

MIC2550

Universal Serial Bus Transceiver

Advance Information

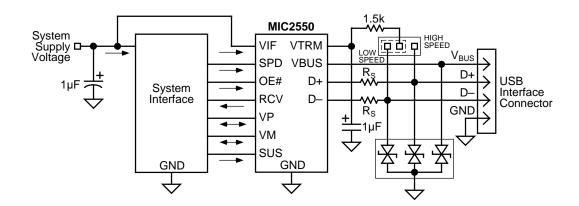
General Description

The MIC2550 is a single-chip transceiver that complies with the physical layer specifications for Universal Serial Bus (USB).

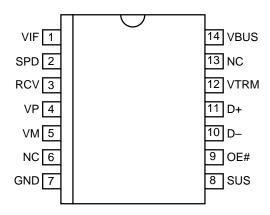
The MIC2550 supports full-speed (12Mb/s) and low-speed (1.5Mb/s) operation. It operates down to 2.5V for compatibility with the lower system voltages typical of mobile systems.

Features

- Compliant to USB Specification Revision 1.1
- Operation down to 2.5V
- Supports high-speed (12Mb/s) and low-speed (1.5Mb/s) operation
- Speed-select termination supply
- Very low power consumption meets USB suspend-current requirements
- Small 14-pin TSSOP


Applications

- Personal digital assistants (PDA)
- Palmtop computers
- Cellular telephones


Ordering Information

Part Number	Junction Temp. Range	Package	
MIC2550BTS	-40°C to +85°C	14-Pin TSSOP	

System Diagram

Pin Configuration

14-Pin TSSOP (TM)

Pin Description

Pin Number	Pin Name	Pin Function
1	VIF	System Interface Supply Voltage (Input): Determines logic voltage levels for system interface signaling to logic controller.
2	SPD	Speed (Input): Edge rate control. Logic high selects full-speed edge rates. Logic low selects low-speed edge rates.
3	RCV	Receive Data (Output): System interface receive data interface to logic controller.
4	VP	Plus (Input/Output): System interface signal to logic controller. If OE# is logic 1, VP is a receiver output (+); If OE# is logic 0, VP is a driver input (+).
5	VM	Minus (Input/Output): System interface signal to logic controller. If OE# is logic 1, VM is a receiver output (–); If OE# is logic 0, VM is a driver input (–).
6, 13	NC	not internally connected
7	GND	Ground: Power supply return and signal reference.
8	SUS	Suspend (Input): Logic high turns off internal circuits to reduce supply current.
9	OE#	Output Enable (Input): Active-low system interface input signal from from logic controller. Logic low causes transceiver to transmit data onto the bus. Logic high causes the transceiver to receive data from the bus.
10	D-	USB Differential Data Line – (Input/Output)
11	D+	USB Differential Data Line + (Input/Output)
12	VTRM	Termination Supply (Output): 3.3V speed termination resistor supply output.
14	VBUS	USB Supply Voltage (Input): Transceiver supply.

Absolute Maximum Ratings (Note 1)

Supply Voltage (V _{IF})	+6.5V
Input Voltage (V _{BUS})	0.5V(min)/5.5V(max)
Output Current (I _{D+} , I _{D-})	±50mA
Output Current (all others)	±15mA
Input Current	±50mA
Power Dissipation (P _D)	TBD
Storage Temperature (T _S)	65° to +150°C
ESD, Note 3	

Operating Ratings (Note 2)

4.0V to 5.25V
40°C to +85°C
160°C
100°C/W

Electrical Characteristics

 $T_A = 25^{\circ}\text{C}, \ \textbf{bold} \ \text{values indicate} \ -40^{\circ}\text{C} \leq T_A \leq +85^{\circ}\text{C}; \ \text{typical values at V}_{BUS} = 5.0\text{V}, \ V_{IF} = 3.0\text{V}; \ \text{minimum and maximum values at V}_{BUS} = 4.0\text{V to } 5.25\text{V}, \ V_{IF} = 2.5\text{V to } 3.6\text{V}; \ \text{unless noted}.$

Symbol	Parameter	Condition	Min	Тур	Max	Units
System an	d USB Interface DC Characteristics		•			
V_{BUS}	USB Supply Voltage		4.0		5.25	V
V_{IF}	System I/F Supply voltage		2.5		3.6	V
V_{IL}	Low-Level Input Voltage, Note 4				0.15V _{IF}	V
V_{IH}	High-Level Input Voltage, Note 4		0.85V _{IF}			V
V_{OH}	High-Level Output Voltage, Note 4	I _{OH} = 20μA	0.9V _{IF}			V
V_{OL}	Low-Level Output Voltage, Note 4	I _{OL} = 20μA			0.1	V
I _{IL}	Input Leakage Current, Note 4				±5	μА
I _{IF}	System I/F Supply Current	D– and D+ are idle, V_{IF} = 3.6V, V_{BUS} = 5.25V SUS = 1, OE# = 1		1		μА
		D– and D+ are idle, V_{IF} = 3.6V, V_{BUS} = 5.25V SUS = 0, OE# = 1		1		μА
		D– and D+ active, $C_{LOAD} = 50 pF$, $SPD = 1$, $SUS = 0$, $V_{IF} = 3.6 V$, $OE\# = 0$		2		μА
		D– and D+ active, $C_{LOAD} = 600 pF$, $SPD = 0$, $SUS = 0$, $V_{IF} = 3.6 V$, $OE\# = 0$		2		μА
I _{BUS}	USB Supply Current	D- and D+ are idle, V _{BUS} = 5.25V, SPD = 0 SUS = 1, OE# = 1		140	200	μА
		D- and D+ are idle, V _{BUS} = 5.25V, SPD = 1 SUS = 1, OE# = 1		140	200	μА
		D– and D+ are idle, $V_{BUS} = 5.25V$, SPD = 0 SUS = 0, OE# = 0		140	200	μА
		D- and D+ are idle, V _{BUS} = 5.25V, SPD = 1 SUS = 0, OE# = 1		200	350	μА
		D– and D+ active, C_{LOAD} = 50pF, SPD = 1, SUS = 0, V_{BUS} = 5.25V				mA
		D– and D+ active, $C_{LOAD} = 600 pF$, $SPD = 0$ $SUS = 0$, $V_{BUS} = 5.25 V$				mA
V_{TRM}	Termination Voltage	I _{TRM} = 2.5mA	3.0		3.6	V

Symbol	Parameter	Condition	Min	Тур	Max	Units
Transceiver	DC Characteristics			•		
I _{LO}	Hi-Z State Data Line Leakage	$0V < V_{BUS} < 3.3V$, D+, D-, OE# = 1 pins only	-10		+10	μΑ
V_{DI}	Differential Input Sensitivity	$ (D+) - (D-) , V_{IN} = 0.8V - 2.5V$	0.2			V
V_{CM}	Differential Common-Mode Range	includes V _{DI} range	0.8		2.5	V
V_{SE}	Single-Ended Receiver Threshold		0.8		2.0	V
	Receiver Hysteresis, Note 6			200		mV
V_{OL}	Static Output Low, Note 5	OE# = 0, R_L = 1.5kΩ to 3.6V			0.3	V
V_{OH}	Static Output High, Note 5	OE# = 0, R_L = 15k Ω to GND	2.8		3.6	V
V _{CRS}	Output Signal Crossover Voltage Note 6		1.3		2.0	V
C _{IN}	Transceiver Capacitance, Note 6	pin to GND			20	pF
Z_{DRV}	Driver Output Resistance	steady state drive, Note 6	6		18	Ω
Low-Speed I	Driver Characteristics					
t _R	Transition Rise Time	$C_L = 50pF$ $C_L = 600pF$	75		300	ns ns
t _F	Transition Fall Time	$C_L = 50pF$ $C_L = 600pF$	75		300	ns ns
t_R/t_F	Rise and Fall Time Matching	$T_R \div T_F$	80		125	%
V _{CRS}	Output Signal Crossover Voltage		1.3		2.0	V
Full-Speed D	Driver Characteristics					
t_R	Transition Rise Time	C _L = 50pF	4		20	ns
t _F	Transition Fall Time	C _L = 50pF	4		20	ns
t_R/t_F	Rise and Fall Time Matching	$T_R \div T_F$	90		111.11	%
V _{CRS}	Output Signal Crossover Voltage		1.3		2.0	V

- Note 1. Exceeding the absolute maximum rating may damage the device.
- Note 2. The device is not guaranteed to function outside its operating rating.
- Note 3. Devices are ESD sensitive. Handling precautions recommended.
- Note 4. Applies to the VP, VM, RCV, OE#, SPD, and SUS pins.
- Note 5. Applies to D+, D-
- $\textbf{Note 6.} \quad \text{Not production tested. Guaranteed by design.}$

Symbol	Parameter	Condition	Min	Тур	Max	Units
Transceiver Timing						
t _{PVZ}	OE# to RCVR Tristate Delay	Figure 1			15	ns
t _{PZD}	Receiver Tristate to Transmit Delay	Figure 1	15			ns
t _{PDZ}	OE# to DRVR Tristate Delay	Figure 1			15	ns
t_{PZV}	Driver Tri-state to Receiver Delay	Figure 1	15			ns
t _{PLH}	V+/V- to D+/D- Propagation Delay	Figure 4			15	ns
t _{PHL}	V+/V- to D+/D- Propagation Delay	Figure 4			15	ns
t _{PLH}	D+/D- to RCV Propagation Delay	Figure 3			15	ns
t _{PHL}	D+/D- to RCV Propagation Delay	Figure 3			15	ns
t _{PLH}	D+/D- to V+/D- Propagation Delay	Figure 3			8	ns
t _{PHL}	D+/D- to V+/D- Propagation Delay	Figure 3			8	ns

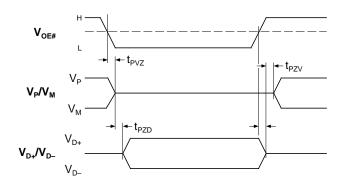


Figure 1. Enable and Disable Times

Figure 2. Rise and Fall Times

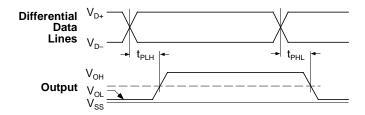
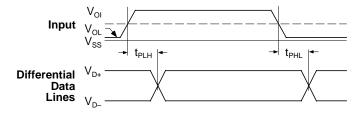
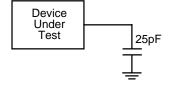


Figure 3. Receiver Propagaion Delay D+/D- to RCV, $\rm V_{P}$, and $\rm V_{M}$




Figure 4. Driver Propagation Delay $\rm V_{\rm P}$ and $\rm V_{\rm M}$ to D+/D–

OE# = 0 (Transmit):						
In	put	Output				
VP	VM	D+	D-	RCV	Result	
0	0	0	0	Х	SE0	
0	1	0	1	0	Logic 0	
1	0	1	0	1	Logic 1	
1	1	1	1	Х	Undefined	
OE# = 1 (Recei	ve):		•			
In	put		Output			
D+	D-	VP	VM	RCV	Result	
0	0	0	0	Х	SE0	
0	1	0	1	0	Logic 0	
1	0	1	0	1	Logic 1	
1	1	1	1	Х	Undefined	

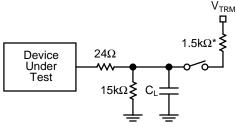
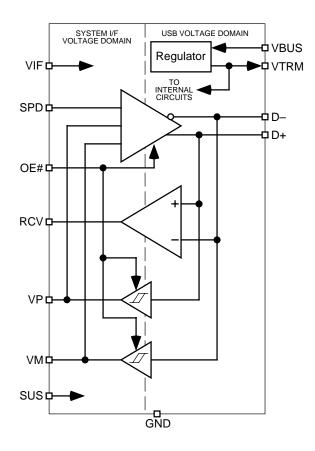

X = indeterminate state

Table 1. Truth Table

Test Circuits


VP, VM and RCV Load

D+ and D- Load

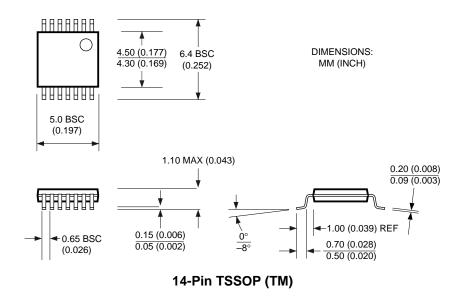
 C_L = 50pF, full speed (C_L = 50pF, low speed (minimum timing) (C_L = 600pF, low speed (maximum timing) *1.5k on D– for low speed or D+ for high speed

Block Diagram

Applications Information

The MIC2550 is designed to provide USB connectivity in mobile systems where system supply voltages are not available to satisfy USB requirements. The MIC2550 can operate down to supply voltages of 2.5V and still meet USB physical layer specifications. As shown in the circuit below, the MIC2550 takes advantage of USB's supply voltage, V_{BUS} , to operate the transceiver. The system voltage, V_{IF} , is used to set the reference voltage used by the digital I/O lines (VP, VM, RCV, OE#, SPD, and SUS pins) interfacing to the system. Internal circuitry provides translation between the USB and system voltage domains. V_{IF} will typically be the main supply voltage rail for the system.

In addition, a 3.3V, 10% termination supply voltage, V_{TERM} , is provided to support speed selection. A 1.5K resistor is required to be connected between this pin and the D+ or D-lines to respectively specify high speed or low speed operation.


Suspend

When the suspend pin (SUS) is high, power consumption is reducted to a minimum. $V_{\mbox{\scriptsize TERM}}$ is not disabled.

External ESD Protection

The use of ESD transient protection devices is not required for operation, but is recommended.

Package Information

MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 1999 Micrel Incorporated