F5H
Reset State: 00xx 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
C-74

REGISTERS

TXSTAT
(Endpoint-indexed)

Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): †

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:

Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

3 TXSOVW Transmit Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. ††

2 TXVOID Transmit Void (read-only): †††

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid IN token, due to the conditions that cause the transmit
FIFO to be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake returned by the function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
C-75

8x930Ax, 8x930Hx USER’S MANUAL
1 TXERR Transmit Error (read-only):††

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received
2. Transmit FIFO goes into underrun condition while transmitting

The corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax
with 6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXACK bit at the end of the data
transmission (this bit is mutually exclusive with TXACK). For isochronous
transactions, this bit is not updated until the next SOF.

0 TXACK Transmit Acknowledge (read-only):††

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit, FTXDx in FIFLG or FIFLG1 (8x930Ax with
6EPP), is set when active. For non-isochronous transactions, this bit is
updated by hardware along with the TXERR bit at the end of data
transmission (this bit is mutually exclusive with TXERR). For isochronous
transactions, this bit is not updated until the next SOF.

TXSTAT (Continued)
(Endpoint-indexed)

Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
††† For additional information on the operation of these bits see Appendix D, “Data Flow Model.”
C-76

REGISTERS

WCON Address: S:A7H
Reset: xxxx xx00B

Wait State Control Register. Use this register to enable the real-time wait state input signal and/or
the wait state output clock.

7 0

— — — — — — RTWCE RTWE

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

The values read from these bits are indeterminate. Write “0” to these
bits.

1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT
CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait
state input on port 1.6 (WAIT#).

WDTRST Address: S:A6H
Reset State: xxxx xxxxB

Watchdog Timer Reset Register. Writing the two-byte sequence 1EH-E1H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it return FFH. The WDT itself is not read or write accessible. See Chapter 11, “Timer/Counters
and Watchdog Timer.”

7 0

WDTRST Contents (Write-only)

Bit
Number

Bit
Mnemonic Function

7:0 WDTRST.7:0 Provides user control of the hardware WDT.
C-77

8x930Ax, 8x930Hx USER’S MANUAL

figura-
ration
 are

onto the
C.3 CONFIGURATION BYTES

The 8x930 reserves the top eight bytes of the memory address space for an eight-byte con
tion array. The two lowest bytes of the configuration array are assigned to the two configu
bytes UCONFIG0 and UCONFIG1. The configuration bits contained in configuration bytes
used to select source mode or binary mode opcode configuration, select the bytes pushed
stack by interrupts, map on-chip code memory, and configure the external memory interface. The
configuration bytes are discussed in more detail in Chapter 4, “Device Configuration.”

UCONFIG0
(1), (3)

Address: FF:FFF8H (2)

7 0

— WSA1# WSA0# XALE# RD1 RD0 PAGE# SRC

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

Reserved for internal or future use. Set this bit when programming
UCONFIG0.

6:5 WSA1:0# Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSA1# WSA0#
0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = TOSC.
Clear this bit for ALE = 3TOSC (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8x930.
2. Address. UCONFIG0 is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930

fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size
and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.
C-78

REGISTERS
1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on P0.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on P0.

0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51
microcontrollers).

UCONFIG0
(1), (3)

Address: FF:FFF8H (2)

7 0

— WSA1# WSA0# XALE# RD1 RD0 PAGE# SRC

Bit
Number

Bit
Mnemonic Function

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8x930.
2. Address. UCONFIG0 is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930

fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size
and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.
C-79

8x930Ax, 8x930Hx USER’S MANUAL

UCONFIG1
(1),(3)

Address: FF:FFF9H (2)

7 0

— — — INTR — WSB1# WSB0# EMAP#

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Reserved for internal or future use. Set these bits when programming
UCONFIG1.

4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

3 — Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0#

External Wait State B (Region 01:):

WSB1# WSB0#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H–FF:3FFFH to 00:E000H–00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H–00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)” on page 14.

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8x930.
2. Address. UCONFIG1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the

8x930 fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory depends
on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.
C-80

D
Data Flow Model

of the
wn
APPENDIX D
DATA FLOW MODEL

This appendix describes the data flow model for the 8x930 USB transactions. This data flow mod-
el, presented in truth table form, is intended to bridge the hardware and firmware layers
8x930. It describes the behavior of the 8x930 in response to a particular USB event, given a kno
state/configuration.

The types of data transfer supported by the 8x930 are:

• Non-isochronous transfer (interrupt, bulk)

• Isochronous transfer

• Control transfer

Table D-1. Non-isochronous Transmit Data Flow

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

00 Received IN
token, but no
data or
TXOE = 0

00 no
chg

no
chg

1 no
chg

no
chg

None NAK No data was
loaded, so
NAK

Received IN
token,
RXSETUP =
1

00 no
chg

no
chg

1 no
chg

no
chg

None NAK Control
endpoint only.
Endpoint will
NAK when
RXSETUP =
1 even if
TXSTL = 1

Data loaded
into FIFO
from CPU,
CNT written

01 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded
into FIFO,
FIFO error
occurs

00 no
chg

no
chg

no
chg

1 no
chg

None NAKs
future trans-
actions

Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-1

8x930Ax, 8x930Hx USER’S MANUAL
01/10 Received IN
token, data
transmitted,
host ACKs

00 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data ACK
received, so
no errors.
Read marker
advanced

Received IN
token, data
transmitted,
no ACK
(time-out)

01/10 1 0 0 no
chg

no
chg

Set
transmit
interrupt

Send data SIE times-out.
Read ptr
reversed.

Received IN
token, but
RXSETUP =
1 (or TXOE =
0)

01/10 no
chg

no
chg

1 no
chg

no
chg

None NAK, NAKs
future trans-
actions
except
SETUP.

Received
Setup token
(or transmit
disabled), so
IN tokens are
NAKed. (2)

Received IN
token, data
transmitted,
FIFO error
occurs

01/10 1 0 0 no
chg

1 Set
transmit
interrupt

Send data
with bit-
stuff error.
NAKs
future trans-
actions.

Only
underrun FIFO
error can
occur here.
Read ptr
reversed.

Received IN
token with
existing
FIFO error
and TXERR
set.

01/10 1
(no
chg)

0
(no
chg)

1 no
chg

1 (no
chg)

None NAK Treated like a
“void”
condition.

Received IN
token
without
existing
FIFO error
but TXERR
set, data
retrans-
mitted, host
ACKs

00 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data Data is
retransmitted.
TXACK is set
and TXERR is
cleared. The
TXERR was
set by
previous
transaction
when host
time-out.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-2

DATA FLOW MODEL
Data loaded
into FIFO
from CPU,
CNT written

11 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded
into FIFO,
FIFO error
occurs. CNT
not written
yet.

01/10 no
chg

no
chg

no
chg

1 no
chg

None NAKs future
transactions

Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT

NOTE: no
TXERR, but
TXOVF set.

11 Received IN
token, data
transmitted,
host ACKs

10/01 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data ACK
received, so
no errors.
Read marker
advanced.

Received IN
token, data
transmitted,
no ACK
(time-out)

11 1 0 0 no
chg

no
chg

Set
transmit
interrupt

Send data SIE times-out.
Read ptr
reversed.

Received IN
token, but
RXSETUP =
1 (or TXOE =
0)

11 0 0 1 no
chg

no
chg

None NAK, NAKs
future trans-
actions

Received
Setup token
(or transmit
disabled), so
IN tokens are
NAKed. (2)

Received IN
token, data
transmitted,
FIFO error
occurs

11 1 0 0 no
chg

1 Set
transmit
interrupt

Send data
with bit-
stuff error,
NAK future
transactions

Only FIFO
underrun
error can
occur here.
Read ptr
reversed.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-3

8x930Ax, 8x930Hx USER’S MANUAL
Received IN
token with
existing
FIFO error
and TXERR
set.

11 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None NAK Treated like a
“void”
condition.

Received IN
token
without
existing
FIFO error
but TXERR
set, data
retrans-
mitted, host
ACKs

10/ 01 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data Data is
retransmitted.
TXACK is set
and TXERR is
cleared. The
TXERR was
set by
previous
transaction
when host
time-out.

Data loaded
into FIFO
from CPU,
CNT written

11 no
chg

no
chg

no
chg

1 no
chg

None N/A Writing into
CNT when
TXFIF = 11
sets TXOVF
bit. Firmware
should always
check TXFIF
bits before
loading.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-4

DATA FLOW MODEL

T
(

0

0

N
1
2

3

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

XFIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

0 Received IN
token, but no
data or TXOE=0

00 no
chg

no
chg

1 no
chg

no
chg

None Send null
data packet

No data was
loaded, so send
null data
packet. This
event should
never happen.

Data loaded into
FIFO from CPU,
CNT written

01 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into
FIFO, FIFO error

00 no
chg

no
chg

no
chg

1 no
chg

None N/A Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT

1/10 Received IN
token, data
transmitted with
or without trans-
mission error

00 0 1 0 no
chg

no
chg

None Send data No ACK (time-
out) for ISO.
Read marker
advanced.

Received IN
token, data
transmitted,
FIFO error
occurs

00 1 0 0 no
chg

1 None Send CRC
with bit-
stuff error

Only underrun
FIFO error can
occur here.
Read marker
advanced.

OTES:
. These are sticky bits, which must be cleared by firmware.
. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

. NOTE: This table assumes TXEPEN and ATM are enabled.
D-5

8x930Ax, 8x930Hx USER’S MANUAL

.

11

T
(

N
1
2

3

Received IN
token with
existing FIFO
error

01/10 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None Send null
data packet

Treated like a
“void” condition

Received IN
token, but TXOE
= 0

01/10 0 0 1 no
chg

no
chg

None Send null
data packet

Endpoint not
enabled for
transmit, but
no NAK for
ISO.

Data loaded into
FIFO from CPU,
CNT written

11 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Firmware
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into
FIFO, FIFO error
occurs

01/10 no
chg

no
chg

no
chg

1 no
chg

None N/A Only overrun
FIFO error can
occur here.
Firmware
should always
check TXOVF
before write
CNT

Note: no
TXERR, but
TXOVF set.

Received IN
token, data
transmitted with
or without trans-
mission error

10/01 0 1 0 no
chg

no
chg

None Send data No ACK (time-
out) for ISO.
Read marker
advanced.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

XFIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

OTES:
. These are sticky bits, which must be cleared by firmware.
. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

. NOTE: This table assumes TXEPEN and ATM are enabled.
D-6

DATA FLOW MODEL

.

T
(

N
1
2

3

Received IN
token, data
transmitted,
FIFO error
occurs

10/01 1 0 0 no
chg

1 None Send data
with
bitstuff error

Only a FIFO
underrun error
can occur
here. Read
marker
advanced.

Received IN
token with
existing FIFO
error

11 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None Send null
data packet

Treated like a
“void” condition

Received IN
token, but TXOE
= 0

11 0 0 1 no
chg

no
chg

None Send null
data packet

Endpoint not
enabled for
transmit, but
no NAK for
ISO.

Receive SOF
indication

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

None
(SOF
interrupt
 set)

ASOF
set.

None Host never read
last frame’s
ISO. packet.
Read marker
and ptr
advanced,
oldest packet
is flushed from
FIFO.

Data loaded into
FIFO from CPU,
CNT written

11 no
chg

no
chg

no
chg

1 no
chg

None N/A CNT written
when
TXFIF=11 will
set TXOVF bit.

Firmware
should always
check TXFIF
bits before
loading.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

XFIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

OTES:
. These are sticky bits, which must be cleared by firmware.
. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

. NOTE: This table assumes TXEPEN and ATM are enabled.
D-7

8x930Ax, 8x930Hx USER’S MANUAL

F
(1

0

)

.

N
1

2
Table D-3. Non-isochr onous Receive Data Flow in Single-packet Mode (RXSPM = 1)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

0 Received
OUT token,
but RXIE = 0

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready.

Received
OUT token,
but timed-out
waiting for
data

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None FIFO not
loaded. Write
ptr reversed.

Received
OUT token,
no errors

01 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

Received
OUT token,
data CRC or
bit-stuff error

00 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write ptr
reversed.
(Possible to
have RXERR
cleared by
hardware
before seen by
firmware.)

Received
OUT token,
FIFO error
occurs

00 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received
OUT token
with FIFO
error already
existing

00 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to
be a “void”
condition. Will
NAK until
firmware clears
condition.

Received
OUT token,
but data
sequence
mismatch

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors

01 0 1 0 1 0 0 Set
receive
interrupt

ACK RXIE or RXSTL
has no effect.(2
RXSETUP will
be set (control
endpoints only)

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-8

DATA FLOW MODEL

.

0

T

F
(1

N
1

2
Received
SETUP
token, but
timed-out
waiting for
data

00 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically
and FIFO data
is invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed, (2)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

(2)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received.RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

CPU reads
FIFO,
causes FIFO
error

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAK
future
transac-
tions,
except
SETUP

FIFO was
empty when
read. Should
always check
RXFIF bits
before reading.

1 Received
OUT token

01 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready,
so data is
ignored (CRC or
FIFO error not
possible)

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-9

8x930Ax, 8x930Hx USER’S MANUAL

.

.

.

.

T

F
(1

N
1

2
Received
SETUP
token, no
errors

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

01 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically
and FIFO data
is invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

(2) (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-10

DATA FLOW MODEL

FI
(1:

00

.

NO
1. d.
2.

3.

T

F
(1

N
1

2
CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
set yet.

01 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Firmware
should check
RXURF bit
before writing
RXFFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Firmware
should check
RXURF bit
before writing
RXFFRC.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

Received
OUT token,
but RXIE = 0

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready.

Received
OUT token,
but timed-out
waiting for
data

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None None FIFO not loaded
Write ptr
reversed.

Received
OUT token,
no errors

01 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-11

8x930Ax, 8x930Hx USER’S MANUAL

e

e

w

o

e

.

d

FI
(1:

NO
1. d.
2.

3.
Received
OUT token,
data CRC or
bit-stuff error

00 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write ptr
reversed.
(Possible to hav
RXERR cleared
by hardware
before seen by
firmware.)

Received
OUT token,
FIFO error
occurs

00 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received
OUT token
with FIFO
error already
existing

00 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to b
a “void”
condition. Will
NAK until
firmware clears
condition.

Received
OUT token,
but data
sequence
mismatch

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors (dual
packet mode
not recom-
mended!)

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

00 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically an
FIFO data is
invalid. (2)

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-12

DATA FLOW MODEL

o

e

.

)
e

.

w

o

e

.

y

ts

01/

.

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, data
CRC or bit-
stuff error
(dual packet
mode not
recom-
mended)

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed, RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

RXIE or RXSTL
has no effect. (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO,
causes FIFO
error

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAK
future
transac-
tions

FIFO was empt
when read.
Should always
check RXFIF bi
before reading.

10 Received
OUT token,
but RXIE = 0

01/10 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready.

Received
OUT token,
but timed-out
waiting for
data

01/10 no
chg

no
chg

1 no
chg

no
chg

no
chg

None None FIFO not loaded
Write ptr
reversed.

Received
OUT token,
no errors

11 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-13

8x930Ax, 8x930Hx USER’S MANUAL

e

e

w

o

e

.

FI
(1:

NO
1. d.
2.

3.
Received
OUT token,
data CRC or
bit-stuff error

01/10 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write ptr
reversed.
(Possible to hav
RXERR cleared
by hardware
before seen by
firmware.)

Received
OUT token,
FIFO error
occurs

01/10 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received
OUT token
with FIFO
error already
existing

01/10 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to b
a “void”
condition. Will
NAK until
firmware clears
condition.

Received
OUT token,
but data
sequence
mismatch

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors (dual-
packet mode
not recom-
mended)

01/10 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

01/10 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically,
forcing new
SETUP to be
received. (2)

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-14

DATA FLOW MODEL

o

)
e

.

w

e

.

d
it

d
it

11

r

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, data
CRC or bit-
stuff error
(dual-packet
mode not
recom-
mended)

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed. RXIE
or RXSTL has n
effect. (2)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

RXIE or RXSTL
has no effect, (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01/10 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
set yet.

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Firmware shoul
check RXURF b
before writing
RXFFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Firmware shoul
check RXURF b
before writing
RXFFRC.

Received
OUT token

11 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready,
so data is
ignored (CRC o
FIFO error not
possible).

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-15

8x930Ax, 8x930Hx USER’S MANUAL

w

e

.

d

o

)
e

.

w

e

.

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, no
errors (dual-
packet mode
not recom-
mended!)

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. (2)
RXSETUP will b
set. (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

11 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically an
FIFO data is
invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error
(dual-packet
mode not
recom-
mended).

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed. RXIE
or RXSTL has n
effect. (2)

Received
SETUP
token, FIFO
error (dual-
packet mode
not recom-
mended).

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

RXIE or RXSTL
has no effect. (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-16

DATA FLOW MODEL

d
it

d
it

FI
(1:

NO
1. d.
2.

3.
CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
written yet.

11 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAKs
future
transac-
tions

Firmware shoul
check RXURF b
before writing
FFRC

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAKs
future
transac-
tions

Firmware shoul
check RXURF b
before writing
FFRC

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
NOTE: Dual-packet mode is NOT recommended for control endpoints.
D-17

8x930Ax, 8x930Hx USER’S MANUAL

FI
(1:

00 y,

a

d.

e

n.

.

NO
1. d.
2.
Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

Received OUT
token, but RXIE
= 0

00 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read
or timed-out
waiting for dat
packet, but no
NAK sent

Received OUT
token, but
timed-out
waiting for data

00 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

FIFO not loade

Received OUT
token, no errors

01 0 1 0 no
chg

no
chg

None None/
Time-out

Received, no
errors, advanc
write marker

Received OUT
token, data
CRC or bit-stuff
error

01 1 0 0 no
chg

no
chg

None None/
Time-out

Bad data still
loaded into
FIFO.

Received OUT
token, FIFO
error occurs

01 1 0 0 1 no
chg

None None/
Time-out

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received OUT
token with
FIFO error
already existing

00 1
(no
chg)

0
(no
chg)

1 1
(no
chg)

no
chg

None None/
Time-out

Treated like a
“void” conditio

CPU reads
FIFO, causes
FIFO error

00 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

FIFO was
empty when
read. Should
always check
RXFIF bits
before reading

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-18

DATA FLOW MODEL

d

01/ y.

d.

e

r,

n.

FI
(1:

NO
1. d.
2.
Receive SOF
indication

no
chg/up
dated

up-
dated

up-
dated

up-
dated

up-
dated

no
chg

None
(SOF
interrupt)

None/
Time-out

Flags are
updated at
SOF. Firmware
must check for
RXFIF = 00
condition to
detect no ISO
packet receive
this frame.

10 Received OUT
token, but RXIE
= 0

01/10 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read

Received OUT
token, but
timed-out
waiting for data

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

FIFO not loade

Received OUT
token, no errors

11 0 1 0 no
chg

no
chg

None None/
Time-out

Received, no
errors, advanc
write marker.

Received OUT
token, data
CRC or bit-stuff
error

11 1 0 0 no
chg

no
chg

None None/
Time-out

Possible to
have RXERR
cleared by
hardware
before seen by
firmware.
Reverse write
pointer.

Received OUT
token, FIFO
error occurs

11 1 0 0 1 no
chg

None None/
Time-out

Only OVF FIFO
error can occu
requires
firmware inter-
vention.

Received OUT
token with
FIFO error
already existing

01/10 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

Treated like a
“void” conditio

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-19

8x930Ax, 8x930Hx USER’S MANUAL

11 y,
e

d

y

w

FI
(1:

NO
1. d.
2.
CPU reads
FIFO, sets
RXFFRC

00 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

CPU reads
FIFO, causes
FIFO error

00 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Firmware
should check
RXURF bit
before writing
RXFFRC.

Received OUT
token

11 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read
but data must b
taken. This
situation shoul
never happen.

Received SOF
indication

no
chg/
up-
dated

up-
dated

up-
dated

up-
dated

up-
dated

no
chg

None
(SOF
interrupt)

None/
Time-out

Error condition
(not handled b
hardware).
Firmware
should not allo
this condition.

CPU reads
FIFO, sets
RXFFRC

10 or
01

no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

CPU reads
FIFO, causes
FIFO error.
RXFFRC not
set yet.

11 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Firmware
should check
RXURF bit
before writing
RXFFRC.

CPU reads
FIFO, causes
FIFO error. Set
RXFFRC.

10 or
01

no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Firmware
should check
RXURF bit
before writing
RXFFRC.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-20

Glossary

is man-
inol-

n

n

n

n

f

e
e

st

y
by
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in th
ual. (Chapter 1, “Guide to this Manual,” discusses notational conventions and general term
ogy.)

#0data16 A 32-bit constant that is immediately addressed in a
instruction. The upper word is filled with zeros.

#1data16 A 32-bit constant that is immediately addressed in a
instruction. The upper word is filled with ones.

#data An 8-bit constant that is immediately addressed in a
instruction.

#data16 A 16-bit constant that is immediately addressed in a
instruction.

#short A constant, equal to 1, 2, or 4, that is immediately
addressed in an instruction.

ACK Acknowledgment. Handshake packet indicating a
positive acknowledgment.

accumulator A register or storage location that forms the result o
an arithmetic or logical operation.

addr11 An 11-bit destination address. The destination can b
anywhere in the same 2 Kbyte block of memory as th
first byte of the next instruction.

addr16 A 16-bit destination address. The destination can be
anywhere within the same 64 Kbyte region as the fir
byte of the next instruction.

addr24 A 24-bit destination address. The destination can be
anywhere within the 16 Mbyte address space.

ALU Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

assert The term assert refers to the act of making a signal
active (enabled). The polarity (high/low) is defined b
the signal name. Active-low signals are designated
a pound symbol (#) suffix; active-high signals have no
suffix. To assert RD# is to drive it low; to assert ALE
is to drive it high.
Glossary-1

8x930Ax, 8x930Hx USER’S MANUAL

nt

le
is

f

big endien form Method of storing data that places the most significa
byte at lower storage addresses.

binary-code compatibility The ability of an 8x930 to execute, without
modification, binary code written for an MCS 51
microcontroller.

binary mode An operating mode, selected by a configuration bit,
that enables an 8x930 to execute, without
modification, binary code written for an MCS 51
microcontroller.

bit A binary digit.

bit (operand) An addressable bit in the 8x930 architecture.

bit51 An addressable bit in the MCS 51 architecture.

bit stuffing Insertion of a ‘0’ bit into a data stream to cause an
electrical transition on the data wires allowing a PLL
to remain locked.

bulk transfer Non-periodic, large, “bursty” communication
typically used for a transfer that can use any availab
bandwidth and can also be delayed until bandwidth
available.

bus enumeration Detecting and identifying USB devices.

byte Any 8-bit unit of data.

clear The term clear refers to the value of a bit or the act o
giving it a value. If a bit is clear, its value is “0”;
clearing a bit gives it a “0” value.

code memory See program memory.

configuration bytes Bytes, residing in on-chip non-volatile memory, that
determine a set of operating parameters for the 8x930.

control transfer One of four Universal Serial Bus Transfer Types.
Control transfers support configuration/command
/status type communications between client and
function.

dir8 An 8-bit direct address. This can be a memory address
or an SFR address.

dir16 A 16-bit memory address (00:0000H–00:FFFFH)
used in direct addressing.
Glossary-2

GLOSSARY

ta

l

d

.

I

es

lso

t is
DPTR The 16-bit data pointer. In 8x930 microcontrollers,
DPTR is the lower 16 bits of the 24-bit extended da
pointer, DPX.

DPX The 24-bit extended data pointer in 8x930
microcontrollers. See also DPTR.

deassert The term deassert refers to the act of making a signa
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designate
by a pound symbol (#) suffix; active-high signals have
no suffix. To deassert RD# is to drive it high; to
deassert ALE is to drive it low.

device address The address of a device on the Universal Serial Bus
The device address is the default address when the
USB device is first powered or reset. Hubs and
functions are assigned a unique device address by
USB firmware.

doping The process of introducing a periodic table Group II
or Group V element into a Group IV element (e.g.,
silicon). A Group III impurity (e.g., indium or
gallium) results in a p-type material. A Group V
impurity (e.g., arsenic or antimony) results in an n-
type material.

double word A 32-bit unit of data. In memory, a double word
comprises four contiguous bytes.

dword See double word.

edge-triggered The mode in which a device or component recogniz
a falling edge (high-to-low transition), a rising edge
(low-to-high transition), or a rising or falling edge of
an input signal as the assertion of that signal. See a
level-triggered.

encryption array An array of key bytes used to encrypt user code as i
read from code memory; protects against
unauthorized access to user’s code.

endpoint A uniquely identifiable portion of a USB device that
is the source or sink of information in a commun-
ication flow between the host and the device.

EPP Endpoint pair. See endpoint.

EPROM Erasable, programmable read-only memory
Glossary-3

8x930Ax, 8x930Hx USER’S MANUAL

the

r

e

Os

rt
f

re
in

al

d.

d
external address A 16-bit, 17-bit, or 18-bit address presented on the
device pins. The address decoded by an external
device depends on how many of these address bits
external system uses. See also internal address.

FCLK Microcontroller internal clock frequency distributed
to the CPU and on-chip peripherals.

FET Field-effect transistor.

FIFO First-in, first-out data buffer. Each USB endpoint pai
has a transmit FIFO and a receive FIFO.

FIU Function Interface Unit. Its function is to manage th
data transaction that goes between the 8x930Hx and
the USB host based on the transfer type and the FIF
condition.

FOSC Frequency at pin XTAL1. The frequency of the on-
chip oscillator or external source.

frame The time from the start of one SOF token to the sta
of the subsequent SOF token; consists of a series o
transactions.

function A USB device that provides a capability to the host.
For example, an ISDN connection, a digital
microphone, or speakers.

handshake packet A packet that acknowledges or rejects a specific
condition. For examples, see ACK and NACK.

HIU Hub Interface Unit.

host The host computer system where the USB host
controller is installed. This includes the host hardwa
platform (CPU, bus, etc.) and the operating system
use.

Hub A Universal Serial bus device that provides addition
connections to the Universal Serial Bus.

idle mode The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

input leakage Current leakage from an input pin to power or groun

integer Any member of the set consisting of the positive an
negative whole numbers and zero.
Glossary-4

GLOSSARY

lso

e

e

rs

es

lso

s

l

internal address The 24-bit address that the device generates. See a
external address.

interrupt handler The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

interrupt latency The delay between an interrupt request and the tim
when the first instruction in the interrupt service
routine begins execution.

interrupt response time The time delay between an interrupt request and th
resulting break in the current instruction stream.

interrupt service routine (ISR) The firmware routine that services an interrupt.

interrupt transfer One of four USB transfer types. Interrupt transfer
characteristics are small data, non periodic, low
frequency, bounded latency, device initiated
communication typically used to notify the host of
device service needs.

ISO Isochronous

isochronous data A stream of data whose timing is implied by its
delivery rate.

isochronous transfer One of four USB transfer types, isochronous transfe
provide periodic, continuous communication
between host and device.

level-triggered The mode in which a device or component recogniz
a high level (logic one) or a low level (logic zero) of
an input signal as the assertion of that signal. See a
edge-triggered.

low-clock mode The default mode upon reset, low-clock mode ensure
that the ICC drawn by the 8x930 is less than one unit
load.

LSB Least-significant bit of a byte or least-significant byte
of a word.

maskable interrupt An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. Al
8x930 interrupts, except the firmware trap (TRAP),
are maskable.

MSB Most-significant bit of a byte or most-significant byte
of a word.
Glossary-5

8x930Ax, 8x930Hx USER’S MANUAL

d

k

n

r

multiplexed bus A bus on which the data is time-multiplexed with
(some of) the address bits.

n-channel FET A field-effect transistor with an n-type conducting
path (channel).

n-type material Semiconductor material with introduced impurities
(doping) causing it to have an excess of negatively
charged carriers.

nonmaskable interrupt An interrupt that cannot be disabled (masked). The
firmware trap (TRAP) is the 8x930’s only
nonmaskable interrupt.

npn transistor A transistor consisting of one part p-type material and
two parts n-type material.

NRZI Non Return to Zero Invert. A method of encoding
serial data in which ones and zeroes are represente
by opposite and alternating high and low voltages
where there is no return to zero (reference) voltage
between encoded bits. Eliminates the need for cloc
pulses.

OTPROM One-time-programmable read-only memory, a versio
of EPROM.

p-channel FET A field-effect transistor with a p-type conducting path.

p-type material Semiconductor material with introduced impurities
(doping) causing it to have an excess of positively
charged carriers.

PC Program counter.

phase-locked loop A circuit that acts as a phase detector to keep an
oscillator in phase with an incoming frequency.

PID Packet ID. A field in a USB packet that identifies the
type of packet and hence its format.

PLL See phase-locked loop.

program memory A part of memory where instructions can be stored fo
fetching and execution.

powerdown mode The power conservation mode that freezes both the
core clocks and the peripheral clocks.

PWM Pulse-width modulated (outputs).
Glossary-6

GLOSSARY

y

ot

an

rt

rel A signed (two's complement) 8-bit, relative
destination address. The destination is -128 to +127
bytes relative to the first byte of the next instruction.

reserved bits Register bits that are not used in this device but ma
be used in future implementations. Avoid any
firmware dependence on these bits. In the 8x930, the
value read from a reserved bit is indeterminate; do n
write a “1” to a reserved bit.

resume Once a device is in the suspend state, its operation c
be resumed by receiving non-idle signaling on the
bus. See also suspend.

RT Real-time

root hub A USB hub directly attached to the host controller.
This hub is attached to the host; tier 0.

root port The upstream port on a hub.

SE0 Single-ended zero. This is a reference to the USB
reset signal which is defined as both DP0 and DM0
below their threshold voltage.

SIE Serial Bus Interface Engine. Handles the
communications protocol of the USB.

set The term set refers to the value of a bit or the act of
giving it a value. If a bit is set, its value is “1”; setting
a bit gives it a “1” value.

SFR A special function register that resides in its
associated on-chip peripheral or in the 8x930 core.

sign extension A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

sink current Current flowing into a device to ground. Always a
positive value.

SOF Start of Frame. The SOF is the first transaction in
each frame. SOF allows endpoints to identify the sta
of frame and synchronize internal endpoint clocks to
the host.

source-code compatibility The ability of an 8x930 to execute re-compiled source
code written for an MCS 51 microcontroller.
Glossary-7

8x930Ax, 8x930Hx USER’S MANUAL

n

nd

n

n
source current Current flowing out of a device from VCC. Always a
negative value.

source mode An operating mode that is selected by a configuratio
bit. In source mode, an 8x930 can execute re-
compiled source code written for an MCS 51
microcontroller. In source mode, the 8x930 cannot
execute unmodified binary code written for an MCS
51 microcontroller. See binary mode.

SP Stack pointer.

SPX Extended stack pointer.

state time (or state) The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (The internal clock generator produces PH1 a
PH2 by halving the frequency of the signal on
XTAL1.) With a 16 MHz crystal, one state time
equals 125 ns. Because the device can operate at
many frequencies, this manual defines time
requirements in terms of state times rather than in
specific units of time.

suspend A low current mode used when the USB bus is idle.
The 8x930 enters suspend when there is a constant
idle state on the bus lines for more than 3.0 msec.
When a device is in suspend state, it draws less tha
500 µA from the bus. See also resume.

token packet A type of packet that identifies what transaction is to
be performed on the bus.

UART Universal asynchronous receiver and transmitter. A
part of the serial I/O port.

USB Universal Serial Bus. An industry-standard extensio
to the PC architecture with a focus on Computer
Telephony Integration (CTI), consumer, and
productivity applications.

WDT Watchdog timer, an internal timer that resets the
device if the firmware fails to operate properly.

word A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.
Glossary-8

GLOSSARY

 the
wraparound The result of interpreting an address whose
hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to
value expressed by the lower bits.
Glossary-9

Index

INDEX

#0data16, A-3
#1data16, A-3
#data

definition, A-3
#data16, A-3
#short, A-3
8x930, 1-1

block diagram, 2-2
8x930Ax, 1-1
8x930Hx, 1-1

A
A15:8, 10-1

description, 16-2
A16, 10-1

description, 16-2
A17, 10-1
AC flag, 5-17, 5-18, C-46, C-47
ACALL instruction, 5-14, A-23, A-25
ACC, 3-12, 3-18, C-4, C-8
Accumulator, 3-14

in register file, 3-12
AD7:0, 10-1

description, 16-2
ADD instruction, 5-8, A-13
ADDC instruction, 5-8, A-13
addr11, 5-12, A-3
addr16, 5-12, A-3
addr24, 5-12, A-3
Address spaces, 3-1

See also Memory space, SFRs, Register file,
External file, Compatibility

Addresses
internal vs external, 4-10

Addressing modes, 3-5, 5-4
See also Data instructions, Bit instructions,

Control instructions
AJMP instruction, 5-14, A-23
ALE

caution, 14-7
description, 16-2
extended, 4-11
following reset, 14-7
idle mode, 15-7

ANL instruction, 5-9, 5-10
for bits, A-22

ANL/ instruction, 5-10
for bits, A-22

Application notes, 1-6
Arithmetic instructions, 5-8, 5-9

table of, A-13, A-14, A-15

B
B register, 3-14, C-8

as SFR, 3-18, C-4
in register file, 3-12

Base address, 5-4
Baud rate, See Serial I/O port, Timer 1, Timer 2
Big endien form, 5-2
Binary and source modes, 2-5, 4-12–4-13, 5-1

opcode maps, 4-12
selection guidelines, 4-12

Bit address
addressing modes, 5-11
definition, A-3
examples, 5-10

Bit instructions, 5-10–5-11
addressing modes, 5-4, 5-10

bit51, 5-10, A-3
Broadcast address, See Serial I/O port
Bulletin board service (BBS), 1-7, 1-9
Bus cycles

See External bus cycles

C
Call instructions, 5-14
Capacitors

bypass, 14-2
CCAP1H–CCAP4H, CCAP1L–CCAP4L, 3-21,

C-7, C-9
CCAPM1–4, 3-21, 12-16, C-7, C-10

interrupts, 6-7
CCON, 3-21, 12-14, C-7, C-11
CEX1, 10-1
CEX2, 10-1
CEX3, 10-1
CEX4, 10-1
CEX4:0, 10-1
Index-1

8x930Ax, 8x930Hx USER’S MANUAL
CH, CL, 3-21, C-7, C-11
CJNE instruction, A-24
Clock

external, 2-9, 14-3
idle and powerdown modes, 15-7
idle mode, 15-7
on-chip crystal, 2-9
PLLSEL2:0, 2-10, 14-1
powerdown mode, 15-8, 15-9
sources, 14-2
USB rates (table), 2-10

CLR instruction, 5-9, 5-10, A-16, A-22
CMOD, 3-21, 12-13, C-7, C-12

interrupts, 6-7
CMP instruction, 5-8, 5-13, A-14
Code constants, 4-14
Code fetches

external, 16-1, 16-6
internal, 16-6
page hit and page miss, 16-6
page mode, 16-6

Code memory
MCS 51 architecture, 3-3
See also On-chip code memory, External code

memory
Compatibility (MCS 251 and MCS 51

architectures), 3-2–3-5
address spaces, 3-2, 3-4
external memory, 3-5
instruction set, 5-1
SFR space, 3-5
See also Binary and source modes

Configuration
array, 4-1, C-78

external, 4-3
on-chip, 4-2

bits, 4-4
external memory, 4-7
overview, 4-1
wait state, 4-11

Configuration bytes
bus cycles, 16-15
UCONFIG0, 4-1
UCONFIG0 (table), 4-5, C-78
UCONFIG1, 4-1
UCONFIG1 (table), 4-6, C-80
verifying, 17-1

Control instructions, 5-11–5-15

addressing modes, 5-11, 5-13
table of, A-23

Core, 2-8
SFRs, 3-18, C-4

CPL instruction, 5-9, 5-10, A-16, A-22
CPU, 2-8

block diagram, 2-8
Crystal

on-chip oscillator, 14-2
CY flag, 5-17, 5-18, C-46, C-47

D
DA instruction, A-15
Data instructions, 5-4–5-10

addressing modes, 5-4
Data Pointer, C-4
Data pointer, See DPH, DPL, DPTR, DPX, DPXL
Data transfer instructions, 5-9–5-10

table of, A-21
See also Move instructions

Data types, 5-1
Datasheets

on WWW, 1-8
DEC instruction, 5-8, A-14
descriptors

bDescLength, 8-7
bDescriptorType, 8-7
bHubContrCurrent, 8-7
bNbrPorts, 8-7
bPwrOn2PwrGood, 8-7
DeviceRemovable, 8-7
PortPwrCtrlMask, 8-7
wHubCharacteristics, 8-7

descriptors, hub, 8-6–8-7
Destination register, 5-3
dir16, A-3
dir8, A-3
Direct addressing, 5-4

in control instructions, 5-12
Displacement addressing, 5-4, 5-8
DIV instruction, 5-8, A-15
Division, 5-8
DJNZ instruction, A-24
Documents

ordering, 1-7
related, 1-6

DPH, DPL, 3-14, C-13
Index-2

INDEX
as SFRs, 3-18, C-4
DPTR, 3-14

in jump instruction, 5-12
DPX, 3-5, 3-12, 3-14, 5-4
DPXL, 3-14, C-14

as SFR, 3-18, C-4
external data memory mapping, 3-5, 5-4, 5-9
reset value, 3-5

E
EA#, 3-8

description, 16-2
ECALL instruction, 5-14, A-23
ECI, 10-1
EJMP instruction, 5-14, A-23
EMAP# bit, 3-9, 4-14
Encryption, 17-1
Encryption array, 17-1

key bytes, 17-5
EPCON, 7-7, C-15
EPINDEX, 7-6, C-18
ERET instruction, 5-14, A-23
Escape prefix (A5H), 4-12
Extended ALE, A-1, A-11
Extended stack pointer, See SPX
External address lines

number of, 4-8
See also External bus

External bus
inactive, 16-3
pin status, 16-15, 16-16
structure in page mode, nonpage mode, 16-6

External bus cycles, 16-3–16-16
definitions, 16-3
extended ALE wait state, 16-10
extended RD#/WR#/PSEN# wait state, 16-8
nonpage mode, 16-3, 16-5
page mode, 16-6–16-8
page-hit vs page-miss, 16-6
Real-time wait states, 16-8

External code memory
example, 16-19, 16-29
idle mode, 15-7
powerdown mode, 15-8

External memory, 3-9
design examples, 16-17–16-29
MCS 51 architecture, 3-2, 3-4, 3-5

External memory interface
configuring, 4-7–4-14
signals, 16-3

External RAM
example, 16-25
exiting idle mode, 15-8

F
F0 flag, 5-17, C-46
FADDR, 7-14, C-19
FaxBack service, 1-7, 1-8
FIE, 3-18, 6-4, 6-8, C-4, C-20, C-21
FIE1, 6-9
FIFLG, 3-18, 6-4, 6-11, C-4, C-22, C-23
FIFLG1, 6-12
Flash memory

example, 16-17, 16-19, 16-29
Frame Timer, 6-12

G
Given address, See Serial I/O port
Global suspend interrupt, 6-18

H
HADDR, 8-6, 8-8, 9-16
Help desk, 1-7
HIE, 3-18, 6-4, 6-16, C-4, C-24
HIFLG, 3-18, 6-4, 6-17, C-4, C-25
HPCON, 8-15, C-26
HPINDEX, 8-23, C-27
HPPWR, 8-28, C-28
HPSC, 8-21, C-29
HPSTAT, 8-18, C-31
HSTAT, 8-9, C-33
Hub interrupt, 6-6

I
I/O ports, 10-1–10-8

external memory access, 10-7
latches, 10-2
loading, 10-6
pullups, 10-6
quasi-bidirectional, 10-5
SFRs, 3-15
See also Ports 0–3

Idle mode, 2-5, 15-1, 15-7
Index-3

8x930Ax, 8x930Hx USER’S MANUAL

-

entering, 15-7
exiting, 14-5, 15-7
external bus, 16-3

IEN0, 3-18, 6-4, 6-5, 6-7, 6-25, 6-36, 13-11, 15-9,
C-4, C-35

IEN1, 3-18, 6-4, 6-26, 6-36, C-4, C-36
Immediate addressing, 5-4
INC instruction, 5-8, A-14
Indirect addressing, 5-4

in control instructions, 5-12
in data instructions, 5-6

Instruction set
MCS 251 architecture, A-1–A-137
MCS 51 architecture, 5-1

Instructions
arithmetic, 5-8
bit, 5-10
data, 5-4
data transfer, 5-9
logical, 5-9

INT1#, 10-1
INT1:0#, 6-1, 10-1, 11-1, 11-2

pulse width measurements, 11-10
Intel Architecture Labs, 1-8
Interrupt request, 6-1

cleared by hardware, 6-5, 6-6
Interrupt service routine

exiting idle mode, 15-7
exiting powerdown mode, 15-9

Interrupts, 6-1–6-37
blocking conditions, 6-36
detection, 6-5
edge-triggered, 6-5, 6-6
enable/disable, 6-24
exiting idle mode, 15-7
exiting powerdown mode, 15-9
external (INT1:0#), 6-1, 6-5, 6-34, 15-9
global enable, 6-24
global resume, 6-18
global resume (GRSM), 15-5, 15-8, C-45
global suspend (GSUS), 15-5, 15-8, C-45
instruction completion time, 6-33
latency, 6-32–6-36
level-triggered, 6-5, 6-6
PCA, 6-7
polling, 6-32, 6-33
priority, 3-18, 6-1, 6-4, 6-5, 6-6, 6-27–6-30,

C-4

priority within level, 6-27
processing, 6-32–6-37
request, See Interrupt request
response time, 6-32, 6-33
sampling, 6-5, 6-33
serial port, 6-7
service routine (ISR), 6-5, 6-6, 6-32, 6-36, 6

37
sources, 6-3
timer/counters, 6-6
vector cycle, 6-37
vectors, 3-3, 6-5, 6-6

INTR bit
and RETI instruction, 4-14, 5-15

IPH0, 3-18, 6-4, 6-28, 6-36, C-4, C-37
bit definitions, 6-27

IPH1, 3-18, 6-4, 6-30, 6-36, C-4, C-38
bit definitions, 6-27

IPL0, 3-18, 6-4, 6-29, 6-36, C-4, C-39
bit definitions, 6-27

IPL1, 3-18, 6-4, 6-31, C-4, C-40
bit definitions, 6-27

Isochronous RX dataflow
Dual-packet mode, D-18

Isochronous TX dataflow
Dual-packet mode, D-5

ISR, See Interrupts, service routine

J
JB instruction, 5-13, A-23
JBC instruction, 5-13, A-23
JC instruction, A-23
JE instruction, A-23
JG instruction, A-23
JLE instruction, A-23
JMP instruction, A-23
JNB instruction, 5-13, A-23
JNC instruction, A-23
JNE instruction, A-23
JNZ instruction, A-23
JSG instruction, A-24
JSGE instruction, A-24
JSL instruction, A-23
JSLE instruction, A-24
Jump instructions

bit-conditional, 5-13
compare-conditional, 5-13, 5-14
Index-4

INDEX

unconditional, 5-14
JZ instruction, A-23

K
Key bytes, See Encryption array

L
Latency, 6-32
LCALL instruction, 5-14, A-23
LJMP instruction, 5-14, A-23
Lock bits

protection types, 17-5
verifying, 17-1

Logical instructions, 5-9
table of, A-16

Low clock mode, 15-1, 15-13
entering, 15-13
exiting, 15-13

M
MCS 251 microcontroller

core, 2-8
MCS® 251, 1-1
MCS® 51, 1-1
Memory space, 2-4, 3-5–3-9

compatibility, See Compatibility (MCS 251
and MCS 51 architectures)

regions, 3-2, 3-5
reserved locations, 3-5

Miller effect, 14-3
MOV instruction, A-18, A-19, A-20

for bits, 5-10, A-22
MOVC instruction, 3-2, 5-9, A-20
Move instructions

table of, A-18
MOVH instruction, 5-10, A-20
MOVS instruction, 5-9, A-20
MOVX instruction, 3-2, 5-9, A-20
MOVZ instruction, 5-9, A-20
MUL instruction, 5-8
Multiplication, 5-8

N
N flag, 5-9, 5-18, C-47
Noise reduction, 14-2, 14-3
Non-isochronous RX dataflow

Dual-packet mode, D-11
Single-packet mode, D-8

Non-isochronous TX dataflow, D-1
Nonpage mode

bus cycles, See External bus cycles, Nonpage
mode

bus structure, 16-3
configuration, 4-7
design example, 16-20, 16-25
port pin status, 16-16

Nonvolatile memory
verifying, 17-1–17-6

NOP instruction, 5-14, A-24

O
On-chip code memory, 16-8

accessing in data memory, 4-14
accessing in region 00:, 3-9
idle mode, 15-7
setup for verifying, 17-3–17-4
starting address, 3-8, 17-1
top eight bytes, 3-8, 4-1, 17-2, C-78
verifying, 17-1

On-chip oscillator
hardware setup, 14-1

On-chip RAM, 3-8
bit addressable, 3-8, 5-11
bit addressable in MCS 51 architecture, 5-11
idle mode, 15-7
MCS 51 architecture, 3-2, 3-4
reset, 14-6

ONCE mode, 15-1
entering, 15-13
exiting, 15-13

Opcodes
for binary and source modes, 4-12, 5-1
map, A-4

binary mode, 4-13
source mode, 4-13

See also Binary and source modes
ORL instruction, 5-9, 5-10

for bits, A-22
ORL/ instruction, 5-10

for bits, A-22
Oscillator

at startup, 14-7
ceramic resonator, 14-3
Index-5

8x930Ax, 8x930Hx USER’S MANUAL
during reset, 14-5
on-chip crystal, 2-9, 14-2
ONCE mode, 15-13
powerdown mode, 15-8, 15-9
verifying nonvolatile memory, 17-3

OV bit, 5-17, 5-18, C-46, C-47
Overflow See OV bit
OVRI # pin, 8-29

P
P bit, 5-17, C-46
P0, 3-19, 10-2, C-5, C-40
P1, 3-19, 10-2, C-5, C-41
P2, 3-19, 10-2, C-5, C-41
P3, 3-19, 10-2, C-5, C-42
Page mode, 2-8

address access time, 16-6
bus cycles, See External bus cycles, page

mode
configuration, 4-7
design example, 16-19, 16-28
port pin status, 16-16

PAGE# bit, 4-7
PCA

compare/capture modules, 12-1
idle mode, 15-7
pulse width modulation, 12-10
SFRs, 3-21, C-7
timer/counter, 12-1
watchdog timer, 12-1, 12-9

PCON, 3-18, 13-7, 15-3, 15-4, 15-7, 15-8, C-4, C-
43, C-44

idle mode, 15-7
powerdown mode, 15-9
reset, 14-5

PCON1, 3-18, 6-4, 15-8, C-4
Peripheral cycle, 2-9
Phase 1 and phase 2, 2-9
Phone numbers, customer support, 1-7
Pin conditions, 15-6
Pinout diagram

8x930Hx, B-2
Pins

unused inputs, 14-2
Pipeline, 2-8
POP instruction, 3-14, 5-10, A-21
Port 0, 10-2

and top of on-chip code memory, 17-2
pullups, 10-7
structure, 10-3
See also External bus

Port 1, 10-2
structure, 10-3

Port 2, 10-2
and top of on-chip code memory, 17-2
structure, 10-4
See also External bus

Port 3, 10-2
structure, 10-3

Ports
at power on, 14-7
exiting idle mode, 15-8
exiting powerdown mode, 15-8
extended execution times, 5-1, A-1, A-11
verifying nonvolatile memory, 17-3, 17-5

Power supply, 14-2
Powerdown mode, 2-5, 15-1, 15-8–15-9

accidental entry, 15-7
entering, 15-9
exiting, 14-5, 15-9
external bus, 16-3

Program status word See PSW, PSW1
PSEN#

caution, 14-7
description, 16-2
idle mode, 15-7
regions for asserting, 4-8

PSW, 5-17, A-25, C-46
PSW, PSW1, 3-18, 5-15–5-16, C-4

conditional jumps, 5-13
effects of instructions on flags, 5-16

PSW1, 5-18, A-25, C-4, C-47
Pullups, 10-7

ports 1, 2, 3, 10-5
Pulse width measurements, 11-10
PUSH instruction, 3-14, 5-10, A-21

R
RCAP2H, RCAP2L, 3-20, 11-3, 13-12, C-6, C-47
RD#, 10-1

described, 16-2
regions for asserting, 4-8

RD1:0 configuration bits, 4-8
Read-modify-write instructions, 10-2, 10-5
Index-6

INDEX
Real-time wait states, 16-11
Register addressing, 5-4, 5-5
Register banks, 3-2, 3-9

accessing in memory address space, 5-4
implementation, 3-9, 3-12
MCS 51 architecture, 3-2
selection bits (RS1:0), 5-17, 5-18, C-46, C-47

Register file, 2-8, 3-1, 3-5, 3-9–3-14
address space, 3-2
addressing locations in, 3-12
and reset, 14-6
MCS 51 architecture, 3-4
naming registers, 3-12
register types, 3-12

Registers, See Register addressing, Register banks,
Register file

rel, A-3
Relative addressing, 5-4, 5-12
Reset, 14-5–14-7

cold start, 14-5, 15-2
entering ONCE mode, 15-13
exiting idle mode, 15-7
exiting powerdown mode, 15-9
externally initiated, 14-5
need for, 14-7
operation, 14-6
power-on reset, 14-1, 14-7
timing sequence, 14-6, 14-7
USB initiated, 14-6
warm start, 14-5, 15-2
WDT initiated, 14-5

RET instruction, 5-14, A-23
RETI instruction, 5-15, 6-1, 6-36, 6-37, A-23
Return instructions, 5-14
RL instruction, A-16
RLC instruction, A-16
Rotate instructions, 5-9
RR instruction, A-16
RRC instruction, A-16
RST, 14-5, 14-7

ONCE mode, 15-13
RTWCE (Real-time WAIT CLOCK Enable) Bit,

16-12
RTWE (Real-time WAIT# Enable) Control Bit,

16-12
RXCNTH, 7-28, C-48
RXCNTL, 7-28, C-48
RXD, 10-1, 13-1

mode 0, 13-2
modes 1, 2, 3, 13-7

RXDAT, 7-27, C-51
RXFLG, 7-31, C-52
RXSTAT, 7-11, C-54

S
SADDR, 3-19, 13-2, 13-9, 13-10, C-5, C-57
SADEN, 3-19, 13-2, 13-9, 13-10, C-5, C-57
SBUF, 3-19, 13-2, 13-3, C-5, C-57
SCON, 3-19, 13-2, 13-3, 13-4, 13-7, C-5, C-58

bit definitions, 13-1
interrupts, 6-7

Security, 17-1
Serial I/O port, 13-1–13-13

asynchronous modes, 13-7
automatic address recognition, 13-8–13-10
baud rate generator, 11-6
baud rate, mode 0, 13-2, 13-10
baud rate, modes 1, 2, 3, 13-7, 13-11–13-13
broadcast address, 13-9
data frame, modes 1, 2, 3, 13-7
framing bit error detection, 13-7
full-duplex, 13-7
given address, 13-9
half-duplex, 13-2
interrupts, 13-1, 13-8
mode 0, 13-2–13-3
modes 1, 2, 3, 13-7
multiprocessor communication, 13-8
SFRs, 3-19, 13-2, C-5
synchronous mode, 13-2
timer 1 baud rate, 13-11, 13-12
timer 2 baud rate, 13-12–13-13
timing, mode 0, 13-6

SETB instruction, 5-10, A-22
SetHubDescriptor, 9-19
SFRs

accessing, 3-15
address space, 3-1, 3-2
idle mode, 15-7
MCS 51 architecture, 3-4
powerdown mode, 15-8
reset initialization, 14-6
tables of, 3-15
unimplemented, 3-15

Shift instruction, 5-9
Index-7

8x930Ax, 8x930Hx USER’S MANUAL

,
Signal Descriptions, B-1
multi-function pins, B-1

Signature bytes
values, 17-6
verifying, 17-1, 17-6

SJMP instruction, 5-14, A-23
SLL instruction, 5-9, A-16
SOF interrupt, 6-6
SOF# pin, 6-15
SOFH, 6-13, C-60
SOFL, 6-14, C-61
Solutions OEM, 1-8
Source register, 5-3
SP, 3-14, 3-18, C-4, C-61
Special function registers See SFRs
SPH, 3-14, 3-18, C-4, C-62
SPX, 3-12, 3-14
SRA instruction, 5-9, A-17
SRL instruction, 5-9, A-17
State time, 2-9
SUB instruction, 5-8, A-13
SUBB instruction, 5-8, A-13
SWAP instruction, 5-9, A-17

T
T1, 10-1
T1:0, 10-1, 11-2
T2, 10-1, 11-2
T2CON, 3-20, 11-1, 11-3, 11-10, 11-17, 13-12, C-

6, C-63
baud rate generator, 13-12

T2EX, 10-1, 11-2, 11-11, 13-12
T2MOD, 3-20, 11-1, 11-3, 11-10, 11-16, C-6, C-64
Target address, 5-4
TCON, 3-20, 11-1, 11-3, 11-4, 11-6, 11-8, C-6, C-

65
interrupts, 6-1

Tech support, 1-7
TH2, TL2

baud rate generator, 13-12, 13-13
THx, TLx (x = 0, 1, 2), 3-20, 11-3, C-6, C-67, C-68
Timer 0, 11-4–11-8

applications, 11-9
auto-reload, 11-5
interrupt, 11-4
mode 0, 11-4
mode 1, 11-4

mode 2, 11-5
mode 3, 11-5
pulse width measurements, 11-10

Timer 1
applications, 11-9
auto-reload, 11-9
baud rate generator, 11-6
interrupt, 11-6
mode 0, 11-6
mode 1, 11-9
mode 2, 11-9
mode 3, 11-9
pulse width measurements, 11-10

Timer 2, 11-10–11-17
auto-reload mode, 11-12
baud rate generator, 11-14
capture mode, 11-11
clock out mode, 11-14
interrupt, 11-11
mode select, 11-15

Timer/counters, 11-1–11-17
external input sampling, 11-2
internal clock, 11-1
interrupts, 11-1
overview, 11-1–11-2
registers, 11-3
SFRs, 3-20, C-6
signal descriptions, 11-2
See also Timer 0, Timer 1, Timer 2

TMOD, 3-20, 11-1, 11-3, 11-4, 11-6, 11-7, 13-11
C-6, C-66

Tosc, 2-11
TRAP instruction, 5-15, 6-3, 6-24, 6-37, A-24
TXCNTH, 7-19, C-69
TXCNTL, 7-19, C-69
TXCON, 7-20, C-70
TXD, 10-1, 13-1

mode 0, 13-2
modes 1, 2, 3, 13-7

TXDAT, 7-18, 8-12, C-72
TXFLG, 7-22, C-73
TXSTAT, 7-9, C-75

U
UART, 13-1
UCONFIG1:0

See Configuration bytes
Index-8

INDEX

-

UD flag, 5-17, C-46
UPWEN# pin, 8-29
USB

configuration descriptor, 9-2
device descriptor, 9-2
endpoint selection, 7-3
endpoint-indexed SFRs, 7-3
FIFO byte capacity, 2-13
function

bus unenumeration, 9-2
post-receive operations, 9-10
post-transmit operations, 9-7
pre-transmit operations, 9-6
receive done interrupt, 6-9
receive operations, 9-9
receive routine, 9-3
receive SOF routine, 9-15
resume interrupt, 6-18
setup routines, 9-13
suspend and resume, 15-1
transmit done interrupt, 6-10
transmit operations, 9-3
transmit routine, 9-3

function endpoint pairs, 7-1
function FIFOs, 7-1
function interface, 7-1
function interface unit (FIU), 2-14
function routines

overview, 9-2
receive SOF, 9-2
setup, 9-2

global resume, 15-10
global suspend, 15-8
hub

bus enumeration, 8-6, 9-16
CLEAR_FEATURE request, 9-17
ClearHubFeature request, 9-19
ClearPortFeature request, 9-21, 9-22
configuration, 8-8–8-10
descriptors, 8-6–8-7
device signals, 8-30
embedded function, 8-24
embedded function remote wake-up, 8-

24
embedded function reset, 8-24
empedded function suspend and resume,

8-26
endpoint 1, 8-10

endpoints, 8-10–8-13
examining port status, 8-17–8-19
firmware examples, 9-23
firmware response tor USB requests, 9

17–9-22
full-speed device attach, 8-5
functional diagram, 8-2
ganged power enable, 8-29
GET_CONFIGURATION request, 9-17
GET_DESCRIPTOR request, 9-18
GET_INTERFACE request, 9-18
GET_STATUS request, 9-18
GetBusState request, 9-19
GetHubDescriptor request, 9-19
GetHubStatus request, 9-19
GetPortStatus request, 9-19, 9-22
GetPortStatus request firmware, 9-24–9-

25
global suspend and resume, 8-24–8-26
low-speed device attach, 8-6
monitoring port status, 8-20–8-22
operation, 9-16–9-28
overcurrent detection, 8-28
port control, 8-14–8-16
port control commands, 8-16
port indexing, 8-23
port power switching, 8-27–8-28
port states, 8-3–8-4
port status change communication, 9-

22–9-28
power distribution, 8-27
SET_ADDRESS request, 9-18
SET_CONFIGURATION request, 9-17
SET_DESCRIPTOR request, 9-18
SET_FEATURE request, 9-17
SET_INTERFACE request, 9-18
SetHubDescriptor request, 9-19
SetHubFeature request, 9-19
SetPortFeature (PORT_RESET)

firmware, 9-27
SetPortFeature (PORT_SUSPEND)

firmware, 9-26
SetPortFeature request, 9-20
signaling connectivity, 8-5–8-6
status, 8-8–8-10
status and configuration, 9-17
status change communication, 8-13
SYNCH_FRAME request, 9-18
Index-9

8x930Ax, 8x930Hx USER’S MANUAL

7

hub interrupt, 6-6
idle state, 9-2
interrupt

hub, 6-15
interrupts

function, 6-6, 6-7–6-11
global suspend/resume, 6-6, 6-18
start-of-frame, 6-12–6-15

module, 2-3, 2-12
block diagram, 2-7

power control, 15-8
powerdown, 15-8
programming models, 9-2
receive FIFOs, 7-24

write marker, 7-24, 9-9
write pointer, 7-24, 9-9

remote wake-up, 6-18, 15-10
requests

ClearPortFeature, 8-14
SetPortFeature, 8-14

reset separation, 6-18–6-24
reset separation, operating model, 6-21
Serial Bus Interface Engine (SIE), 2-14
special function registers (SFRs), 7-2
transaction dataflow model, 7-1, D-1
transmit FIFOs, 7-15

read marker, 7-15, 9-4
read pointer, 7-15, 9-4

unenumerated state, 9-2

V
Vcc, 14-2

during reset, 14-5
power off flag, 15-2
power-on reset, 14-7
powerdown mode, 15-9

Verifying nonvolatile memory, 17-1
Vss, 14-2

W
Wait state, 5-1, A-1, A-11

configuration bits, 4-11
extended ALE, 4-11
RD#/WR#/PSEN#, 4-11

WAIT#, 10-1
WAIT# (Wait State) Input, 16-2
Watchdog timer (hardware), 11-1, 11-16, 11-18

enabling, disabling, 11-16
in idle mode, 11-18
in powerdown mode, 11-18
initiated reset, 14-5
overflow, 11-16
SFR (WDTRST), 3-20, 11-3, C-6

Watchdog Timer (PCA), 12-1, 12-9
WCLK, 10-1
WCLK (Wait Clock) Output, 16-2
WCON, 3-18, C-4
WCON (Real-time wait state control), 16-11, C-7
WDTRST, 3-20, 11-3, 11-16, C-6, C-77
World Wide Web, 1-7
WR#, 10-1

described, 16-2

X
XALE# bit, 4-11
XCH instruction, 5-10, A-21
XCHD instruction, 5-10, A-21
XRL instruction, 5-9
XTAL1, XTAL2, 14-2

capacitance loading, 14-3

Z
Z flag, 5-9, 5-18, C-47
Index-10

	8x930Ax, 8x930Hx Universal Serial Bus Microcontroller User’s Manual
	Literature Order Forms
	Copyright Page
	Contents
	Figures
	Tables

	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 FaxBack Service
	1.4.3 Bulletin Board System (BBS)

	CHAPTER 2 Architectural Overview
	2.1 Product Overview
	2.1.1 8x930Ax Features
	2.1.2 8x930Hx Features
	2.1.3 MCS® 251 Architecture Features

	2.2 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.2.1 State Time and Peripheral Cycles
	2.2.2.2 Low-clock Mode
	2.2.2.3 Reset Unit

	2.2.3 Interrupt Handler

	2.3 On-chip Memory
	2.4 Universal Serial Bus Module
	2.4.1 The 8x930Ax USB Module
	2.4.1.1 Serial Bus Interface Engine (SIE)
	2.4.1.2 Function Interface Unit (FIU)
	2.4.1.3 Function FIFOs

	2.4.2 The 8x930Hx USB Module
	2.4.2.1 Hub Repeater
	2.4.2.2 Serial Bus Interface Engine (SIE)
	2.4.2.3 Hub Interface Unit (HIU)
	2.4.2.4 Hub FIFOs
	2.4.2.5 8x930Hx CPU

	2.5 On-chip Peripherals
	2.5.1 Timer/Counters and Watchdog Timer
	2.5.2 Programmable Counter Array (PCA)
	2.5.3 Serial I/O Port

	2.6 Operating Conditions

	CHAPTER 3 Address Spaces
	3.1 MCS® 251 Architecture Address Spaces
	3.1.1 Compatibility with the MCS® 51 Architecture

	3.2 8x930 Memory Space
	3.2.1 On-chip General-purpose Data RAM
	3.2.2 On-chip Code Memory
	3.2.2.1 Accessing On-chip Code Memory in Region 00...

	3.2.3 External Memory

	3.3 8x930 Register File
	3.4 Byte, Word, and Dword Registers
	3.4.1 Dedicated Registers
	3.4.1.1 Accumulator and B Register
	3.4.1.2 Extended Data Pointer, DPX
	3.4.1.3 Extended Stack Pointer, SPX

	3.5 Special Function Registers (SFRs)

	CHAPTER 4 Device Configuration
	4.1 Configuration Overview
	4.2 Device Configuration
	4.3 The Configuration Bits
	4.4 Configuring the External Memory Interface
	4.4.1 Page Mode and Nonpage Mode (PAGE#)
	4.4.2 Configuration Bits RD1:0
	4.4.2.1 RD1:0 = 00 (18 External Address Bits)
	4.4.2.2 RD1:0 = 01 (17 External Address Bits)
	4.4.2.3 RD1:0 = 10 (16 External Address Bits)
	4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microco...

	4.4.3 Wait State Configuration Bits
	4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#
	4.4.3.2 Configuration Bit XALE#

	4.5 Opcode Configurations (SRC)
	4.5.1 Selecting Binary Mode or Source Mode

	4.6 Mapping On-chip Code Memory to Data Memory (EM...
	4.7 Interrupt Mode (INTR)

	CHAPTER 5 Programming Considerations
	5.1 Source Mode or Binary Mode Opcodes
	5.2 Programming Features of the 8x930 Architecture...
	5.2.1 Data Types
	5.2.1.1 Order of Byte Storage for Words and Double...

	5.2.2 Register Notation
	5.2.3 Address Notation
	5.2.4 Addressing Modes

	5.3 Data Instructions
	5.3.1 Data Addressing Modes
	5.3.1.1 Register Addressing
	5.3.1.2 Immediate
	5.3.1.3 Direct
	5.3.1.4 Indirect
	5.3.1.5 Displacement

	5.3.2 Arithmetic Instructions
	5.3.3 Logical Instructions
	5.3.4 Data Transfer Instructions

	5.4 Bit Instructions
	5.4.1 Bit Addressing

	5.5 Control Instructions
	5.5.1 Addressing Modes for Control Instructions
	5.5.2 Conditional Jumps
	5.5.3 Unconditional Jumps
	5.5.4 Calls and Returns

	5.6 Program Status Words

	CHAPTER 6 Interrupt System
	6.1 OVERVIEW
	6.2 8x930 Interrupt Sources
	6.2.1 External Interrupts
	6.2.2 Timer Interrupts

	6.3 Programmable Counter Array (PCA) Interrupt
	6.4 SERIAL Port Interrupt
	6.5 USB Interrupts
	6.5.1 USB Function Interrupt
	6.5.2 USB Start-of-frame Interrupt
	6.5.3 USB Hub Interrupt
	6.5.4 USB Global Suspend/Resume Interrupt
	6.5.4.1 Global Suspend
	6.5.4.2 Global Resume
	6.5.4.3 USB Remote Wake-up

	6.5.5 8x930Ax USB Reset Separation
	6.5.5.1 Initialization Required for USB Reset
	6.5.5.2 USB Reset Hardware Operations
	6.5.5.3 USB Reset ISR
	6.5.5.4 Main Routine Considerations

	6.6 Interrupt Enable
	6.7 Interrupt Priorities
	6.8 Interrupt Processing
	6.8.1 Minimum Fixed Interrupt Time
	6.8.2 Variable Interrupt Parameters
	6.8.2.1 Response Time Variables
	6.8.2.2 Computation of Worst-case Latency With Var...
	6.8.2.3 Latency Calculations
	6.8.2.4 Blocking Conditions
	6.8.2.5 Interrupt Vector Cycle

	6.8.3 ISRs in Process

	CHAPTER 7 USB Function
	7.1 Function Interface
	7.1.1 Function Endpoint Pairs
	7.1.2 Function FIFOs
	7.1.3 Special Function Registers (SFRs)
	7.1.3.1 Endpoint-indexed SFRs
	7.1.3.2 Endpoint Selection

	7.2 Transmit FIFOs
	7.2.1 Transmit FIFO Overview
	7.2.2 Transmit FIFO Registers
	7.2.3 Transmit Data Register (TXDAT)
	7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH...
	7.2.5 Transmit Data Set Management

	7.3 Receive FIFOs
	7.3.1 Receive FIFO Overview
	7.3.2 Receive FIFO Registers
	7.3.2.1 Receive Data Register (RXDAT)
	7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNT...

	7.3.3 Receive FIFO Data Set Management

	7.4 SIE Details
	7.5 SETUP Token Receive FIFO Handling
	7.6 ISO Data Management
	7.6.1 Transmit FIFO ISO Data Management
	7.6.2 Receive FIFO ISO Data Management

	CHAPTER 8 USB Hub
	8.1 Hub Functional Overview
	8.1.1 Port Connectivity States
	8.1.2 Per-packet Signaling Connectivity
	8.1.2.1 Connectivity to Downstream Ports Attached ...
	8.1.2.2 Connectivity to Downstream Ports attached ...

	8.2 Bus Enumeration
	8.2.1 Hub Descriptors
	8.2.2 The Hub Address Register (HADDR)

	8.3 Hub Status
	8.4 USB Hub Endpoints
	8.4.1 Hub Endpoint Indexing Using EPINDEX
	8.4.2 Hub Endpoint Control
	8.4.3 Hub Endpoint Transmit and Receive Operations...

	8.5 USB Hub Ports
	8.5.1 Controlling a Port Using HPCON
	8.5.2 Examining a Port’s Status Using HPSTAT
	8.5.3 Monitoring Port Status Change Using HPSC
	8.5.4 Hub Port Indexing Using HPINDEX
	8.5.5 Embedded Function
	8.5.5.1 Embedded Function Reset
	8.5.5.2 Embedded Function Remote Wake-up

	8.6 Suspend and Resume
	8.6.1 Hub Global Suspend and Resume
	8.6.2 Remote Connectivity
	8.6.2.1 Resume Connectivity
	8.6.2.2 Connectivity Due to Physical Connect/Disco...

	8.6.3 Embedded Function Suspend and Resume

	8.7 Hub Power Distribution
	8.7.1 Port Power Switching
	8.7.2 Overcurrent Detection
	8.7.3 Ganged Power Enable

	8.8 Hub Device Signals

	CHAPTER 9 USB Programming Models
	9.1 Overview of Programming Models
	9.1.1 Unenumerated State
	9.1.2 Idle State
	9.1.3 Transmit and Receive Routines
	9.1.4 USB Interrupts

	9.2 Transmit Operations
	9.2.1 Overview
	9.2.2 Pre-transmit Operations
	9.2.3 Post-transmit Operations

	9.3 Receive Operations
	9.3.1 Overview
	9.3.2 Post-receive Operations

	9.4 SETUP Token
	9.5 Start-of-frame (SOF) Token
	9.6 Hub Operation
	9.6.1 Bus Enumeration
	9.6.2 Hub Status and Configuration
	9.6.3 Port Status Change Communication
	9.6.4 Hub Firmware Examples
	9.6.4.1 GetPortStatus Request Firmware
	9.6.4.2 SetPortFeature (PORT_SUSPEND) Firmware
	9.6.4.3 SetPortFeature (PORT_RESET) Firmware

	CHAPTER 10 Input/Output Ports
	10.1 Input/Output port overview
	10.2 I/O Configurations
	10.3 Port 1 and Port 3
	10.4 Port 0 and Port 2
	10.5 Read-Modify-Write Instructions
	10.6 Quasi-bidirectional Port Operation
	10.7 Port Loading
	10.8 External Memory Access

	CHAPTER 11 Timer/Counters and Watchdog Timer
	11.1 Timer/Counter Overview
	11.2 Timer/Counter Operation
	11.3 Timer 0
	11.3.1 Mode 0 (13-bit Timer)
	11.3.2 Mode 1 (16-bit Timer)
	11.3.3 Mode 2 (8-bit Timer With Auto-reload)
	11.3.4 Mode 3 (Two 8-bit Timers)

	11.4 Timer 1
	11.4.1 Mode 0 (13-bit Timer)
	11.4.2 Mode 1 (16-bit Timer)
	11.4.3 Mode 2 (8-bit Timer with Auto-reload)
	11.4.4 Mode 3 (Halt)

	11.5 Timer 0/1 Applications
	11.5.1 Auto-reload Setup Example
	11.5.2 Pulse Width Measurements

	11.6 Timer 2
	11.6.1 Capture Mode
	11.6.2 Auto-reload Mode
	11.6.2.1 Up Counter Operation

	11.6.3 Up/Down Counter Operation
	11.6.4 Baud Rate Generator Mode
	11.6.5 Clock-out Mode

	11.7 Watchdog Timer
	11.7.1 Description
	11.7.2 Using the WDT
	11.7.3 WDT During Idle Mode
	11.7.4 WDT During PowerDown

	CHAPTER 12 Programmable Counter Array
	12.1 PCA Description
	12.1.1 Alternate Port Usage

	12.2 PCA Timer/Counter
	12.3 PCA Compare/Capture Modules
	12.3.1 16-bit Capture Mode
	12.3.2 Compare Modes
	12.3.3 16-bit Software Timer Mode
	12.3.4 High-speed Output Mode
	12.3.5 PCA Watchdog Timer Mode
	12.3.6 Pulse Width Modulation Mode

	CHAPTER 13 Serial I/O Port
	13.1 Overview
	13.2 Modes of Operation
	13.2.1 Synchronous Mode (Mode 0)
	13.2.1.1 Transmission (Mode 0)
	13.2.1.2 Reception (Mode 0)

	13.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	13.2.2.1 Transmission (Modes 1, 2, 3)
	13.2.2.2 Reception (Modes 1, 2, 3)

	13.3 Framing Bit Error Detection (Modes 1, 2, and ...
	13.4 Multiprocessor Communication (Modes 2 and 3)
	13.5 Automatic Address Recognition
	13.5.1 Given Address
	13.5.2 Broadcast Address
	13.5.3 Reset Addresses

	13.6 Baud Rates
	13.6.1 Baud Rate for Mode 0
	13.6.2 Baud Rates for Mode 2
	13.6.3 Baud Rates for Modes 1 and 3
	13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	13.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...
	13.6.3.4 Selecting Timer 2 as the Baud Rate Genera...

	CHAPTER 14 Minimum Hardware Setup
	14.1 Minimum Hardware Setup
	14.2 Electrical Environment
	14.2.1 Power and Ground Pins
	14.2.2 Unused Pins
	14.2.3 Noise Considerations

	14.3 Clock Sources
	14.3.1 On-chip Oscillator (Crystal)
	14.3.2 On-chip Oscillator (Ceramic Resonator)
	14.3.3 External Clock

	14.4 Reset
	14.4.1 Externally-Initiated Resets
	14.4.2 WDT-initiated Resets
	14.4.3 USB-initiated Resets
	14.4.3.1 8x930Ax USB Reset Separation

	14.4.4 Reset Operation
	14.4.5 Power-on Reset

	CHAPTER 15 Special Operating Modes
	15.1 General
	15.2 Power Control Registers
	15.2.1 Serial I/O Control Bits
	15.2.2 Power Off Flag
	15.2.3 8x930Ax USB Reset Separation

	15.3 Idle Mode
	15.3.1 Entering Idle Mode
	15.3.2 Exiting Idle Mode

	15.4 USB Power Control
	15.4.1 Global Suspend Mode
	15.4.1.1 Powerdown (Suspend) Mode
	15.4.1.2 Entering Powerdown (Suspend) Mode
	15.4.1.3 Exiting Powerdown (Suspend) Mode

	15.4.2 Global Resume Mode
	15.4.3 USB Remote Wake-up

	15.5 Low-Clock Mode
	15.5.1 Entering Low-clock Mode
	15.5.2 Exiting Low-clock Mode

	15.6 ON-Circuit emulation (Once) Mode
	15.6.1 Entering ONCE Mode
	15.6.2 Exiting ONCE Mode

	CHAPTER 16 External Memory Interface
	16.1 Overview
	16.2 External Bus Cycles
	16.2.1 Bus Cycle Definitions
	16.2.2 Nonpage Mode Bus Cycles
	16.2.3 Page Mode Bus Cycles

	16.3 Wait States
	16.4 External Bus Cycles With Configurable Wait St...
	16.4.1 Extending RD#/WR#/PSEN#
	16.4.2 Extending ALE

	16.5 External Bus Cycles with Real-time Wait State...
	16.5.1 Real-time WAIT# Enable (RTWE)
	16.5.2 Real-time WAIT CLOCK Enable (RTWCE)
	16.5.3 Real-time Wait State Bus Cycle Diagrams

	16.6 Configuration Byte Bus Cycles
	16.7 Port 0 and Port 2 Status
	16.7.1 Port 0 and Port 2 Pin Status in Nonpage Mod...
	16.7.2 Port 0 and Port 2 Pin Status in Page Mode

	16.8 External Memory Design Examples
	16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External...
	16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External...
	16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External...
	16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External...
	16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External...
	16.8.5.1 An Application Requiring Fast Access to t...
	16.8.5.2 An Application Requiring Fast Access to D...

	16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External...
	16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External...

	CHAPTER 17 Verifying Nonvolatile Memory
	17.1 General
	17.1.1 Considerations for On-chip Program Code Mem...

	17.2 Verify Modes
	17.3 General Setup
	17.4 Verify Algorithm
	17.5 Lock Bit System
	17.5.1 Encryption Array

	17.6 Signature Bytes

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map and Supporting Tables
	A.3 Instruction Set Summary
	A.3.1 Execution Times for Instructions Accessing t...
	A.3.2 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	C.1 SFRs by Functional Category
	C.2 SFR Descriptions
	C.3 Configuration Bytes

	APPENDIX D Data Flow Model
	Glossary
	Index

