
 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

1

Application Note AN08 :

NET2890 Programming Flowchart

Document # 660-0057-0003 Revision: 0.1 Date: 11 / 5 / 98

Applicability

NET2890 Rev 2B

NetChip
Technology, Inc.

NET2890 PROGRAMMING FLOWCHART

This flowchart presents a simple, yet complete
NET2890 programming example. It is a good case
study for programmers that are new to the
NET2890.

The flowchart applies to a simple bus-powered USB
device that supports:
 - Enumeration
 - Control transfers (read and write)
 - Data transfers (IN and OUT)

The flowchart is based on an interrupt-driven CPU.
After initialization, all USB events are handled
under interrupt control.

For brevity, several limitations apply to the flowchart:
 - Only two NET2890 data endpoints are used
 - Minimal number of USB requests are supported
 - Simple buffer management
 - No DMA
With hardware and software support, these
limitations can be removed.

NET2890: The Programmer's Perspective:
The NET2890 is a USB interface controller designed
to abstract firmware from low-level complexities of
USB. For example, to return a packet of data to the
host, firmware simply writes data to a FIFO,
and (optionally) sets a bit indicating that the
NET2890 can send the contents of the FIFO to the
host.

Table of Contents

 - CPU Reset Page 3
 - Net2890Interrupt Page 4
 - SetupRequest Page 5
 - GetDevDesc Page 6
 - GetConfDesc Page 7
 - Ep0TransmitPkt Page 8
 - Ep0PktSentHandler, SetAddress Page 9
 - SetConfig, ControlWrite Page 10
 - Ep0PktRcvdHandler, Ep0Handler Page 11
 - EpAHandler, EpBHandler Page 12
 - ReceivePkt Page 13
 - TransmitPkt Page 14
 - EpAInit, EpBInit Page 15
 - Sample Enumeration Sequences Page 16

When the host successfully reads the packet,
an interrupt (if enabled) is generated. The
NET2890 automatically handles timing, PID
generation, CRC, bit stuffing, retries, etc.
Firmware is responsible for all data content
however. For example, when a Setup
Request successfully arrives, firmware must
examine the request, and generate an
appropriate response. Descriptor content is
completely controlled by firmware. When the
host requests a descriptor, firmware loads
the descriptor content into a FIFO for the
host to read. Note that an endpoint's descriptor
content must correspond to the endpoint's
programming in the NET2890.

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

2

DATA TRANSFERS:
For brevity, this example uses only two
NET2890 data endpoints. Endpoint A is
arbitrarily programmed as a 64-byte BULK OUT
endpoint, and endpoint B is programmed as a
64-byte BULK IN endpoint. Note that a NET2890
data endpoint can be configured as any type
(BULK, ISO, or INT); size (1023 bytes max); or
direction (IN or OUT).

Data transfers are somewhat artificial in this
program. A real USB device typically has a
mechanism for transfering data from a USB
endpoint to an electronic unit (such as a
MODEM) and vice-versa. This example,
however, simply transfers data to or from the
device's memory buffers. Once a receive buffer
becomes full or a transmit buffer becomes
empty, the endpoint will NAK.

CHIP ERRATA
This flowchart includes a workaround for
NET2890 errata 630-0057-0401.

DISCLAIMER
NetChip's NET2890 design team has made
every effort to make this document useful,
accurate and complete. You should recognize,
however, that errors and ommisions may exist.
If you have problems with this document, please
contact NetChip Technology, Inc.

At a minimum, programmers should be familiar with
USB specification sections 8.5 and 9.3 - 9.6.

ENUMERATION:
For many USB devices, the most difficult task is
enumeration. A device must examine the contents
of the Setup Request and respond accordingly.
This flowchart supports the minimum set of Setup
Requests that are required for enumeration:
 - Get Device Descriptor
 - Get Configuration Descriptor
 - Set Address
 - Set Configuration
If the program does not recognize a Setup Request
it will instruct the NET2890 to stall endpoint 0.

CONTROL TRANSFERS:
In this flowchart, Control Read data transfers return
standard descriptors to the host during enumeration.
The model can easily be extended for any Control
Read data transfer, including Class or Vendor
Specific requests.

Control Write data transfers are not required for
enumeration, however the flowchart includes Control
Write data transfer programming for completeness.
The model can easily be extended for any Control
Write data transfer, including Class or Vendor
Specific requests.

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

3

CPU Reset

NET2890 Initialization Sequence

Basic system initialization:
POST, memory, stack, etc.

Start here.
Local CPU is reset due to USB

cable being plugged in, Root Port
Reset or push-button reset.

Configure CPU interrupt subsystem
as needed to vector a NET2890
interrupt request (IRQ#) to the
Net2890Interrupt routine (Page 4)

Idle

Loop forever doing nothing.
Net2890Interrupt handles all

enumeration and transfer events.

Select IRQENB1 in Indexed Register (IDXADDR1=0x02)
Enable Endpoint 0, A and B interrupts in IRQENB1 (IDXDATA1=0x07)

Select IRQENB2 in Indexed Register (IDXADDR1=0x03)
Enable Setup Packet Interrupt IRQENB2 (IDXDATA1=0x40)

Select Endpoint 0's Paged Register Set (PAGESEL=0x00)
Enable Data Packet Received, Data Packet Transmitted and Data Token IN interrupts (EPIRQENB=0x34)
Set FIFO Valid Mode and FIFO Flush (FIFOCTL=0x60)

Select EP0PKTSIZLSB in Indexed Register (IDXADDR1=0x10)
Set EP0 maximum packet size (IDXDATA1=Ep0MaxPktSize)

EpAInit
Page 15

EpBInit
Page 15

 Ep0MaxPktSize is a
constant. It can be

either 8 or 16. (The
NET2890 default is 8.)

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

4

Notice that a Setup Packet
Interrupt is handled before
an Endpoint 0 Interrupt

Endpoint B Interrupt (IRQSTAT1[2]==1)

Default

Endpoint 0 Interrupt
(IRQSTAT1[0]==1)

?

No

Return from interrupt

Net2890Interrupt

EpAHandler
Page 12

Endpoint A Interrupt (IRQSTAT1[1]==1)

Ep0Handler
Page 11

EpBHandler
Page 12

Yes

PROGRAM
FAULT!!

N
E

T
2890 Interrupt D

ispatch

This simple example does not handle other
NET2890 interrupt events. A real device may need
to respond to Root Port Reset Interrupt and other
interrupt events here.
All enabled interrupts must have handlers. If
the source of an enabled interrupt is not cleared
(by writing a '1' to appropriate bits in IRQSTAT1 or
IRQSTAT2) the NET2890 will not de-assert IRQ#.
Although this case should not occur (since no
other interrupts are enabled) it should be treated
as a program fault during development.

SetupRequest
Page 5

Setup Packet Interrupt (IRQSTAT2[6]==1)

Suspend Request
(IRQSTAT2[1]==1)

?

No

Clear Suspend Request and Resume Interrupt Status,
and Set Suspend Control (IRQSTAT2=0x13)

Reduce local power and power down CPU

During early development, it is often better to notify the user instead of
actually suspending.

When the NET2890 IRQ# pin is
asserted, the interrupt subsystem
transfers CPU control to here.

Yes

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

5

Return

Select EP0 Page (PAGESEL=0x00)
Clear potential EP0 Stall (EPRSPCLR=0x01)
Clear any EP0 Interrupts (EPIRQSTAT=0xff)
Clear addressing state variable (SettingAddress=FALSE)

Select Setup Page (PAGESEL=0xe0)
Copy Setup Packet to local memory:

bmRequestType = SETUP0
bRequest = SETUP1
wValue = SETUP3, SETUP2
wIndex = SETUP5, SETUP4
wLength = SETUP7, SETUP6

Stall Endpoint 0
(EPRSPSET=0x01)

bmRequestType==0x80
bRequest==0x06
(HIBYTE)wValue==0x01

bmRequestType==0x80
bRequest==0x06
(HIBYTE)wValue==0x02

bmRequestType==0x00
bRequest==0x09

bmRequestType==??
bRequest==??

 Clear Control Status Phase Handshake
(EPRSPCLR=0x10)

SetAddress
Page 9

GetDevDesc
Page 6

GetConfDesc
Page 7

SetConfig
Page 10

Unknown or unsupported
setup request

Allow NET2890 to ACK the status
phase of the Control Transfer:

bmRequestType==0x00
bRequest==0x05

U
S

B
 R

equest D
ispatch

This simple example
only supports the

requests shown, but
with more programming,

any request can be
supported .See USB

Spec section 9.3

Clear Setup Packet Interrupt (IRQSTAT2=0x40)
Select EP0 Page (PAGESEL=0x00)

SetupRequest

Default

ControlWrite
Page 10

This is a non-
standard request.
It is shown only to
demonstrate Control
Write data transfers.

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

6

GetDevDesc

Get address of Device Descriptor (TxBuf = &DevDesc)
Determine transfer size (TxRemain = min (Sizeof(DevDesc), wLength))
Flush EP0 FIFO (FIFOCTL |= 0x20)

Ep0TransmitPkt
Page 8

Return

Device Descriptor
(DevDesc):
 bLength
 bDescriptorType
 bcdUSB
 bDeviceClass
 bDeviceSubClass
 bDeviceProtocol
 bMaxPacketSize0
 idVendor
 idProduct
 bcdDevice
 iManufacturer
 iProduct
 iSerialNumber
 bNumConfigurations

This Device Descriptor is
preloaded in local memory.
(See USB spec 9.6.1 for
content information.) Note
that NET2890 endpoint
configuration must match
descriptors

This call to Ep0TransmitPkt will
load the EP0 FIFO with the first
packet of the descriptor. When
the host successfully reads the

packet, and issues IN tokens for
another packet, Ep0Handler will
re-use Ep0TransmitPkt to load

the next packet. The process
repeats until the entire descriptor

is read.

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

7

Ep0TransmitPkt
Page 8

Get address of Configuration Descriptor (TxBuf = &ConfDesc)
Determine transfer size (TxRemain = min (Sizeof(ConfDesc), wLength))
Flush EP0 FIFO (FIFOCTL |= 0x20)

GetConfDesc

Configuration
Descriptor
(ConfDesc):
 bLength
 bDescriptorType
 wTotalLength
 bNumInterfaces
 bConfigurationValue
 iConfiguration
 bmAttributes
 MaxPower

Interface Descriptor:
 bLength
 bDescriptorType
 bInterfaceNumber
 bAlternateSetting
 bNumEndpoints
 bInterfaceClass
 bInterfaceSubClass
 bInterfaceProtocol
 iInterface

Endpoint Descriptors:
(One for each endpoint)
 bLength
 bDescriptorType
 bEndpointAddress
 bmAttributes
 wMaxPacketSize
 bInterval

These descriptors are
preloaded contiguously in
local memory. (See USB
spec 9.6.2 - 9.6.4 for
content information.) Note
that NET2890 endpoint
configuration must match
descriptors

This call to Ep0TransmitPkt will
load the EP0 FIFO with the first
packet of the descriptor. When
the host successfully reads the

packet, and issues IN tokens for
another packet, Ep0Handler will
re-use Ep0TransmitPkt to load

the next packet. The process
repeats until the entire descriptor

is read. Return

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

8

Ep0TransmitPkt

Yes

Determine how many bytes to transmit (Count = min(TxRemain, Ep0MaxPktSize))
Duplicate count (Count2 = Count)
Reduce remaining transfer size (TxRemain -= Count)

Return

FIFO loaded with
less than EP0 packet size

(Count2 < Ep0MaxPktSize)
?

No

Done copying to FIFO
(Count == 0)

?

Copy byte from local memory to FIFO (EPDIN = *TxBuf)
Point to next byte in local memory(TxBuf++)
Reduce count (Count--)

Set FIFO Valid (FIFOSTAT = 0x80)

Yes

No

Clear EP0 FIFO handshake variable (OkayToLoadEp0 = FALSE)

Clearing the handshake variable
here ensures that the FIFO will not
be reloaded until this packet has
been successfully sent. See
Ep0Handler , Ep0PktSentHandler
and errata 630-0057-0401

Setting FIFO Valid allows a short
packet to be returned to the host

As soon as the amount of data in
the FIFO equals (or exceeds) the
endpoint's maximum packet size,
the NET2890 will respond to an IN
token with a full packet instead of a
NAK.

Ep0TransmitPkt is called when the host is requesting a
packet, and it is 'safe' to load EP0 transmit FIFO.
This section is similar to EpTransmitPkt . Differences
mainly address errata 630-0057-0401

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

9

Ep0PktSentHandler

Clear endpoint's Data Packet Transmitted Status and
Data IN Token Interrupt Status (EPIRQSTAT=0x14)
Set EP0 FIFO handshake variable (OkayToLoadEp0 = TRUE)

Processing Set Address request
(SettingAddress==TRUE)

?

Select OURADDR in Index Register (IDXADDR1=0x01)
Set our USB device address (OURADDR = (LOBYTE)wValue)
Clear addressing state variable (SettingAddress=FALSE)

Return

Yes

Set addressing state variable (SettingAddress=TRUE)

SetAddress

Return

Recall: SettingAddress is set to FALSE
for every Setup Request. (See page 5)

USB specifies that a device cannot change it's
address until after the associated status phase.

(See USB spec section 9.4.6.)
When the NET2890 successfully receives the
host's status phase (an IN) the NET2890 will

interrupt with Data Packet Transmitted Interrupt
Status set. This in turn causes Ep0Handler and

then Ep0PktSentHandler to be called, which
will finally set the device's address.

Ep0PkSentHandler is called when EP0's Data Packet
Transmitted Interrupt status bit is set. This bit gets set on
two conditions:
 - the succesful Data Phase of a Control Read
 - the succesful Status Phase of a Control Write
The 'Direction of transfer' in bmRequestType determines
which condtion applies. (This program does not need to
differentiate between the conditions.)

A packet has been successfully sent to the host.
If an IN token arrives after this time, it is safe to
load the EP0 Tx FIFO. See Ep0Handler,
Ep0TransmitPkt, and errata 630-0057-0401

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

10

Device not configured (MAINCTL &= ~0x04)

Device configured (MAINCTL |=0x04)

Configuration value valid
(LOBYTE)wValue<=DevDesc[bNumConfigurations])

?

Configured
(CurrUsbConfig!=0)

?

Yes

SetConfig

No

Yes

Return

Stall Endpoint 0 (EPRSPSET=0x01)

Copy configuration byte (CurrUsbConfig=(LOBYTE)wValue)

ControlWrite

Setup receive buffer (RxBuf = RXBUFFER)
Setup receive transfer size (RxRemain = min(wLength, RXBUFFERSIZE)

Return

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

11

Control Write Data Phase

Ep0Handler

E
P

0 Interrupt D
ispatch

Data Packet Transmitted Interrupt
(EPIRQSTAT[4]==1)

Data Packet Received Interrupt
(EPIRQSTAT[5]==1)

Default

This simple example does not handle other endpoint
interrupt events. See EPIRQSTATand EPIRQENBfor more
information.
All enabled interrupts must have handlers. If the source
of an enabled interrupt is not cleared (by writing a '1' to
appropriate bits in EPIRQSTAT) the NET2890 will not de-
assert IRQ#.
Although this case should not occur (since no other
interrupts are enabled) it should be treated as a program
fault during development.

PROGRAM
FAULT!!

Ep0PktRcvdHandler
This Page

Ep0PktSentHandler
Page 9

Ep0TransmitPkt
Page 8

This condition indicates that the host expects more data, and it
is safe to load EP0 Transmit FIFO. See errata 630-0057-0401,
Ep0TransmitPkt and Ep0PktSentHandler, for more
information.

Ep0PktRcvdHandler

Direction: Device to Host
(bmRequestType[7] == 1)

?

Return

Control Read Status Phase

No

Clear Data Packet Received Interrupt status (EPIRQSTAT=0x20)

ReceivePkt
Page 13

Data IN Token Interrupt AND
 EP0 FIFO handshake variable TRUE

((EPIRQSTAT[2] == 1) && OkayToLoadEp0)

Yes

Return

Ep0PktRcvdHandler is called when EP0's Data Packet
Received Interrupt status bit is set. This bit gets set on two
conditions:
 - the succesful Data Phase of a Control Write
 - the succesful Status Phase of a Control Read
The 'Direction of transfer' determines which condtion applies.

Select EP0 Page (PAGESEL=0x00)

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

12

EpBHandler

Return

TransmitPkt
Page 14

Select EPB Page (PAGESEL=0x40)

EpAHandler

Return

ReceivePkt
Page 13

Select EPA Page (PAGESEL=0x20)

EpBHandler is called when Endpoint B
Interrupt status bit is set.
Endpoint B in this example is used as an IN
endpoint.

EpAHandler is called when Endpoint A
Interrupt status bit is set.
Endpoint A in this example is configured as
an OUT endpoint.

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

13

No

ReceivePkt

Done copying to memory
(Count == 0)

?

Copy byte from FIFO to local memory (*RxBuf=EPDOUT)
Point to next byte in local memory(RxBuf++)
Reduce count (Count--)

Yes

(Hint: For performance, this
section should be optimized
and written in assembler.)

Clear endpoint's Data Packet Received Interrupt Status (EPIRQSTAT=0x20)

Return

ReceivePkt is called in response to a Data
Packet Received Interrupt Status bit being
set. Note that the endpoint will NAK OUT
tokens as long as this bit is set.

Determine how many bytes to copy to memory (Count=min(RxRemain, FIFOCNT))
Reduce size of remaining transfer (RxRemain -= Count)

If there is room in the endpoint's
FIFO, the NET2890 can now
accept another OUT data packet.

Note that in this 'artificial' device, there is
no mechanism (such as a MODEM) to

remove data from receive buffers. Once a
buffer and it's associated endpoint FIFOs
are full, OUTs to that endpoint are NAKd.

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

14

More data
remains in local
memory

No

TransmitPkt

Done copying to FIFO
(Count == 0)

?

Copy byte from local memory to FIFO (EPDIN = *TxBuf)
Point to next byte in local memory(TxBuf++)
Reduce count (Count--)

Yes

Yes

Set FIFO Valid (FIFOSTAT=0x80)

As soon as the amount of data
in the FIFO equals or exceeds
the endpoint's maximum packet
size, the NET2890 will respond
to an IN token with a full packet
instead of a NAK.

Setting FIFO Valid
allows a short packet
to be returned to the
host

(Hint: For performance,
this section should be

optimized and written in
assembler.)

Calculate remaining space in FIFO (FifoRemain=128-FIFOCNT)
Determine how many bytes to transmit (Count=min(TxRemain, FifoRemain))
Reduce remaining transfer size (TxRemain -= Count)

Return

No

TransmitPkt is called in response to
Data Packet Transmitted Interrupt
Status bit being set . Note that the
endpoint will NAK IN tokens as long
as this bit is set.

No

Clear endpoint's Data Packet Transmitted Interrupt Status (EPIRQSTAT=0x10)

If at any time after this bit is cleared FIFOCNT
equals or exceeds the endpoint's maximum
packet size (or FIFO Valid is set) the NET2890
will respond with packet data instead of a NAK.

In this 'artificial' device, there is
 no mechanism (such as a MODEM)

to fill transmit buffers. Once a
 transmit buffer and it's associated

endpoint become empty, IN tokens
 are NAKd.

Transfer done
(TxRemain == 0)

?

Yes

To remove any ambiguity, this tests
checks if any more data needs to be

 copied from local memory to the
transmit FIFO. The transfer is not

really done until the host successfully
reads the last packet from the

endpoint's FIFO

Transfer done
(TxRemain == 0)

?

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

15

Select Endpoint A's Paged Register Set (PAGESEL=0x20)
Clear Timeout, Short Packet Transferred , and all USB STALL, NAK and ACK status bits (EPUSBSTAT=0xfe)
Clear FIFO Overflow, Underflow, Full and Empty (FIFOSTAT=0x3c)
Set FIFO Valid Mode and FIFO Flush (FIFOCTL=0x60)
Select EPAPKTSIZLSB in Index Register (IDXADDR1=0x12)
Assign EPA maximum packet size (IDXDATA1=0x40)
Assign Endpoint Number 1 1, Direction to OUT, Type to BULK, and Endpoint Enable to TRUE
Set Data Packet Received Interrupt enable (EPIRQENB=0x20)
Clear Data Packet Received Interrupt status (EPIRQSTAT=0x20)

Setup receive buffer (RxBuf = RXBUFFER)
Setup receive transfer size (RxRemain = RXBUFFERSIZE)

EpAInit

Return

EpBInit

Return

Select Endpoint B's Paged Register Set (PAGESEL=0x40)
Clear Timeout, Short Packet Transferred , and all USB STALL, NAK and ACK status bits (EPUSBSTAT=0xfe)
Clear FIFO Overflow, Underflow, Full and Empty (FIFOSTAT=0x3c)
Set FIFO Valid Mode and FIFO Flush (FIFOCTL=0x60)
Select EPBPKTSIZLSB in Index Register (IDXADDR1=0x14)
Assign EPB maximum packet size (IDXDATA1=0x40)
Assign Endpoint Number to 2, Direction to IN, Type to BULK, and Endpoint Enable to TRUE (EPCFG=0x2e)
Set Data Packet Transmitted Interrupt Enable (EPIRQENB=0x40)
Clear Data Packet Transmitted Interrupt status (EPIRQSTAT=0x40)

Configure Endpoint A to be a 64-byte
BULK OUT endpoint at USB endpoint
address 1 (0x01)

Configure Endpoint B to be a 64-byte
BULK IN endpoint at USB endpoint
address 2 (0x82)

Setup transmit buffer (TxBuf = TXBUFFER)
Setup transmit transfer size (TxRemain = TXBUFFERSIZE)

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

16

Note: The following enumeration sequences were recorded
from a working NET2890-EB evaluation board with a
Windows98 host. These sequences are provided as
examples only.

NcUsb.sys installed in host

Reset
Get Device Descriptor - 64 bytes
Reset
Set Address
Get Device Descriptor - 18 bytes

Get Configuration Descriptor - 255 bytes
Get Device Descriptor - 18 bytes
Get Configuration Descriptor - 265 bytes
Set Configuration

No Driver installed in host

Reset
Get Device Descriptor - 64 bytes
Reset
Set Address
Get Device Descriptor - 18 bytes

Get Configuration Descriptor - 255 bytes
Get String Descriptor - 255 bytes
DialogBox installation wizard pop-up

Sample Enumeration Sequences

 NetChip Technology, Inc., 1997
335 Pioneer Way, Mountain View, California 94041

TEL (650) 526-1490 FAX (650) 526-1494
http://www.netchip.com

17

USB Compatibility Ch. 9 Test

Reset
Get Device Descriptor - 64 bytes
Reset
Set Address
Get Device Descriptor - 18 bytes
Get Configuration Descriptor - 9 bytes
Get Configuration Descriptor - 255 bytes
Get Device Descriptor - 18 bytes

