AU9216 USB Hub Controller Technical Reference Manual

Revision 1.01

© 1998 Alcor Micro Inc. All rights reserved **Copyright Notice** Copyright 1998 Alcor Micro Inc.

Alcor Micro Inc. All rights Reserved.

Trademark Acknowledgements

The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers.

Disclaimer

Alcor Micro Inc. reserves the right to change this product without notice. Alcor Micro Inc. makes no warranty for the use of its products and bears no responsibility for any errors which appear in this document. Specifications are subject to change without notice.

Contact Information

USA Headquarters

Alcor Micro, Inc. 155-A Moffett Park Drive, Suite 240 Sunnyvale CA, 94089 Phone: (408) 541-9700 Fax: (408) 541-0378 Los Angeles Alcor Micro, Inc. 9400 Seventh St., Bldg, A2 Rancho Cucamonga, CA 91730 Phone: (909) 483-9900 Fax: (909) 944-0464

Taiwan

Alcor Micro Inc. Taiwan 7F, No 279, Sec. 4, Hsin-I Road, Taipei, Taiwan R.O.C. Phone: 886-22-325-9512 Fax: 886-22-702-6030

Table of Contents

1.0 Introduction	1
1.1. Description	1
1.2. Features	1
2.0 Application Block Diagram	3
3.0 Pin Assignment	5
4.0 System Architecture and Reference Design	17
4.1. AU9216 Block Diagram	17
4.2. Sample Schematics	
5.0 Electrical Characteristics	21
5.1. Maximum Ratings	21
5.2. Recommended Operating Conditions	21
5.3. Crystal Oscillator Circuit Setup for Characterization	22
5.4. USB Transceiver Characteristics	22
5.5. ESD Test Results	27
5.6. Latch-Up Test Results	
6.0 Mechanical Information	31

1.0 Introduction

1.1. Description

The AU9216 is an integrated single chip USB hub controller. It is designed to support the emerging industry Universal Serial Bus (USB) standard. The AU9216 can support up to six USB downstream ports. Each downstream port supports separated enable LED, power control and over-current sensing. Single chip integration makes the AU9216 the most cost effective stand-alone USB hub solution available in the market. USB vendor ID and Device ID can be customized via external EEPROM. Downstream ports can be used to connect various USB peripheral devices, such as USB printers, modems, scanners, cameras, mice, or joysticks, to the system without adding external glue logic.

1.2. Features

- Fully compliant with the Universal Serial Bus Specification, version 1.0
- USB hub design is compliant with Universal Serial Bus Hub Specification, revision 1.1
- Single chip integrated USB hub controller with embedded proprietary processor
- Supports six bus-powered or self-powered downstream ports
- Supports individual port power control, LED and over-current detection
- USB vendor and device ID can be customized via external EEPROM
- Built-in default vendor ID provides cost saving if customization is not required
- Built-in 3.3v voltage regulator allows single +5V operating voltage drawing directly from USB bus. This results in reduced overall system cost.
- Runs at 12Mhz frequency
- Available in 48-pin DIP and 52-pin QFP

This Page Intentionally Left Blank

2.0 Application Block Diagram

The AU9216 is a single chip 6-port USB hub controller. The upstream port is connected to the USB system. The downstream ports can be used for a mouse, joystick, scanner, printer or other device.

This Page Intentionally Left Blank

4 APPLICATION BLOCK DIAGRAM

3.0 Pin Assignment

The AU9216 is packaged both as a 52-pin quad flat pack (QFP) and as a 48-pin dual inline package (DIP). The following figures show the signal names for each of the pins on the chip. The tables on the following pages describe each of the pin signals

Table 3-1. Pin Descriptions for the 52-pin QFP

Pin #	Pin Name	I/O	Description	
1	DP1_OVRCUR#	Ι	Downstream port 1 over-current indicator. Active low.	
2	DP1_PWR#	0	Downstream port 1 power on. Active low.	
3	USB2_DP	I/O	USB D+ for downstream port 2, add $15K\Omega$ pull-down to ground.	
4	USB2_DM	I/O	USB D- for downstream port 2, add $15K\Omega$ pull-down to ground.	

Pin #	Pin Name	I/O	Description
5	DP2_LED	0	Downstream port 2 LED. Active low when port 2 enabled.
6	DP2_OVRCUR#	Ι	Downstream port 2 over-current indicator. Active low.
7	N/C	-	No connection.
8	DP2_PWR#	0	Downstream port 2 power on. Active low.
9	USB3_DP	I/O	USB D+ for downstream port 3, add $15K\Omega$ pull-down to ground.
10	USB3_DM	I/O	USB D- for downstream port 3, add $15K\Omega$ pull-down to ground.
11	DP3_LED	0	Downstream port 3 LED. Active low when port 3 enabled.
12	DP3_OVRCUR#	I	Downstream port 3 over-current indicator. Active low.
13	DP3_PWR#	0	Downstream port 3 power on. Active low.
14	VCC	PWR	+5V power supply.
15	VCC3.3	0	+3.3V power. Add 1.5K pull-up on USB_DP.
16	EEP_CS	0	EEPROM chip select.
17	EEP_CLK	0	Clock for EEPROM.

Pin #	Pin Name	I/O	Description
18	RST#	Ι	Reset. Active low.
19	GND	PWR	Ground.
20	N/C	-	No connection.
21	ANALOG_GND	PWR	Analog ground.
22	XTAL2	0	Crystal, XTAL-out.
23	XTAL1	Ι	Crystal, XTAL-in.
24	ANALOG_VDD	PWR	Analog power, connect to +5V.
25	EEP_DIN	0	connect to EEPROM D _{in} pin.
26	EEP_DOUT	Ι	Connect to EEPROM D _{out} pin.
27	N/C	-	No connection.
28	GND	PWR	Ground.
29	BUS_PWR#	Ι	Bus power. One indicates bus-powered.
30	DP6_PWR#	0	Downstream port 6 power on. Active low.
31	DP6_OVRCUR#	Ι	Downstream port 6 over-current indicator. Active low.
32	DP6_LED	0	Downstream port 6 LED. Active low when port 6 enabled.

Pin #	Pin Name	I/O	Description
33	USB6_DM	I/O	USB D- for downstream port 6, add $15K\Omega$ pull-down to ground.
34	USB6_DP	I/O	USB D+ for downstream port 6, add $15K\Omega$ pull-down to ground.
35	DP5_PWR#	0	Downstream port 5 power on. Active low.
36	DP5_OVRCUR#	Ι	Downstream port 5 over-current indicator. Active low.
37	DP5_LED	0	Downstream port 5 LED. Active low when port 5 enabled.
38	USB5_DM	I/O	USB D- for downstream port 5, add $15K\Omega$ pull-down to ground.
39	USB5_DP	I/O	USB D+ for downstream port 5, add 15K Ω pull-down to ground.
40	DP4_PWR#	0	Downstream port 4 power on. Active low.
41	DP4_OVRCUR#	I	Downstream port 4 over-current indicator. Active low.
42	DP4_LED	0	Downstream port 4 LED. Active low when port 4 enabled.
43	USB4_DM	I/O	USB D- for downstream port 4, add $15K\Omega$ pull-down to ground.
44	USB4_DP	I/O	USB D+ for downstream port 4, add 15K Ω pull-down to ground.

Table 3-2 (continued). Pin Descriptions for the 52-pin QFP

Pin #	Pin Name	I/O	Description
45	VCC	PWR	+5V power supply.
46	N/C	-	No connection.
47	USB_DP	I/O	USB D+ for upstream port. Need external $1.5K\Omega$ pull- up to $3.3V$.
48	USB_DM	I/O	USB D- for upstream port.
49	UPPORT_LED	0	Upstream port LED. Active low when upstream port enabled.
50	USB1_DP	I/O	USB D+ for downstream port 1, add 15K Ω pull-down to ground.
51	USB1_DM	I/O	USB D- for downstream port 1, add $15K\Omega$ pull-down to ground.
52	DP1_LED	0	Downstream port 1 LED. Active low when port 1 enabled.

Table 3-2 (continued). Pin Descriptions for the 52-pin QFP

Table 3-2. Pin Descriptions for the 48-pin DIP

Pin #	Pin Name	I/O	Description
1	USB_DP	I/O	USB D+ for upstream port. Need external $1.5K\Omega$ pull- up to $3.3V$.
2	USB_DM	I/O	USB D- for upstream port.
3	UPPORT_LED	О	Upstream port LED. Active low when upstream port enabled.
4	USB1_DP	I/O	USB D+ for downstream port 1, add 15K Ω pull-down to ground.

Pin #	Pin Name	I/O	Description
5	USB1_DM	I/O	USB D- for downstream port 1, add $15K\Omega$ pull-down to ground.
6	DP1_LED	0	Downstream port 1 LED. Active low when port1 enabled.
7	DP1_OVRCUR#	Ι	Downstream port 1 over-current indicator. Active low.
8	DP1_PWR#	0	Downstream port 1 power on. Active low.
9	USB2_DP	I/O	USB D+ for downstream port 2, add 15K Ω pull-down to ground.
10	USB2_DM	I/O	USB D- for downstream port 2, add $15K\Omega$ pull-down to ground.
11	DP2_LED	0	Downstream port 2 LED. Active low when port 2 enabled.
12	DP2_OVRCUR#	Ι	Downstream port 2 over-current indicator. Active low.
13	DP2_PWR#	0	Downstream port 2 power on. Active low.
14	USB3_DP	I/O	USB D+ for downstream port 3, add 15K Ω pull-down to ground.
15	USB3_DM	I/O	USB D- for downstream port 3, add $15K\Omega$ pull-down to ground.
16	DP3_LED	0	Downstream port 3 LED. Active low when port 3 enabled.
17	DP3_OVRCUR#	Ι	Downstream port 3 over-current indicator. Active low.
18	DP3_PWR#	0	Downstream port 3 power on. Active low.

Pin #	Pin Name	I/O	Description
19	VCC	PWR	+5V power supply.
20	VCC3.3	0	+3.3V power. Add 1.5K pull-up on USB_DP.
21	EEP_CS	0	EEPROM chip select.
22	EEP_CLK	0	Clock for EEPROM.
23	RST#	Ι	Reset. Active low.
24	GND	PWR	Ground.
25	ANALOG_GND	PWR	Analog ground.
26	XTAL2	0	Crystal, XTAL-out.
27	XTAL1	Ι	Crystal, XTAL-in.
28	ANALOG_VDD	PWR	Analog power, connect to +5V.
29	EEP_DIN	0	connect to EEPROM D _{in} pin.
30	EEP_DOUT	Ι	Connect to EEPROM D _{out} pin.
31	GND	PWR	Ground.
32	BUS_PWR#	Ι	Bus power. One indicates bus-powered.
33	DP6_PWR#	0	Downstream port 6 power on. Active low.
34	DP6_OVRCUR#	Ι	Downstream port 6 over-current indicator. Active low.

Pin #	Pin Name	I/O	Description
35	DP6_LED	0	Downstream port 6 LED. Active low when port 6 enabled.
36	USB6_DM	I/O	USB D- for downstream port 6, add $15K\Omega$ pull-down to ground.
37	USB6_DP	I/O	USB D+ for downstream port 6, add $15K\Omega$ pull-down to ground.
38	DP5_PWR#	0	Downstream port 5 power on. Active low.
39	DP5_OVRCUR#	Ι	Downstream port 5 over-current indicator. Active low.
40	DP5_LED	0	Downstream port 5 LED. Active low when port 5 enabled.
41	USB5_DM	I/O	USB D- for downstream port 5, add $15K\Omega$ pull-down to ground.
42	USB5_DP	I/O	USB D+ for downstream port 5, add 15K Ω pull-down to ground.
43	DP4_PWR#	0	Downstream port 4 power on. Active low.
44	DP4_OVRCUR#	Ι	Downstream port 4 over-current indicator. Active low.
45	DP4_LED	0	Downstream port 4 LED. Active low when port 4 enabled.
46	USB4_DM	I/O	USB D- for downstream port 4, add $15K\Omega$ pull-down to ground.
47	USB4_DP	I/O	USB D+ for downstream port 4, add $15K\Omega$ pull-down to ground.

Pin	# Pin Name	I/O	Description
48	VCC	PWR	+5V power supply.

4.0 System Architecture and Reference Design

4.1. AU9216 Block Diagram

4.2. Sample Schematics

18 SYSTEM ARCHITECTURE AND REFERENCE DESIGN

SYSTEM ARCHITECTURE AND REFERENCE DESIGN 19

This Page Intentionally Left Blank

5.0 Electrical Characteristics

5.1. Maximum Ratings

Absolute Maximum Ratings

	VALUES		
PARAMETER	MIN	MAX	
Ambient Operating Temperatures	0°C	70°C	
Storage Temperature	-40°C	185 C	
Supply Voltage (Vdd)	-0.3V	7.0V	

5.2. Recommended Operating Conditions

The following table gives the recommended operating conditions for integrated circuits developed with the pad libraries:

Symbol	Param.	Min	Max	Vdd	Note
V _{IL}	Low level	-0.5V	0.8V	4.5V to	Guaranteed Input Low
	input voltage			5.5V	Voltage
V _{IH}	High level	2.0V	V_{DD} +0.5V	4.5V to	Guaranteed Input High
	input voltage			5.5V	Voltage
V _{OL}	Low level		0.4V	4.5V	I _{OL} , 2 to 24 mA(TTL),
	output voltage				depending on Cell
V _{OH}	High level	2.4V		4.5V	I_{OH} , 2 to 24mA(TTL)
	output voltage				depending on Cell
I _{CC}	Supply current	20 mA	25 mA	4.5V to	
				5.5V	

5.3. Crystal Oscillator Circuit Setup for Characterization

The following setup was used to measure the open loop voltage gain for crystal oscillator circuits. The feedback resistor serves to bias the circuit at its quiescent operating point and the AC coupling capacitor, Cs, is much larger than C1 and C2.

5.4. USB Transceiver Characteristics

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIMITS	UNIT	
			MIN	MAX	
V _{cc}	DC supply voltage		3.0	3.5	V
V	DC input voltage range		0	5.5	V
V _{I/O}	DC input range for I/Os		0	V _{cc}	V
Vo	DC output voltage range		0	V _{cc}	V
Т	Operating ambient temperature range in free air	See DC and AC characteristics for individual device	0	70	.C

ABSOLUTE MAXIMUM RATINGS 1,2

In accordance with the Absoute Maximum Rating System, Voltages are referenced to GND (Ground=0v)

SYMBOL	PARAMETER CONDITIONS		LIMITS	LIMITS	
			MIN	MAX	
V _{cc}	DC supply voltage		-0.5	+6.5	V
V _{IK}	DC input diode current	Vi<0		-50	mA
V,	DC input voltage	Note 3	-0.5	+5.5	V
V _{i/o}	DC input voltage range for I/Os		-0.5	Vcc +0.5	V
V _{ok}	DC output diode current	Vo> Vcc or Vo<0		+/-50	mA
V _o	DC output voltage	Note 3	-0.5	Vcc +0.5	V
V _o	DC output source sink current for VP/VM and RCV pins	Vo=0 to Vcc		+/-15	mA
V _o	DC output source or sink current for D+/D- pins	Vo= 0 to Vcc		+/-50	mA
I _{GND} , I _{GND}	DC Vcc or GND current			+/-100	mA
T	Storage temperature range		-60	+/-150	.C
P _{TOT}	Power dissipation per package				mW

NOTES:

- Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicted under "Recommended Operating Conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
- 2. The performance capability of a high performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (Ground=0V).

			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40 MIN	C to +8	B6°C May	UNIT
VHYS	Hysteresis on inputs	Vcc=3.0V to 3.6V	5.2	4.3	50.4	V
VIH	HIGH level input	Vcc=3.0V to 3.6V		15	20	V
VIL	LOW level input	Vcc=3.0V to 3.6V	0.5	11		V
RoH	Output impedance (HIGH state)	Note 2	28	34	43	ohm
RoL	Output impedance (LOW state)	Note 2	28	35	43	ohm
VOH	HIGH level output	Vcc=3.0V Io=6mA	2.2	2.7		V
		Vcc=3.0V Io=4mA	2.4			
		Vcc=3.0V lo=100µA	2.8			
VOL	LOW level output	Vcc=3.0V Io=6mA		0.3	0.7	V
		Vcc=3.0V Io=4mA			0.4	
		Vcc=3.0V lo=100µA			0.2	
IQ	Quiecient supply current	Vcc=3.6V VI=Vcc or GND	Vcc=3.6V VI=Vcc or GND 330		600	μA
		lo=0				
Isup	Supply current in suspend	Vcc=3.6V VI=Vcc or GND			70	μA
		lo=0				
IFS	Active supply current (Full Speed)	Vcc=3.3V		9	14	mA
ILS	Active supply current (Low Speed)	Vcc=3.3V		2		mA
ILeak	Imput leakage current	Vcc=3.6V VI=5.5V or +/- +/-		+/-	μA	
		GND, not for I/O Pins		0.1	0.5	
IOFF	3-state output OFF-state	VI=VIN or VII, Vo=Vcc or			+/-1-	μA
	current	GND				

NOTES:

- All typical values are at Vcc=3.3V and Tamb=25°C.
 This value includes an external resistor of 24 ohm +/-1%. See "Load D+ and D-" diagram for testing details. 3. All signals except D+ and D-.

AC ELECTRICAL CHARACTERISTICS

GND=0V, Is = IS=3.0 C=50pf, RL=500ohms

			LIMITS					
SYMBOL	PARAMETER	WAVFORM	-40°C to +86°C -4			-40°C to +86°C		UNIT
			MIN	TYP	MAX	MIN	MAX	
tpLH	VMO/VPO to D+/D-	1	0		12	0	14	ns
tpHL	Full Speed		0		12	0	14	
trise	Rise and Fall Times	2	4	9	20	4	20	ns
tfall	Full Speed		4	9	20	4	20	
tRFM	Rise and Fall Time		90		110	90	110	%
	Matching							
	Full Speed							
tpLH	VMO/VPO to D+/D-	1		120	300		300	ns
tpHL	Low Speed			120	300		300	
trise	Rise and Fall Times	2	75		300	75	300	ns
tfall	Low Speed		75		200	75	200	
tRFM	Rise and Fall Time		70		130	70	130	%
	Matching							
	Low Speed	_		_				
tpLH	D+/D- to RCV	3		9	16		16	ns
tpHL				9	16		16	
tpLH	D+/D- to VP/VM	1		4	8		8	ns
tpHL				4	8		8	
tpHZ					12		12	ns
tpZH	OE# to D+/D- RL =	4			12		12	
tpLZ	500ohm				10		10	
tpZL					10		10	
	Setup for SPEED	5	0					ns
Vcp	Crossover point ¹	3	1.3		2.0	1.3	2.0	V

NOTES:

1. The crossover point is in the range of 1.3V to 2.5V for the low speed mode with a 5Cpf capacitance.

WAVEFORM 2. D+/D- TO VP/VM OR VPO/VMO TO D+/D-

LOAD FOR VM/VP AND RCV

TEST POINT D.U.T. Ф 25pF 🛧 ÷

WAVEFORM 3. D+/D- TO RCV

LOAD FOR ENABLE AND DISABLE TIMES

2.8V

S1

0

<t.5W*

 \leq

TEST | S1

D-/LS CLOSE D+/LS OPEN D-/FS OPEN D+/FS CLOSE

WAVEFORM 4. OE# TO D/+/D-

D+

D-

Vor

VOL D+/D-

OE#

LOAD FOR D+/D-TEST POINT 24W - 1.5V D.U.T. \sim Ś t PHZ
 t PHZ
 t PHZ
 t PHZ
 t
 t
 pLZ
 15kW Ţ V_{OH} + 0.3 0.5V cc C L = 50pF, FULL SPEED - - - Dr.LS C L = 50pF, LOW SPEED (MIN TIMING) C L = 350pF, LOW SPEED (MAX TIMING) * 1.5KW ON D - (LOW SPEED) OR D+ (FULL SPEED) ONLY V_M V_{OH} + 0.3

1.5V

t_{PZH} →

0.5V _{CC}

5.5. ESD Test Results

Test Description: ESD Testing was performed on a Zapmaster system using the Human-Body-Model (HBM) and Machine-Model (MM), according to MIL-STD 883 and EIAJ IC-121 respectively.

- Human-Body-Model stresses devices by sudden application of a high voltage supplied by a 100pF capacitor through 1.5k-ohm resistance.
- Machine-Model stresses devices by sudden application of a high voltage supplied by a 200pF capacitor through very low (0 ohm) resistance.

Test Circuit & Condition

- Zap Interval: 1 second
- Number of Zaps: 3 positive and 3 negative at room temperature
- Criteria: I-V Curve Tracing

ESD Data

Model	Mode	S/S	Target	Results
HBM	Vdd, Vss, I/C	15	2000V	PASS
MM	Vdd, Vss, I/C	15	200V	PASS

5.6. Latch-Up Test Results

Test Description: Latch-Up testing was performed at room ambient using an IMCS-4600 system which applies a stepped voltage to one pin per device with all other pins open except Vdd and Vss which were biased to 5Volts and ground respectively.

Testing was started at 5.0V (Positive) or 0V (Negative), and the DUT was biased for 0.5 seconds.

If neither the PUT current supply nor the device current supply reached the predefined limit (DUT=00mA, Icc=100mA), then the voltage was increased by 0.1Volts and the pin was tested again.

This procedure was recommended by the JEDEC JC-40.2 CMOS Logic standardization committee.

Notes:

- 1. DUT: The device under test.
- 2. PUT: The pin under test.

Test Circuit: Positive Input/Output Overvoltage/Overcurrent

Test Circuit: Negative Input/Output Overvoltage/Overcurrent

Supply Overvoltage Test

Latch-Up Data

Mode		Voltage (V)/Current (mA)	S/S	Results
V 7 . 14	+	11.0	5	Pass
Voltage	-	11.0	5	Pass
0	+	200	5	Pass
Current	-	200	5	Pass
Vdd - Vxx		9.0	5	Pass

This Page Intentionally Left Blank

6.0 Mechanical Information

Following diagrams show the dimensions of the AU9216 52-pin QFP and the 48-pin DIP packages. Measurements are in millimeters; measurements in parenthesis are in inches.

