

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Using the 823_USB_API Package to Interface with
Your USB Drivers

1997 Motorola, Inc.All Rights Reserved.

Wireless System Subscriber Group

SEMICONDUCTOR PRODUCT INFORMATION

The purpose of this document is to set the requirement specification and the application programming interface
(API) for the

823_USB_API

 package.This document is targeted at MPC823 USB device driver programmers
and other users of the MPC823 USB controller. The

823_USB_API

 package consists of a driver/API to the
MPC823 universal serial bus (USB) module and test applications that use the API located on the Motorola
Personal Systems website at http://www.mot.com/mpc823.

The

823_USB_API

 is a stand-alone product. It provides procedural interfaces, self-contained MPC823
initialization routines, interrupt handling for the USB controller, and example application tests. The software
drivers will be used by the MSIL MPC823 design team and, eventually, all MPC823 users.

TERMINOLOGY

The following terms are used throughout this document and defining them may help you to understand the

823_USB_API

.

• Call routine—A routine provided by the

823_USB_API

 . For example, Tx_USB_823.

• Callback routine—A routine that should be provided by the user, called a

823_USB_API

 interrupt routine.
For example, when a USB frame is received the

823_USB_API

 will call the user callback routine that will
deal with this frame.

If you have hardware platform questions that are not addressed in this document, see the MPC823
specification. You can also refer to the USB specification for additional information on the USB protocol.

FUNCTIONALITY

The

823_USB_API

 provides a programming interface for the USB. This includes:

• General MPC823 registers initialization

• Initialization of the USB block

• Interrupt routine(s) for the USB

• USB device routines (set the device address, resume a suspended device)

• Get USB frame (time) number

• Indication of SOF (optional)

• Indication of suspended device and an indication when it resumes

• Indication of busy, reset, and transmit error interrupts

• Indication of received data on an endpoint

• Per endpoint routines—configure, stall or nack an endpoint, ignore in or out tokens, transmit and receive
data

http://www.mot.com/mpc823
http://www.mot.com/SPS/ADC/pps/_subpgs/_documentation/823/index.html
http://www.mot.com/SPS/ADC/pps/_subpgs/_documentation/823/index.html
http://www.mot.com/SPS/ADC/pps/_subpgs/_etoolbox/823/usb.html

2

823_USB_API SPECIFICATION

MOTOROLA

• Toggling of data0/data1 for transmit data

• Host routines for debug purposes

• Two example applications that interface to the

823_USB_API

The

823_USB_API

 does not provide any memory allocation/deallocation mechanism or any transmit/receive
error processing.

All these features are the responsibility of the application, which should provide the routines that implement
these mechanisms. The application must transmit pointers to these routines as parameters when it calls
various

823_USB_API

 initialization functions. The example application provided with

823_USB_API

 provides
some of the above functionality for memory allocation/deallocation and error processing, but it is very limited.

BASIC OPERATION

1. Before operating, the driver must be initialized using the

Init_823

and

Init_USB_823

routine

s

.

2. Any USB physical endpoint should be initialized before its first usage using the routine

Init_USB_Endpoint_823

.

3. At driver initialization, the memory size for Tx & Rx buffer descriptor rings is defined along with the buffer
descriptor memory space base address and size. The application has to allocate the memory for the
buffer descriptor rings and the driver manages this memory. When each channel is initialized, the driver
allocates its Rx & Tx buffer descriptor rings from this memory. The total number of buffer descriptor s
for each channel is a function of the memory size for the buffer descriptor rings as defined by the user
at initialization and the buffer descriptor size.

4. From there on, frames are transmitted on any initiated endpoint using the

Tx_USB_823

routine.

5. A frame received in an initiated endpoint is either reported by the XX_Call user routine or Rx_USB is
immediately called. It is later passed to the user-supplied routine,

f_Store

.

6. The

823_USB_API

 operation tries to minimize the number of interrupts generated by the MPC823.
Thus, only interrupts per frame transmission / reception are enabled and not interrupts per buffer.
Interrupts are disabled whenever possible.

ASSUMPTIONS AND DEPENDENCIES

• There are no dependiencies on the MetaWare High C/C++ Compiler because not all customers will be
using it.

• The code should be ANSI C-compliant.

• Some parts of the software were derived from the ATIC software.

Note:

The

823_USB_API

 will be interrupt-oriented. The transmit requests will be issued by the user,
but the indications of transmit acknowledge, receive data, and errors will be issued by the driver
at a USB interrupt.

MOTOROLA

823_USB_API SPECIFICATION

3

REQUIREMENTS

The

823_USB_API

 has procedural nterfaces, self-contained MPC823 initialization routines, and interrupt
handling.

INTERNAL CAPABILITIES AND DATA STRUCTURES

• data0/data1 Toggling—The

823_USB_API

 includes data0/data1 toggling functionality for each one of the
four endpoints. For more information about the data0/data1 toggling procedure, see the USB standard.

• USB Device Suspension—A USB device is suspended when it is in an idle state for more then 3ms.

823_USB_API

 will maintain an idle timer that is started when an idle on the bus is indicated. This timer
will time-out after 3ms and the application program will be notified of the suspension by calling its
suspend callback routine. Activity is resumed at the next transmission from the host or by calling the
USB_823_Resume routine. When activity resumes, the upper layer will be indicated by calling the exit
suspend callback routine.

USB

DATA

STRUCTURE

.

The data structure used for the USB and holding routines provided by the user is
defined by the following structure:

typedef struct {

 e_Err (* f_Sof)();

 /* upper layer’s routine - used by */

 /* the driver to notify the user */

 /* of start of frame token. */

 e_Err (* f_Tx_Error)(int);

 /* upper layer’s routine - used by */

 /* the driver to notify the user */

 /* of transmit error. */

 e_Err (* f_Busy)();

 /* upper layer’s routine - used by */

 /* the driver to notify the user */

 /* of ‘busy’ interrupt. */

 e_Err (* f_Reset)();

 /* upper layer’s routine - used by */

 /* the driver to notify the user */

 /* of ‘Reset’ interrupt. */

 e_Err (* f_Usb_suspend)();

 /* upper layer’s routine - used by */

 /* the driver to notify the user */

 /* about the suspended device. */

 e_Err (* f_Usb_Exit_suspend)();

 /* upper layer’s routine - used by */

 /* the driver to notify the user */

 /* that that device is no longer */

 /* suspended. */

 } t_Usb;

4

823_USB_API SPECIFICATION

MOTOROLA

E

NDPOINT

DATA

STRUCTURE

.

The data structure used for each endpoint is defined by the following
structure:

typedef void *t_Handle;

typedef struct {

byte init; /* 1 if this endpoint was */
 /* initialized . */

byte P_Endpoint; /*physical endpoint number */

 /*(0-3). */

t_Handle RxQ; /* circular queue for receive */

/* buffer pool */

t_Handle ConfQ; /* frames passed to chip waiting */

/*for tx */

t_Handle TxQ; /* transmit queues */

crc

void *TxBase; /* first BD in Tx BD table */

void *RxBase; /* first BD in Rx BD table */

void *ConfBd; /* next BD for confirm after Tx */

void *TxBd; /* next BD for new Tx request */

void *RxBd; /* next BD to collect after Rx */

void *EmptyBd; /* next BD for new empty buffer */

void *p_RxFrame; /* accumulating receive frame */

word CurrentBuff; /* buffer number within the */

/* current transmitted frame */

/*for linking to Tx BD table */

ulng QueueId; /* id of queue for messages from */

/* the driver to the upper layer. */

 e_Err (* f_Store)(t_Handle,void *);

 /* upper layer's routine - called to pass */

/* a received frame to the application. */

void *last_bd_of_txed_frame;

/* last bd in the last transmitted frame */

/* after a start transmit command */

void *last_bd_of_ll_frame;

/* last bd of last linked frame */

void *first_bd;

/* first bd of the frame currently */
/*being linked */

#ifdef HOST_TEST

void *last_bd_of_fl_frame;

/* last bd of first linked frame */

#endif

 void *first_bd;

 /*first bd of the frame currently */

/* being linked. */

 word data01;

 /* The actual value of the PID field */

MOTOROLA

823_USB_API SPECIFICATION

5

 /* already shifted to the PID field position.*/

} t_Endpoint;

t_Endpoint Endpoint[4];

USER-VISIBLE CALL ROUTINES

The

823_USB_API

 provides the following user-visible routines that implement the above functionality. All
routines return 0 on success. Otherwise, some other negative or positive value is returned.

G

ENERAL

 I

NITIALIZATION

.

void Init_823()

The application should use this call first and only once before any other calls from the

823_USB_API

. This
routine only initiates the MPC823 registers/memory that are relevant to USB operation.

USB

DEVICE

 I

NITIALIZATION

.

void Init_USB_823(e_Err (*f_Usb_suspend)(),
e_Err (*f_Usb_Exit_suspend)(), e_Err (*f_sof)(), e_Err (*f_Tx_Error)(int
Endpoint_Num),e_Err(*f_Busy)(), e_Err(*f_Reset)(),USB_SPECIFIC *param)

The application has to call this routine to initialize the USB.

Parameters:

❏

f_Usb_suspend

—A pointer to the application-provided routine to be called by the

823_USB_API

when an indication of suspend on the USB occurs.

f_Usb_Exit_suspend

—A pointer to the application-provided routine to be called by the
823_USB_API when exiting from suspension.

f_Sof

- pointer to the application-provided routine to be called by the

823_USB_API

when an
indication of SOF frame occurs.

f_Tx_Error

—A pointer to the application-provided routine to be called by the 823_USB_API when
an interrupt occurs due to a transmission error. The argument passed specifies the endpoint for
which the error occurred.

❏

f_Busy

—A pointer to the application-provided routine to be called by the 823_USB_API when an
interrupt occurs due to a busy error.

❏

f_Reset

—A pointer to the application-provided routine to be called by the 823_USB_API when an
interrupt occurs due to reset.

❏

param

—A pointer to a parameter structure for the USB. See

 USB-Specific Parameter Structure

below for more information.

USB-Specific Parameter Structure.

For more information on the following code, see the MPC823 USB
specification or the USB specification.

typedef struct {

unsigned char lsp; /* 0 - 12 Mpbs, 1 - 1.5 Mbps */

unsigned char sof; /* 0 - no sof indication, */

/* 1 - sof indication by calling */

/* user callback routine */

} USB_SPECIFIC;

6

823_USB_API SPECIFICATION

MOTOROLA

E

NDPOINT

 I

NITIALIZATION

.

void Init_USB_Endpoint_823(byte Endpoint_Num, ulong
x_Bd_Ring_Len,ulong Rx_Bd_Ring_Len, void *DpRam_Base, ulong Bd_Memory_Size,
t_Handle *p_Id, ulng QueueId, e_Err (*f_Store)(t_Handle,void *), e_Err
(*f_Error)(t_Handle,void *), ENDPOINT_SPECIFIC *param)

The application has to call this routine to initialize a USB endpoint. For a description of the callback function,

f_Store

, see

USB Endpoint-Specific Parameters Structure

 below.

Parameters:

❏

Endpoint_Num

—USB physical endpoint number (0-3).

❏

Tx_Bd_Ring_Len

—Defines the memory size to be allocated for channel transmit buffer
descriptors.

❏

Rx_Bd_Ring_Len —Defines the memory size to be allocated for channel receive buffer descriptors.
❏ *DpRam_Base—Buffer descriptor memory space base.
❏ Bd_Memory_Size —Buffer descriptor memory space size.
❏ p_Id —Handle to the endpoint data structure is returned here.
❏ QueueId —Id of queue for messages from the driver to the upper layer.
❏ f_Store —A pointer to an upper layer routine to be called by the 823_USB_API to pass received

frames.
❏ f_Error —A pointer to an upper layer routine to be called by the 823_USB_API to pass an error

indication.
❏ param —A pointer to a parameter structure for the USB endpoint. See USB Endpoint-Specific

Parameters Structure below for more information.

USB Endpoint-Specific Parameters Structure. For more information on the following code, see the
MPC823 USB specification.

typedef enum { Pipe_Bidir = 0, Pipe_Out, Pipe_In } pipe_dir;

typedef enum { Dec = 0, PowerPc, Motorola } byte_ordering;

typedef struct {

unsigned char epn; /* endpoint number 0-15 */

unsigned char tm; /* transfer mode: */

/* 0- control, 1-interrupt */

/* 2-bulk, 3-isochronous */

unsigned char rte; /* frame retransmit enable: */

/* 0 - no retransmition */
/* 1 - automatic retransmission */

 pipe_dir dir; /* pipe direction: */

 unsigned short max_buffer_len /* maximum buffer length */

 byte_ordering bo; /* byte orderring */

} ENDPOINT_SPECIFIC;

MOTOROLA 823_USB_API SPECIFICATION 7

USB TRANSMIT FRAME. e_Err Tx_USB_823(t_Handle Ept,void *p_Frame)

The application calls this function to transmit data frames on a specified endpoint of the USB device. The frame
is put in the driver’s transmit queue for this endpoint, then an internal routine, Kick_Tx_USB_823, is called to
handle this frame. See Kick_Tx_USB_823 below for more information. Tx_USB_823 takes care of the data0/
data1 field in the transmitted data frame.

Parameters:

❏ Ept - Handle to endpoint structure
❏ p_Frame - pointer to frame.

Return value:

❏ 0 on success . Otherwise, they return some other negative or positive value.

e_Err Tx_USB_823(t_Handle Ept, void *p_Frame1)

{

t_Endpoint *p_Ept = (t_Endpoint *)Ept;

 save interrupt mask status.

 disable transmit interrupts on this endpoint.

 j = CQ_Put(p_Ept->TxQ, p_Frame); <--- add frame to

 Tx queue

 enable interrupts

 if(j == -1) <--- failed to insert frame to Tx queue

 {

 F_Delete(p_Frame);

 return E_FAIL

 } else

 disable transmit interrupt.

 kick the transmitter:

Kick_Tx_USB_823(p_Ept);

enable transmit interrupts.

 return E_OK;

}

USB HOST TRANSMIT. e_Err Tx_USB_823(ulong Ept,void *p_Frame)

The application calls the same function, Tx_USB_823(), to transmit a frame on a USB host that will be on
endpoint 0. This option is used for testing purposes only. It will be used when the USB is configured to operate
in test mode, when this mode endpoint 0 is used as a host, and when the information is looped back to the
other three ports. In this mode, the application is responsible for transferring the tokens as well as the data.The
prepared token includes the endpoint number of one of the other three physical endpoints and so the packet
will be looped to one of those endpoints. This mode is used for transmitting (setup frames, data frames, and
SOF frames).

8 823_USB_API SPECIFICATION MOTOROLA

Setup and data will consist of two frames—one for the token and one for the data— which are on a separate
buffer descriptor. SOF only consists of the SOF token. In this mode, it is the responsibility of the application
to control the data0 and data1 toggling, as well as the retransmission of data when a time-out occurs.
Data0/data1 pid are not appended automatically by the USB block (i.e. pid field in the TXBD will be equal to 0).

KICK_TX_USB_823. static void Kick_Tx_USB_823(t_Endpoint *p_Ept)

The Kick_Tx_USB_823 routine passes the frames for transmission to the chip. It is called from the
Tx_USB_823 function when a frame in inserted to an empty transmit queue to put as many buffers as possible
in the specified channel’s transmit buffer descriptor table. After this, further calls to Kick_Tx_USB_823 are
made from the transmit interrupt routine until all data has been handled. Kick_Tx_USB_823 also releases
previously transmitted frames from the buffer descriptor table and frees their memory.

Kick_Tx_USB_823 is also used for transmitting frames over a host endpoint. Since HOST mode is intended
to be used only by the MSIL MPC823 design team, the compilation flag HOST_TEST is used to differentiate
between the testing version of the routine and the normal operation version.

Parameters:

❏ p_Ept —A pointer to the endpoint handler data structure.

static void Kick_Tx_USB_823(t_Endpoint *p_Ept)

{

 /* --- */

 /* collect transmitted BD’s from the chip */

 /* --- */

 bd = p_Ept->ConfBd;

 while((!(BD_STATUS(bd) & T_R)) && (BD_BUFFER(bd)))

 {

 if(last BD in frame)

 {

 p_F = CQ_Get(p_Ept->ConfQ);

 /* If there is no error in the frame, i.e, it has */

 /* been acknowlendged, toggle the data01 field of */

 /* the endpoint. */

#ifndef HOST_TEST
 /* If there is no error in the frame, i.e, it has */

 /* been acknowlendged, toggle the data01 field of */

 /* the endpoint. */

 if(! (BD_STATUS(bd) &(TO|UN)))

 p_Ept->data01 = (p_Ept->data01 + 1)&1;

#endif HOST_TEST

 /* If there is an error in the frames last BD, call */

 /* The user supplied error routine, with the type */

 /* error and pointer to the frame and only after the */

 /* application routine is called delete the frame */

 p_Ept->f_Error(p_Ept->Upper, p_F);

 F_Delete(p_F);

 }

MOTOROLA 823_USB_API SPECIFICATION 9

 /* prepare BD for next time */

 BD_BUFFER(bd) = 0;

 BD_STATUS(bd) &= T_W;

 if(bd == p_Ept->last_bd_of_txed_frame)

 {
 advance BD pointer.

 /* If there is a whole frame awating to be transmitted */

 /* set the ready bit of the current BD. The CPM */

 /* will start trnasmition of this BD at the next */

 /* start transmit command. */

 if(p_Ept->last_bd_of_ll_frame)

 bd |= T_R;

 p_Ept->last_bd_of_txed_frame = 0;

 break;

 }

 else

 {

 advance BD pointer.

 }

 }

 p_Ept->ConfBd = bd;

 /* --- */

 /* push as many BD’s to the chip as possible */

 /* --- */

 i = p_Ept->CurrentBuff; <--- index of the current buffer within

 the frame to be transmitted.

 bd = p_Ept->TxBd; <--- next bd to be used for transmitting

 for(;;)

 {

 get next frame (p_F) from the transmit queue,
if the queue is empty go out of the for loop.

 p_B = F_GetBuffer(p_F, i);

 for each buffer in the frame <-- p_ B != NULL

 {

 if next BD is not free

goto TxOut

 set up buffer descriptor

(pointer & length).

10 823_USB_API SPECIFICATION MOTOROLA

 /* If the appended buffer is the first buffer */

 /* in the bd do not set the ready bit and save a */
 /* pointer to that BD. */
 /* The ready bit in that BD will be set later, */

/* when all the frame is linked and if it is not */

/* the first BD awating to be transmitted after a */
/* start transmit command to the USB */
if(i == 0)

 {

#ifdef HOST_TEST

 if(p_Ept->P_Endpoint == 0)

 if(! p_Ept->first_bd)

 p_Ept->first_bd = bd;

 }

 else

#endif
p_Ept->first_bd = BD;

}

else
 BD_STATUS(BD)|= T_R;

 /* set pid field according to the data01 toggle */

 /* and toggle the data01 field of the endpoint */

 /* see if this is the last buffer in the frame structure */

 if(last buffer in frame)

 {

 i = 0;

 set T_L and T_I bit in bd status

#ifdef HOST

 if(p_Ept->P_Endpoint == 0)

 {
 if(F_GetInfo1(p_F)) & SET_HOST_LAST)

 set T_LL bit (that is, HOST LAST);

 if it is a data frame set crc bit in the bd to 1.

 }

 else
#endif

 {
 set pid field according to the data01 toggle

 set crc bit in the bd to 1 /* append crc */

 }

 put frame in confirmation queue :

 CQ_Put(p_Ept->ConfQ, p_F);

 remove frame from transmit queue :

 CQ_Get(p_Ept->TxQ);

MOTOROLA 823_USB_API SPECIFICATION 11

#ifdef HOST_TEST

 if(p_Ept->P_Endpoint == 0)

 {

 If there id no ready frame for transmission

 and there is no transmission at the moment,

 set the ready bit on the first BD in the frame.

 }

 else

#endif
 /* Set the ready bit of the first frame, if it is */

 /* not the first bd to be transmitted after a new */

 /* start transmit command. */

 if(p_Ept->last_bd_of_txed_frame)

 {
if(p_Ept->first_bd !=

(p_Ept->last_bd_of_txed_frame+1bd))

 BD_STATUS(first_bd) |= T_R;

 }

 else

 BD_STATUS(first_bd) |= T_R;

#ifdef HOST

 if(p_Ept->P_Endpoint == 0)

 /* for host endpoint, last_bd_of_ll_frame will be */

 /* set to the current bd only if HOST_LAST is */
 /* set on that BD */

 else

#endif
 p_Ept->last_bd_of_ll_frame = bd;

 }

 else

 {

 if(i != 0)

 BD_STATUS_SET(bd, BD_STATUS(bd) | T_R);

 i++;

 }

ó p_B = next buffer within the frame.

 get next buffer descriptor:

 bd = next bd

}end - for each buffer in the frame

 }end - for

TxOut:

#ifdef HOST

 if(p_Ept->P_Endpoint == 0)

{

12 823_USB_API SPECIFICATION MOTOROLA

transmit only one frame.

}

 else

#endif

 /* If there is a whole frame awating to be transmitted */

 /* and there is no frame currently being transmitted, */

 /* call the start transmit command. */

 if((p_Ept->last_bd_of_ll_frame)&&
(!p_Ept->last_bd_of_txed_frame))

 {

 p_Ept->last_bd_of_txed_frame =
p_Ept->last_bd_of_ll_frame;

 p_Ept->last_bd_of_ll_frame = 0;

 start_transmit(p_Ept);

 }

save parameters for next call:

 p_Ept->TxBd = bd <--- next bd to be used for transmitting.

 p_Ept->CurrentBuff = i; <--- current buff index within the frame;
}

RECEIVE FRAME. void Rx_USB_823(t_Endpoint *p_Ept)

This function is called by the upper application to initiate reception handling. When an interrupt on receive
occurs, Rx_USB_823 is either called directly or by the upper application that is notified using the XX_Call
routine. The QueueId value determines which of these is chosen. The Rx_USB_823 routine collects the
frames from the endpoint buffer descriptors and passes them to the application by calling another upper
application’s routine that is pointed by p_Ept->Store. Before notifying the upper layer on the Rx interrupt, all
interrupts that occur while receiving frames on this channel are disabled until leaving the Rx_USB_823 routine.

Parameters:

❏ p_Ept —A pointer to the endpoint handler data structure.

 void Rx_USB_823(t_Endpoint *p_Ept)

{

 t_Handle CQ = p_Ept->RxQ;

 byte *bd;

 void *p_F;

 int n;

 tBuffer *p_B;

 /*

 collect received buffers

 */

 p_F = p_Ept->p_RxFrame;

 bd = p_Ept->RxBd;

MOTOROLA 823_USB_API SPECIFICATION 13

RxLoop:

 while(there are received buffers)

 {

 /* get buffer structure associated with this BD */

 p_B = CQ_Get(CQ); <--- get buffer structure associated

 with this BD

 if(p_B)

 {

 B_SetLength(p_B, BD_LENGTH(bd));

 attach the received buffer to the accumulating frame:

 if(!p_F)

 p_F = F_New(p_B);

 else

 {

 if(first in frame)

 {

 /* if we’re starting a new frame before the

 previous one finished, discard the old one

 and try again (we’re busy)*/

#if DEBUG_LEVEL == 1

XX_Event(EV_RECEIVE_DISCARD, p_Ept->P_Endpoint);

#endif

 F_Delete(p_F);

 p_F = F_New(p_B);

 } else

 F_PutBuffer(p_F, p_B);

 }

 /* if end of frame pass up to the user

 */

 if(p_F)

 {

 if(first in frame)
 F_set_Info1(p_F, BD_STATUS(BD) & PID);

 if(last in frame)

 {

 if(error in frame)

 {

#if DEBUG_LEVEL == 1

 XX_Event(EV_RECEIVE_FRAME_ERROR,p_Ept->P_Endpoint);

#endif

 F_Delete(p_F);

 p_F=0;

 goto NextBD;

14 823_USB_API SPECIFICATION MOTOROLA

 }

Strip crc out of the frame. set length of last

buffer and of the whole frame according to length

of CRC striped out of the frame.
p_Ept->f_Store(p_Ept->Upper, p_F);

 p_F = 0;

 } <-- end - if(last in frame)

 } else <-- end - if(p_F)

 B_Delete(p_B, TRUE);

 } <-- end - if(p_B)

#if DEBUG_LEVEL == 2

else

XX_Event(EV_UNEXPECTED_EMPTY_RXQ, p_Ept->P_Endpoint);

#endif

NextBD:

/* clear the BD for next time */

 BD_BUFFER(bd) = 0;

BD_STATUS(bd) &= R_W ;

 advance BD pointer:

 bd = next bd

 Endpoint_FillRxPool(p_Ept);

 }

 p_Ept->RxBd = bd;

 p_Ept->p_RxFrame = p_F;

 /* replenish the receive buffer pool */

 Endpoint_FillRxPool(p_Ept);

}

ENDPOINT_FILLRXPOOL. static void Endpoint_FillRxPool(t_Endpoint *p_Ept)

This function is called from the Rx_USB_823 function. It replenishes the receive buffer pool and passes as
many empty buffers to the chip as possible.

Parameters:

❏ p_Ept —A pointer to the endpoint handler data structure.

MOTOROLA 823_USB_API SPECIFICATION 15

INTERRUPT ROUTINES. usb_interrupt()

The application must call the usb_interrupt routine when a USB interrupt occurs. This means that the
application has to have its own hardware interrupt detection mechanism. usb_interrupt will call a reception
interrupt routine, which is responsible for calling, either directly or through XX_Call, the Rx_USB_823. When
a transmission interrupt occurs, usb_interrupt will call the a transmission interrupt routine, which will in turn
call the Kick_Tx_USB_823 routine.

The application-provided interrupt handlers of the USB interrupt should execute in the following sequence:

1. Save the appropriate registers.

2. Call the mpc823_Intr () routine, which will call usb_interrupt if a USB interrupt occurred.

3. Store the previously saved registers.

4. Issue the RFI (return from interrupt) command.

An example of how to do this with the MetaWare compiler will be provided in the 823_USB_API in a file called
inter_low.S.

Parameters:

❏ None.

RESUME THE USB DEVICE. void USB_823_Resume(ulng msec)

This routine causes the MPC823 to resume a previously suspended device.

Parameters:

❏ msec —An indication of the period of time the request to resume will last. It is recommended that
you use 20msec for a host and 10-15msec for a device.

STALL AN ENDPOINT. void Endpoint_USB_823_Stall_Tx(int Endpoint_Num)

void Endpoint_USB_823_Stall_Rx(int Endpoint_Num)

These routines cause an endpoint to force a STALL handshake for the received/transmitted tokens.

Parameters:

❏ Endpoint_Num —Number of physical endpoints (0-3).

Note: It is the responsibility of the application to remember the state of the pipe before calling this
routine to set the pipe back to its normal operation when the stall state is cleared. This can be
done by calling one of the routines in— Bidirectional operation for an endpoint, In operation for
an endpoint, and Out operation for an endpoint.

16 823_USB_API SPECIFICATION MOTOROLA

NACK AN ENDPOINT. void Endpoint_USB_823_Nack_Tx(int Endpoint_Num)

void Endpoint_USB_823_Nack_Rx(int Endpoint_Num)

These routines cause an endpoint to force a NACK handshake for the received/transmitted tokens.

Parameters:

❏ Endpoint_Num —Number of physical endpoints (0-3).

BIDIRECTIONAL OPERATION FOR AN ENDPOINT. void Endpoint_USB_823_Bidir(int
Endpoint_Num)

This routine causes an endpoint to send ACK handshake for IN and OUT received tokens.

Parameters:

❏ Endpoint_Num —Number of physical endpoints (0-3).

IN OPERATION FOR AN ENDPOINT. void Endpoint_USB_823_In(int Endpoint_Num)

This routine causes an endpoint to send ACK handshake only for IN received tokens.

Parameters:

❏ Endpoint_Num —Number of physical endpoints (0-3).

OUT OPERATION FOR AN ENDPOINT. void Endpoint_USB_823_Out(int Endpoint_Num)

This routine causes an endpoint to send ACK handshake only for OUT received tokens.

Parameters:

❏ Endpoint_Num —Number of physical endpoints (0-3).

SET DEVICE ADDRESS (0-127). void SetAddress_USB_823(unsigned char address)

This routine sets the address of the device.

Parameters:

❏ address —The device address (0-127).

GET USB FRAME (TIME) NUMBER. ulng USB_823_get_frame_num()

This routine returns the frame number as stored at the MPC823 parameter RAM FRAME_N parameter.

Note: It is the responsibility of the application to remember the state of the pipe before calling this
routine to set the pipe back to its normal operation when the stall state is cleared. This can be
done by calling one of the routines in— Bidirectional operation for an endpoint, In operation for
an endpoint, and Out operation for an endpoint.

MOTOROLA 823_USB_API SPECIFICATION 17

GET ENDPOINT PHYSICAL NUMBER. ulng Endpoint_Get_P_Endpoint (t_Handle Ept);

This routine returns the physical endpoint number for a given endpoint structure.

Parameters:

❏ Ept —A pointer to a handler of an endpoint structure.

APPLICATION TEST PROGRAMS
The application test programs can be used for testing purposes and are provided as an example to MPC823
users. Both test programs will initialize the USB to operate in test mode (physical endpoint 0 will operate as a
host endpoint and the other three physical endpoints will operate as device endpoints).

GENERAL APPLICATION TEST. The general application test can be found at app_test.c and it performs the
following functions:

1. The USB device operates in loop-back mode.

2. Endpoint 1 transmits frames of data to endpoint 0.

3. The number of frames, their length, and data are read from the input files, sw.frame_num_length and
sw.input.

4. Endpoint 0 is configured as host and transmits IN TOKENs to endpoint 1.

5. Each IN TOKEN is sent only after it is confirmed that there is a data frame ready for transmission at
the FIFO of endpoint 1.

6. When a data frame is received at endpoint 0, it is transmitted and preceded by an OUT TOKEN to
endpoint 2.

7. After all frames are received at endpoint 2, their data is printed out to sw.output.

8. The program ends when all transmitted frames from endpoint 1 are received at endpoint 2 and printed
out.

IDLE TIMER TEST. The idle timer test can be found at app_test_timer.c and it performs the following
functions:

1. The USB device operates in loop-back mode.

2. Endpoint 0 is configured as the host and first transmits five SOF TOKENs.

3. After each transmission, it starts a 4ms timer, which means an idle longer than 3ms. This causes the
device to suspend and the f_Usb_suspend callback routine to be called.

4. The device resumes action when the next SOF TOKEN is transmitted and the f_Usb_Exit_suspend
callback routine is called.

5. After the fifth suspension, no SOF TOKEN is sent. Instead, USB_823_Resume is called to reactivate
the device.

6. The number of calls to f_Usb_suspend and f_Usb_Exit_suspend is counted and printed. This program
also tests the USB_823_get_frame_num routine. The frame number as saved in the parameter RAM
FRAME_N is printed at this stage, then a different SOF TOKEN is sent and the frame number is printed
again.

