Technical Reference

ScanLogic Corporation

4 Preston Court, Bedford, MA 01730 http://:www.scanlogic.com

1.1 OVERVIEW 1.2 SL11P2USB FEATURES 1.3 SL11P2USB FLOCK DIAGRAM 1.4 SL11P2USB BLOCK DIAGRAM 1.5 3KX16 MASK ROM AND BIOS 1.6 INTERNAL RAM 1.7 CLOCK GENERATOR 1.8 USB INTERFACE 1.9 PROCESSOR CONTROL REGISTERS 1.10 INTERRACE 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (12C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 14 INTERFACE 15. INTERFACE 16. INTERNAL MASKED ROM: 0XE800-0XFFFF 17.1 INTERFACE 18. USB Global Control & Status Register (0XCO80: RW) 19. REFERENCES 10 NTERNAL RAM: 0X00000-0X0DFFF 11 INTERNAL RAM: 0X00000-0X0DFF 14.1 INTERACE 14.2 USB Findenumburber Register (0XCO80:	1.	INT	RODUCTION	. 5
1.3 SL11P2USB BLOCK DIAGRAM. 1.4 SL11P2USB 16-BIT RISC PROCESSOR 1.5 3KX16 MASK ROM AND BIOS 1.6 INTERNAL RAM 1.7 CLOCK GENERATOR. 1.8 USB INTERRACE 1.9 PROCESSOR CONTROL REGISTERS. 1.10 INTERRUPTS. 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1. INTERFACE 1.1 INTERFACE 1.1 INTERNAL RAM: 0X0000-0X0DFF. 1.2 INTERNAL RAM: 0X0000-0X0DFF. 1.3 GLOCK GENERATOR. 1.4 USB INTERFACE. 1.4 USB INTERFACE. 1.4 USB Global Control & Status Register (0XC080: RW). 1.4.1 USB Global Control & Status Register (0XC080: RW). 1.4.2 USB Endpoint 0 Control & Status Register (0XC090: RW). 1.4.4 USB Comman		1.1	OVERVIEW	. 5
1.3 SL11P2USB BLOCK DIAGRAM. 1.4 SL11P2USB 16-BIT RISC PROCESSOR 1.5 3KX16 MASK ROM AND BIOS 1.6 INTERNAL RAM 1.7 CLOCK GENERATOR. 1.8 USB INTERRACE 1.9 PROCESSOR CONTROL REGISTERS. 1.10 INTERRUPTS. 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1. INTERFACE 1.1 INTERFACE 1.1 INTERNAL RAM: 0X0000-0X0DFF. 1.2 INTERNAL RAM: 0X0000-0X0DFF. 1.3 GLOCK GENERATOR. 1.4 USB INTERFACE. 1.4 USB INTERFACE. 1.4 USB Global Control & Status Register (0XC080: RW). 1.4.1 USB Global Control & Status Register (0XC080: RW). 1.4.2 USB Endpoint 0 Control & Status Register (0XC090: RW). 1.4.4 USB Comman		1.2	SL11P2USB Features	. 5
1.5 3Kx16 MASK ROM AND BIOS 1.6 INTERNAL RAM 1.7 CLOCK GENERATOR 1.8 USB INTERFACE 1.9 PROCESSOR CONTROL REGISTERS 1.10 INTERRUPTS 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (12C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose 10 mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1 INTERFACE 4. INTERFACE 1.3 CICK GENERATOR 4.1 INTERNAL MASKED ROM: 0XE800-0XFFFF 1.2 INTERNAL RAM: 0X0000-0X0DFF 1.3 CICK GENERATOR 1.4.1 INTERFACE 1.4.1 USB INTERFACE 1.4.4 USB INTERFACE 1.4.4 USB INTERFACE 1.4.4 USB Global Control & Status Register (0xC080: RW) 1.4.4 USB INDER REgister (0xC082: Read Only) 1.4.4 USB Endpoint 0 Control & Status Register (0xC090: RW) 1.4.		1.3	SL11P2USB BLOCK DIAGRAM	. 7
1.6 INTERNAL RAM 1.7 CLOCK GENERATOR 1.8 USB INTERRACE 1.9 PROCESSOR CONTROL REGISTERS 1.10 INTERRUPTS 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose 10 mode (GPIO) 2. DEFINITIONS 3. REFERENCES 4. INTERFACE 1.2 INTERNAL RAM: 0X0000-0X0DFF. 1.3 CLOCK GENERATOR 1.4 USB INTERFACE 1.4 USB INTERFACE 1.4 USB Frame Number Register (0xC080: R/W) 1.4.4 USB Boldol Control & Status Register (0xC080: R/W) 1.4.4 USB Boldol Control & Status Register (0xC080: R/W) 1.4.4 USB Boldol Control & Status Register (0xC080: R/W) 1.4.4 USB Boldol Control & Status Register (0xC090: R/W) 1.4.4 USB Boldol Control & Status Register (0xC090: R/W) 1.4.4.1 USB Boldon 1 Control & Status Register (0xC090: R/W) 1.4.5		1.4	SL11P2USB 16-BIT RISC PROCESSOR	. 7
1.7 CLOCK GENERATOR. 1.8 USB INTERFACE 1.9 PROCESSOR CONTROL REGISTERS 1.10 INTERRUPTS. 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C). 1.13 GENERAL TIMERS AND WATCH DOG TIMER. 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES. 1.14.1 General Purpose 10 mode (GPIO). 2. DEFINITIONS. 3. REFERENCES 4. INTERFACE 4.1 INTERFACE 4.2 INTERNAL RAM: 0x00000-0x0DFF. 1 1 4.3 CLOCK GENERATOR. 4.4 USB INTERFACE 4.4.1 USB Global Control & Status Register (0xC080: R/W). 4.4.2 USB Frame Number Register (0xC082: Read Only) 4.4.3 USB Adhesis Register (0xC086: Write Only). 4.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W). 4.4.4 USB Endpoint 2 Control & Status Register (0xC092: R/W). 4.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W). 4.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W).		1.5	3Kx16 MASK ROM AND BIOS	. 7
1.8 USB INTERFACE 1.9 PROCESSOR CONTROL REGISTERS 1.10 INTERRUTS 1.11 UART INTERRACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 14.1 INTERFACE 15.2 INTERFACE 16.3 CLOCK GENERATOR 17.4 INTERNAL RAM: 0X0000-0X0DFF 18.3 CLOCK GENERATOR 19.4 USB INTERFACE 10.4 USB Global Control & Status Register (0xCO80: RW) 17.4.1 USB Global Control & Status Register (0xCO80: RW) 19.4.2 USB Frame Number Register (0xCO82: Read Only) 19.4.3 USB Address Register (0xCO82: Red Only) 10.4.4.4 USB Command Done Register (0xCO80: RW) 14.4.4 USB Endpoint 1 Control & Status Register (0xCO90: RW) 14.4.5 USB Endpoint 2 Control & Status Register (0xCO90: RW) 14.4.5 USB Endpoint 1 Control & Status Register (0xCO90: RW)		1.6	INTERNAL RAM	. 8
1.9 PROCESSOR CONTROL REGISTERS 1.10 INTERRUPTS 1.11 UART INTERRACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1 1 4.1 INTERFACE 1 4.1 1.1 INTERNAL RAM: 0x0000-0x0DFF 1 1 4.2 INTERNAL RAM: 0x0000-0x0DFF 1 1 4.3 CLOCK GENERATOR 1 4.4 1.5 Global Control & Status Register (0xC080: R/W) 1.4.1 USB Global Control & Status Register (0xC080: R/W) 1.4.3 USB Address Register (0xC082: Read Only) 1.4.4 USB Command Done Register (0xC082: Read Only) 1.4.4 USB Command Done Register (0xC080: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC090: R/W) 1.		1.7	CLOCK GENERATOR	. 8
1.10 INTERRUPTS. 1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C). 1.13 GENERAL TIMERS AND WATCH DOG TIMER. 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES. 1.14.1 General Purpose IO mode (GPIO). 2. DEFINITIONS. 3. REFERENCES 4. INTERFACE 1.1 INTERFACE 1.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1.1 INTERNAL RAM: 0x0000-0x0DFF. 1.1 INTERNAL RAM: 0x0000-0x0DFF. 1.3 CLOCK GENERATOR. 1.4.1 USB Iobal Control & Status Register (0xC080: R/W). 1.4.2 USB Forme Number Register (0xC082: Read Only). 1.4.3 USB Address Register (0xC084: R/W). 1.4.4 USB Command Done Register (0xC096: Write Only). 1.4.4 USB Endpoint 1 Control & Status Register (0xC090: R/W). 1.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1.4.5 USB Endpoi		1.8		
1.11 UART INTERFACE 1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER. 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1 INTERFACE 4. INTERFACE 1.3 CLOCK GENERATOR 4.4 USB INTERFACE 1.3 CLOCK GENERATOR 4.4 USB Global Control & Status Register (0xC080: R/W) 4.4.1 USB Global Control & Status Register (0xC080: R/W) 4.4.2 USB Fume Number Register (0xC082: Read Only) 4.4.3 USB Command Done Register (0xC086: Write Only) 4.4.4 USB Command Done Register (0xC086: Write Only) 4.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W) 4.4.6 USB Endpoint 1 Control & Status Register (0xC092: R/W) 4.4.7 USB Endpoint 1 Control & Status Register (0xC092: R/W) 4.4.8 USB Endpoint 1 Control & Status Register (0xC092: R/W) 4.4.9 USB Endpoint 1 Control & Status Register (0xC096: R/W) 4.4.9 USB Endpoint 1 Control		1.9	PROCESSOR CONTROL REGISTERS	. 8
1.12 SERIAL FLASH EEPROM INTERFACE (I2C) 1.13 GENERAL TIMERS AND WATCH DOG TIMER 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1 1.1 4.1 INTERFACE 1 1.1 4.2 INTERFACE 1 4.1 1.1 INTERFACE 1.4 USB INTERFACE 1.4.1 USB Global Control & Status Register (0xC080: R/W) 1.4.2 USB Frame Number Register (0xC082: Read Only) 1.4.3 USB Global Control & Status Register (0xC080: R/W) 1.4.4 USB B Command Done Register (0xC082: Read Only) 1.4.4 USB Endpoint 0 Control & Status Register (0xC090: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC090: R/W) 1.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.5 <th></th> <td>1.10</td> <td>INTERRUPTS</td> <td>. 8</td>		1.10	INTERRUPTS	. 8
1.13 GENERAL TIMERS AND WATCH DOG TIMER. 1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose 10 mode (GP10) 2. DEFINITIONS 3. REFERENCES 4. INTERFACE 1.14.1 INTERFACE 1.1 INTERFACE 1.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1.1 INTERNAL MASKED ROM: 0x0000-0x0DFF 1.2 INTERNAL RAM: 0x0000-0x0DFF 1.3 CLOCK GENERATOR 1.4.1 USB Global Control & Status Register (0xC080: R/W) 1.4.2 USB Frame Number Register (0xC082: Read Only) 1.4.3 USB Frame Number Register (0xC084: R/W) 1.4.4 USB Command Done Register (0xC084: R/W) 1.4.4 USB Command Done Register (0xC084: R/W) 1.4.5 USB Endpoint 0 Control & Status Register (0xC092: R/W) 1.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.4 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1.4.6 USB Endpoint 1		1.11		
1.14 SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES 1.14.1 General Purpose IO mode (GPIO) 2. DEFINITIONS 3. REFERENCES 1 1 4. INTERFACE 1 1 4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 1 4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 1 4.2 INTERNAL RAM: 0x0000-0x0DFF. 1 1 4.3 CLOCK GENERATOR. 1 4.4 4.4 USB INTERFACE 1 4.4.1 4.4.1 USB command Done Register (0xC082: Read Only) 1 4.4.3 USB Command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: RW) 1 4.4.6 USB Endpoint 1 Control & Status Register (0xC090: RW) 1 4.4.7 4.4.8 USB Endpoint 1 Control & Status Register (0xC092: RW) 1 4.4.8 USB Endpoint 1 Control & Status Register (0xC092: RW) 1			SERIAL FLASH EEPROM INTERFACE (I2C)	. 8
1.14.1 General Purpose 10 mode (GP10) 2. DEFINITIONS 3. REFERENCES 1 4. 4. INTERFACE 1. 1 4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1.2 INTERNAL RAM: 0x0000-0x0DFF. 1.4.1 INTERNAL RAM: 0x0000-0x0DFF. 1.4.2 INTERNAL RAM: 0x0000-0x0DFF. 1.4.3 CLOCK GENERATOR. 1.4.4 USB INTERFACE 1.4.4 USB B INTERFACE 1.4.4 USB B Frame Number Register (0xC080: R/W). 1.4.4 USB Command Done Register (0xC086: Write Only) 1.4.3 USB Command Done Register (0xC096: R/W). 1.4.4 USB Endpoint 0 Control & Status Register (0xC090: R/W). 1.4.4 USB Endpoint 1 Control & Status Register (0xC090: R/W). 1.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1.4.6 USB Endpoint 1 Control & Status Register (0xC096: R/W). 1.4.7 USB Endpoint 1 Control & Status Register (0xC096: R/W). 1.4.8 USB Endpoint 1 Address Register (0x0122: R/W). 1.4.10 USB Endpoint 1 Address Register (0x0124: R/W). 1.4.11 USB		1.13		
2. DEFINITIONS 1 3. REFERENCES 1 4. INTERFACE 1 4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 4.2 INTERNAL RAM: 0x0000-0x0DFF 1 4.3 CLOCK GENERATOR 1 4.4 USB INTERFACE 1 4.4.1 USB Global Control & Status Register (0xC080: R/W) 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W) 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W) 1 4.4.6 USB Endpoint 1 Control & Status Register (0xC092: R/W) 1 4.4.7 USB Endpoint 2 Control & Status Register (0xC094: R/W) 1 4.4.8 USB Endpoint 1 Control & Status Register (0xC094: R/W) 1 4.4.9 USB Endpoint 2 Control & Status Register (0xC094: R/W) 1 4.4.10 USB Endpoint 3 Address Register (0x0120: R/W) 1 4.4.11 USB Endpoint 1 Address Register (0x0120: R/W) 1 4.4.11 USB Endpoint 1 Address Register (0x0120: R/W) 1 4.4.10 USB Endpoint 1 Address Register (0x0122: R/W) 1 4.4.11 USB Endpoint 1 Count Register (0x0122: R/W) 1 4.4.12 USB Endpoint 1		1.14		
3. REFERENCES 1 4. INTERFACE 1 4.1 INTERNAL MASKED ROM: 0XE800-0XFFFF 1 4.2 INTERNAL RAM: 0X0000-0X0DFF. 1 4.3 CLOCK GENERATOR 1 4.4 USB INTERFACE 1 4.4.1 USB Global Control & Status Register (0xC080: R/W). 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W). 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W). 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.6 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.7 USB Endpoint 2 Control & Status Register (0xC094: R/W). 1 4.4.8 USB Endpoint 3 Control & Status Register (0xC096: R/W). 1 4.4.9 USB Endpoint 1 Address Register (0x0120: R/W). 1 4.4.10 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.11 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.12 USB Endpoint 1 Count Register (0x0122: R/W). 1 4.4.13 USB Endpoint 1 Count Register (0x0122: R/W). 1 4.4.14 USB Endpoint 1 Count Register (0x0122: R/W). 1		1.14	1.1 General Purpose IO mode (GPIO)	. 9
3. REFERENCES 1 4. INTERFACE 1 4.1 INTERNAL MASKED ROM: 0XE800-0XFFFF 1 4.2 INTERNAL RAM: 0X0000-0X0DFF. 1 4.3 CLOCK GENERATOR 1 4.4 USB INTERFACE 1 4.4.1 USB Global Control & Status Register (0xC080: R/W). 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W). 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W). 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.6 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.7 USB Endpoint 2 Control & Status Register (0xC094: R/W). 1 4.4.8 USB Endpoint 3 Control & Status Register (0xC096: R/W). 1 4.4.9 USB Endpoint 1 Address Register (0x0120: R/W). 1 4.4.10 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.11 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.12 USB Endpoint 1 Count Register (0x0122: R/W). 1 4.4.13 USB Endpoint 1 Count Register (0x0122: R/W). 1 4.4.14 USB Endpoint 1 Count Register (0x0122: R/W). 1	2	DFI	TINITIONS	0
4. INTERFACE 1 4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 4.2 INTERNAL RAM: 0x0000-0x0DFF 1 4.3 CLOCK GENERATOR 1 4.4 USB INTERFACE 1 4.4 USB INTERFACE 1 4.4.1 USB Global Control & Status Register (0xC080: R/W) 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W) 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W) 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC090: R/W) 1 4.4.6 USB Endpoint 2 Control & Status Register (0xC090: R/W) 1 4.4.7 USB Endpoint 2 Control & Status Register (0xC090: R/W) 1 4.4.8 USB Endpoint 3 Control & Status Register (0xC090: R/W) 1 4.4.9 USB Endpoint 1 Address Register (0x0120: R/W) 1 4.4.10 USB Endpoint 1 Address Register (0x0120: R/W) 1 4.4.11 USB Endpoint 2 Address Register (0x0122: R/W) 1 4.4.13 USB Endpoint 1 Count Register (0x0122: R/W) 1 4.4.13 USB Endpoint 3 Count Register (0x0122: R/W) 1 4.4.14 USB Endpoint 1 Count Register (0x0122: R/W) 1	4.	DEI		
4. INTERFACE 1 4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 4.2 INTERNAL RAM: 0x0000-0x0DFF 1 4.3 CLOCK GENERATOR 1 4.4 USB INTERFACE 1 4.4 USB INTERFACE 1 4.4.1 USB Global Control & Status Register (0xC080: R/W) 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W) 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W) 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC090: R/W) 1 4.4.6 USB Endpoint 2 Control & Status Register (0xC090: R/W) 1 4.4.7 USB Endpoint 2 Control & Status Register (0xC090: R/W) 1 4.4.8 USB Endpoint 3 Control & Status Register (0xC090: R/W) 1 4.4.9 USB Endpoint 1 Address Register (0x0120: R/W) 1 4.4.10 USB Endpoint 1 Address Register (0x0120: R/W) 1 4.4.11 USB Endpoint 2 Address Register (0x0122: R/W) 1 4.4.13 USB Endpoint 1 Count Register (0x0122: R/W) 1 4.4.13 USB Endpoint 3 Count Register (0x0122: R/W) 1 4.4.14 USB Endpoint 1 Count Register (0x0122: R/W) 1	2	DFI	FEDENCES	10
4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 4.2 INTERNAL RAM: 0x0000-0x0DFF. 1 4.3 CLOCK GENERATOR. 1 4.4 USB INTERFACE. 1 4.4.1 USB Global Control & Status Register (0xC080: R/W). 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W). 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.4 USB Endpoint 0 Control & Status Register (0xC090: R/W). 1 4.4.4 USB Endpoint 1 Control & Status Register (0xC090: R/W). 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.6 USB Endpoint 2 Control & Status Register (0xC092: R/W). 1 4.4.7 USB Endpoint 3 Control & Status Register (0xC092: R/W). 1 4.4.8 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.9 USB Endpoint 1 Address Register (0x0120: R/W). 1 4.4.10 USB Endpoint 2 Address Register (0x0120: R/W). 1 4.4.11 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.12 USB Endpoint 1 Count	5.	NLI	TERENCES	10
4.1 INTERNAL MASKED ROM: 0xE800-0xFFFF 1 4.2 INTERNAL RAM: 0x0000-0x0DFF. 1 4.3 CLOCK GENERATOR. 1 4.4 USB INTERFACE. 1 4.4.1 USB Global Control & Status Register (0xC080: R/W). 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W). 1 4.4.4 USB Command Done Register (0xC086: Write Only) 1 4.4.4 USB Endpoint 0 Control & Status Register (0xC090: R/W). 1 4.4.4 USB Endpoint 1 Control & Status Register (0xC090: R/W). 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.6 USB Endpoint 2 Control & Status Register (0xC092: R/W). 1 4.4.7 USB Endpoint 3 Control & Status Register (0xC092: R/W). 1 4.4.8 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.9 USB Endpoint 1 Address Register (0x0120: R/W). 1 4.4.10 USB Endpoint 2 Address Register (0x0120: R/W). 1 4.4.11 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.12 USB Endpoint 1 Count	1	INT	'EDEA C'E	11
4.2 INTERNAL RAM: 0x0000-0x0DFF. 1 4.3 CLOCK GENERATOR. 1 4.4 USB INTERFACE. 1 4.4.1 USB Global Control & Status Register (0xC080: R/W). 1 4.4.2 USB Frame Number Register (0xC082: Read Only) 1 4.4.3 USB Address Register (0xC084: R/W). 1 4.4.4 USB command Done Register (0xC086: Write Only) 1 4.4.4 USB command Done Register (0xC086: Write Only) 1 4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W). 1 4.4.5 USB Endpoint 1 Control & Status Register (0xC092: R/W). 1 4.4.6 USB Endpoint 2 Control & Status Register (0xC096: R/W). 1 4.4.7 USB Endpoint 3 Control & Status Register (0xC096: R/W). 1 4.4.8 USB Endpoint 1 Address Register (0x0120: R/W). 1 4.4.9 USB Endpoint 1 Address Register (0x0122: R/W). 1 4.4.11 USB Endpoint 3 Address Register (0x0122: R/W). 1 4.4.12 USB Endpoint 1 Count Register (0x0122: R/W). 1 4.4.13 USB Endpoint 1 Count Register (0x0122: R/W). 1 4.4.14 USB Endpoint 1 Count Registe	4.	1111		
4.3CLOCK GENERATOR	4	4.1		
4.4USB INTERFACE14.4.1USB Global Control & Status Register (0xC080: R/W)14.4.2USB Frame Number Register (0xC082: Read Only)14.4.3USB Address Register (0xC084: R/W)14.4.4USB Command Done Register (0xC086: Write Only)14.4.5USB Endpoint 0 Control & Status Register (0xC090: R/W)14.4.6USB Endpoint 1 Control & Status Register (0xC092: R/W)14.4.7USB Endpoint 1 Control & Status Register (0xC094: R/W)14.4.7USB Endpoint 2 Control & Status Register (0xC096: R/W)14.4.8USB Endpoint 3 Control & Status Register (0xC096: R/W)14.4.9USB Endpoint 1 Address Register (0x0120: R/W)14.4.10USB Endpoint 2 Address Register (0x0122: R/W)14.4.11USB Endpoint 3 Address Register (0x0122: R/W)14.4.12USB Endpoint 0 Count Register (0x0122: R/W)14.4.14USB Endpoint 1 Count Register (0x0122: R/W)14.4.15USB Endpoint 1 Count Register (0x0122: R/W)14.4.16USB Endpoint 3 Count Register (0x0122: R/W)14.4.16USB Endpoint 3 Count Register (0x0122: R/W)14.4.15USB Endpoint 3 Count Register (0x0122: R/W)14.5.1Version Address Register (0x0024: Read Only)14.5.1Version Address Register (0x0026: R/W)14.5.1Version Address Register (0x0042: Read Only)14.5.2Configuration Register (0x006: R/W)1	4	4.2	INTERNAL RAM: 0x0000-0x0DFF	11
4.4.1USB Global Control & Status Register (0xC080: R/W)	4	4.3		
4.4.2USB Frame Number Register (0xC082: Read Only)144.4.3USB Address Register (0xC084: R/W)144.4.4USB Command Done Register (0xC086: Write Only)154.4.4USB Command Done Register (0xC086: Write Only)164.4.5USB Endpoint 0 Control & Status Register (0xC090: R/W)174.4.6USB Endpoint 1 Control & Status Register (0xC092: R/W)174.4.7USB Endpoint 2 Control & Status Register (0xC094: R/W)174.4.8USB Endpoint 3 Control & Status Register (0xC096: R/W)174.4.9USB Endpoint 0 Address Register (0x0120: R/W)164.4.10USB Endpoint 1 Address Register (0x0122: R/W)164.4.11USB Endpoint 2 Address Register (0x0128: R/W)164.4.12USB Endpoint 3 Address Register (0x0122: R/W)114.4.13USB Endpoint 1 Count Register (0x0122: R/W)114.4.14USB Endpoint 3 Count Register (0x0122: R/W)114.4.15USB Endpoint 1 Count Register (0x0122: R/W)114.4.16USB Endpoint 2 Count Register (0x0122: R/W)114.4.15USB Endpoint 1 Count Register (0x0122: R/W)114.4.15USB Endpoint 2 Count Register (0x0126: R/W)114.4.16USB Endpoint 3 Count Register (0x0126: R/W)114.5.1Version Address Register (0x004: Read Only)114.5.1Version Address Register (0x0006: R/W)114.5.2Configuration Register (0xC006: R/W)14	4	4.4		
4.4.3 USB Address Register (0xC084: R/W)		4.4.		
4.4.4USB Command Done Register (0xC086: Write Only)1.4.4.5USB Endpoint 0 Control & Status Register (0xC090: R/W)1.4.4.6USB Endpoint 1 Control & Status Register (0xC092: R/W)1.4.4.7USB Endpoint 2 Control & Status Register (0xC094: R/W)1.4.4.8USB Endpoint 3 Control & Status Register (0xC096: R/W)1.4.4.9USB Endpoint 3 Control & Status Register (0xC096: R/W)1.4.4.10USB Endpoint 1 Address Register (0x0120: R/W)1.4.4.11USB Endpoint 1 Address Register (0x0128: R/W)1.4.4.12USB Endpoint 2 Address Register (0x0128: R/W)1.4.4.13USB Endpoint 1 Count Register (0x0122: R/W)1.4.4.14USB Endpoint 1 Count Register (0x0122: R/W)1.4.4.15USB Endpoint 1 Count Register (0x0122: R/W)1.4.4.14USB Endpoint 1 Count Register (0x0122: R/W)1.4.4.15USB Endpoint 1 Count Register (0x0126: R/W)1.4.4.15USB Endpoint 2 Count Register (0x0126: R/W)1.4.4.16USB Endpoint 2 Count Register (0x0126: R/W)1.4.5.1Version Address Register (0x004: Read Only)1.4.5.1Version Address Register (0xC006: R/W)1.4.5.2Configuration Register (0xC006: R/W)1.		4.4.2	2 USB Frame Number Register (0xC082: Read Only)	14
4.4.5USB Endpoint 0 Control & Status Register (0xC090: R/W)		4.4.		
4.4.6USB Endpoint 1 Control & Status Register (0xC092: R/W)		4.4.4		
4.4.7USB Endpoint 2 Control & Status Register (0xC094: R/W).1.4.4.8USB Endpoint 3 Control & Status Register (0xC096: R/W).1.4.4.9USB Endpoint 0 Address Register (0x0120: R/W).1.4.4.10USB Endpoint 1 Address Register (0x0124: R/W).1.4.4.11USB Endpoint 2 Address Register (0x0128: R/W).1.4.4.12USB Endpoint 3 Address Register (0x0122: R/W).1.4.4.13USB Endpoint 0 Count Register (0x0122: R/W).1.4.4.14USB Endpoint 1 Count Register (0x0126: R/W).1.4.4.15USB Endpoint 2 Count Register (0x0126: R/W).1.4.4.16USB Endpoint 3 Count Register (0x0126: R/W).1.4.5.1Version Address Register (0x012E: R/W).1.4.5.1Version Address Register (0x004: Read Only).1.4.5.2Configuration Register (0xC006: R/W).1.		4.4.3		
4.4.8USB Endpoint 3 Control & Status Register (0xC096: R/W).1.4.4.9USB Endpoint 0 Address Register (0x0120: R/W).1.4.4.10USB Endpoint 1 Address Register (0x0124: R/W).1.4.4.11USB Endpoint 2 Address Register (0x0124: R/W).1.4.4.12USB Endpoint 3 Address Register (0x0128: R/W).1.4.4.13USB Endpoint 0 Count Register (0x0122: R/W).1.4.4.14USB Endpoint 1 Count Register (0x0122: R/W).1.4.4.15USB Endpoint 1 Count Register (0x0126: R/W).1.4.4.16USB Endpoint 2 Count Register (0x012A: R/W).1.4.5.1Version Address Register (0x004: Read Only).1.4.5.2Configuration Register (0xC006: R/W).1.		4.4.0		
4.4.9 USB Endpoint 0 Address Register (0x0120: R/W) 10 4.4.10 USB Endpoint 1 Address Register (0x0124: R/W) 10 4.4.10 USB Endpoint 2 Address Register (0x0124: R/W) 10 4.4.11 USB Endpoint 2 Address Register (0x0128: R/W) 11 4.4.12 USB Endpoint 3 Address Register (0x012C: R/W) 11 4.4.13 USB Endpoint 0 Count Register (0x0122: R/W) 11 4.4.14 USB Endpoint 1 Count Register (0x0126: R/W) 11 4.4.15 USB Endpoint 2 Count Register (0x0126: R/W) 11 4.4.16 USB Endpoint 3 Count Register (0x012A: R/W) 11 4.4.16 USB Endpoint 3 Count Register (0x012E: R/W) 11 4.5 PROCESSOR CONTROL REGISTERS 11 4.5.1 Version Address Register (0xC004: Read Only) 11 4.5.2 Configuration Register (0xC006: R/W) 14		4.4.2		
4.4.10USB Endpoint 1 Address Register (0x0124: R/W)14.4.11USB Endpoint 2 Address Register (0x0128: R/W)14.4.12USB Endpoint 3 Address Register (0x012C: R/W)14.4.13USB Endpoint 0 Count Register (0x0122: R/W)14.4.14USB Endpoint 1 Count Register (0x0126: R/W)14.4.15USB Endpoint 2 Count Register (0x012A: R/W)14.4.16USB Endpoint 3 Count Register (0x012E: R/W)14.5PROCESSOR CONTROL REGISTERS14.5.1Version Address Register (0xC004: Read Only)14.5.2Configuration Register (0xC006: R/W)1		4.4.8		
4.4.11USB Endpoint 2 Address Register (0x0128: R/W)14.4.12USB Endpoint 3 Address Register (0x012C: R/W)14.4.13USB Endpoint 0 Count Register (0x0122: R/W)14.4.14USB Endpoint 1 Count Register (0x0126: R/W)14.4.15USB Endpoint 2 Count Register (0x012A: R/W)14.4.16USB Endpoint 3 Count Register (0x012E: R/W)14.5PROCESSOR CONTROL REGISTERS14.5.1Version Address Register (0xC004: Read Only)14.5.2Configuration Register (0xC006: R/W)1		4.4.9		
4.4.12USB Endpoint 3 Address Register (0x012C: R/W)14.4.13USB Endpoint 0 Count Register (0x0122: R/W)14.4.14USB Endpoint 1 Count Register (0x0126: R/W)14.4.15USB Endpoint 2 Count Register (0x012A: R/W)14.4.16USB Endpoint 3 Count Register (0x012E: R/W)14.5PROCESSOR CONTROL REGISTERS14.5.1Version Address Register (0xC004: Read Only)14.5.2Configuration Register (0xC006: R/W)1		4.4.		
4.4.13USB Endpoint 0 Count Register (0x0122: R/W).14.4.14USB Endpoint 1 Count Register (0x0126: R/W).14.4.15USB Endpoint 2 Count Register (0x012A: R/W)14.4.16USB Endpoint 3 Count Register (0x012E: R/W)14.5PROCESSOR CONTROL REGISTERS14.5.1Version Address Register (0xC004: Read Only)14.5.2Configuration Register (0xC006: R/W).1		4.4.		
4.4.14USB Endpoint 1 Count Register (0x0126: R/W)				
4.4.15USB Endpoint 2 Count Register (0x012A: R/W)14.4.16USB Endpoint 3 Count Register (0x012E: R/W)14.5PROCESSOR CONTROL REGISTERS14.5.1Version Address Register (0xC004: Read Only)14.5.2Configuration Register (0xC006: R/W)1				
4.4.16 USB Endpoint 3 Count Register (0x012E: R/W) 1 4.5 PROCESSOR CONTROL REGISTERS 1 4.5.1 Version Address Register (0xC004: Read Only) 1 4.5.2 Configuration Register (0xC006: R/W) 1				
4.5 PROCESSOR CONTROL REGISTERS 1 4.5.1 Version Address Register (0xC004: Read Only) 1 4.5.2 Configuration Register (0xC006: R/W) 1				
4.5.1Version Address Register (0xC004: Read Only)14.5.2Configuration Register (0xC006: R/W)1				
4.5.2 Configuration Register (0xC006: R/W)	4			
4.5.3 Speed Control Register (0xC008: R/W) 1				
4.5.4 Power Down Control Register (0xC00A: R/W)				
4.5.5 Breakpoint Register (0xC014: R/W)				
4.6 INTERRUPTS	4			
				21
4.6.2 Interrupt Enable Register (0xC00E: R/W)				
4.6.3 GPIO Interrupt Control Register (0xC01C: R/W)			1 0 1	
4.6.4 Software Interrupts		4.6.4	4 Software Interrupts	22

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 2

	UART INTERFACE	
4.7	0 (
4.7	0	
4.7		
4.7		
4.8		
4.8		
4.9	GENERAL TIMERS AND WATCH DOG TIMER.	
4.9	· · · · · · · · · · · · · · · · · · ·	
4.9		
4.9	0	
4.10	SPECIAL GPIO FUNCTION FOR SUSPEND, RESUME AND LOW POWER MODES	
4.11	GENERAL PURPOSE IO MODE (GPIO)	
	1.1 I/O Control Register 0 (0xC022: R/W)	
	1.2 I/O Control Register 1 (0xC028: R/W)	
	 1.3 Output Data Register 0 (0xC01E: R/W) 1.4 Output Data Register 1 (0xC024: R/W) 	
	 1.4 Output Data Register 1 (0xC024: R/W) 1.5 Input Data Register 0 (0xC020: R/W) 	
4.1	1 0	
5. PH	IVSICAL CONNECTION	. 32
5.1	SL11P2USB PACKAGE TYPE	32
5.2	SL11P2USB PIN ASSIGNMENT AND DESCRIPTION	
6. SL	11P2USB CPU PROGRAMMING GUIDE	
6.1	INSTRUCTION SET OVERVIEW	. 34
6.2	Reset Vector	. 34
6.3	REGISTER SET	. 34
6.4	GENERAL PURPOSE REGISTERS	
6.5	GENERAL PURPOSE/ADDRESS REGISTERS	
6.6	REGBANK REGISTER (0xC002: R/W)	
6.7	FLAGS REGISTER (0xC000: READ ONLY)	
6.8	INSTRUCTION FORMAT	
6.9	Addressing Modes	
6.10	REGISTER ADDRESSING	
6.11	IMMEDIATE ADDRESSING	
6.12	DIRECT ADDRESSING	
6.13	INDIRECT ADDRESSING	
6.14	INDIRECT ADDRESSING WITH AUTO INCREMENT INDIRECT ADDRESSING WITH OFFSET	
6.15 6.16	STACK POINTER (R15) SPECIAL HANDLING	
6.10 6.17	DUAL OPERAND INSTRUCTIONS	
6.17	Program Control Instructions	
6.19	Single Operand Operation Instructions	
6.20	MISCELLANEOUS INSTRUCTIONS	
6.21	BUILT-IN MACROS	
7. SL	11P2USB - ELECTRICAL SPECIFICATION	, 44
7.1	ABSOLUTE MAXIMUM RATINGS	
7.2	RECOMMENDED OPERATING CONDITIONS	
7.3	CRYSTAL REQUIREMENTS (XTAL1, XTAL2)	
7.4	EXTERNAL CLOCK INPUT CHARACTERISTICS (XTAL1)	
7.5	SL11P2USB DC CHARACTERISTICS	
7.6	SL11P2USB USB TRANSCEIVER CHARACTERISTICS	
7.7	SL11P2USB RESET TIMING	. 46

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 3

ScanLogic Corporation

SL11P2USB Hardware Specification

7.8	SL11P2USB CLOCK TIMING SPECIFICATIONS	
7.9	I2C SERIAL FLASH EEPROM TIMING	
-		10
Exampl	le 1 Changing SL11P2USB CPU Speed	
Table 1	Internal Masked ROM (SL11P2USB BIOS)	
Table 2	PInternal RAM memory usage	
Table 3	Hardware Interrupt Table	
Table 4	Software Interrupt Table	
Table 5	Memory Map	
Figure	1 SL11P2USB Block Diagram	
Figure	2 UART Port Connection	
Figure	3 I2C 2K-byte connection	
	4 Special GPIO pull up connection example	
	5 SL11P2USB or GPIO mode Block Diagram	
0		

1. INTRODUCTION

1.1 Overview

The SL11P2USB is a low cost, high speed Universal Serial Bus (USB) RISC based Controller. It contains a 16-bit RISC processor with built in SL11P2USB BIOS to greatly reduce firmware development efforts. Its serial flash EEPROM (I2C) interface offers low cost storage for USB device configuration and "customer product specific functions". New functions can be programmed into the I2C by downloading it from a USB Host PC. This unique architecture provides the ability to upgrade products, in the field, without changing the peripheral hardware.

The SL11P2USB Processor can execute code either from internal ROM or internal RAM. The SL11P2USB contains a built in USB port support up to 12 Mbits/sec. the maximum USB transfer rate. All USB protocol modes are supported: Isochronous (up to 1024 bytes/packet) Bulk, Interrupt and Control. The SL11P2USB power source requires only 3.3Volt, and it can be powered via a USB host PC or a Hub. Resume, Suspend and Low power modes are available.

The SL11P2USB offers optimal solution for variety of peripheral products such as: Scanners, Digital Cameras (Video and Still), Color Printers, MFU, Fax's, External Storage devices, Monitors, Connectivity box's, and other peripherals that traditionally interface via EPP or SCSI to host PC.

1.2 SL11P2USB Features

- ScanLogic is offering Development Kit with all of its product line. These Development Kits includes; multiple
 peripheral Mini-port class drivers for WIN95 OSR2.1 and Windows 98, firmware source code and demo USB
 source code for variety of applications. Also, available SL11P2USB "C" compiler, debugger, and assembler
 with reference demo board.
- 48 MHz 16 bit RISC Processor
- Up to 32 bit General Purpose I/O (GPIO) channels.
- 6Kx8 internal Mask ROM with built-in BIOS in support of comprehensive SL11P2USB BIOS interrupt BIOS calls (see [Ref. 1] **SL11R_BIOS** for information), which include USB functions, I2C, UART and Boot-Up options (Boot-up from I2C).
- 3Kx8 internal RAM that can be configured as the USB Ping-Pong buffer for USB DATA0 and DATA1 packets. It also can be used as data and/or code.
- Two-wire serial EEPROM (I2C) interface port with SL11P2USB BIOS support to allow on board flash EEPROM programming
- Flexible Programmable external memory wait-states and 8/16 data path.
- Supports 12 MHz/48MHz external crystal or clock.
- Executable code or data can be loaded either from USB port or via UART port. The code/data is moved to RAM buffer for either debugging purposes (utilizing break point register), or to be programmed, as a new value added function, into an I2C.
- USB Port (12 Mbits/sec) including built-in USB transceiver. All USB standard protocol modes are supported; isochronous mode up to 1024 packet size, Bulk, Interrupt and Control modes.
- Four end points are available. Each endpoint utilizing bi-directional DMA port to move data to/from Memory buffer to/from USB. Independently, data can be send/received to/from the Data Port.
- Built-in two Timers, a Watch dog timer (WDT), four programmable channels PWM and four Programmable Timing Generator outputs.

- Four PWM or Programmable Timing Generator outputs channels available. Each channel provides programmable timing generator sequence which can be used to interface to various CCD, CIS, and CMOS image sensors, or can be used for other type of applications.
- Suspend, Resume and Low Power modes are supported.
- UART interface supports from 7,200 Baud to 115.2K Baud.
- USB Generic Min-Port Driver for WIN95 OSR2.1 and Windows 98 are available.
- "C" Compiler, Debugger and QT-Assembler are available
- Package: 100 LPQFP, 0.5 micron.
- Power requirements 3.3v

1.3 SL11P2USB Block Diagram

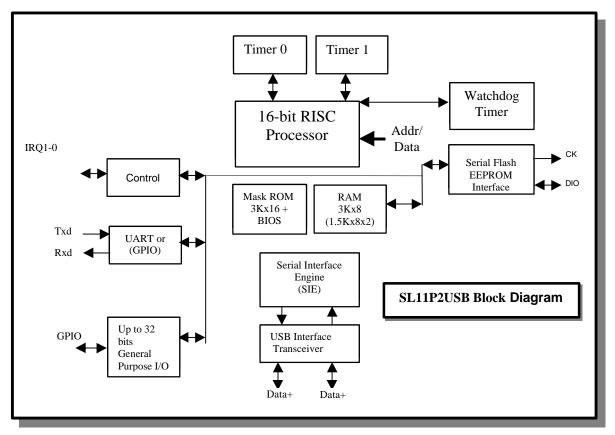


Figure 1 SL11P2USB Block Diagram

1.4 SL11P2USB 16-Bit RISC Processor

The SL11P2USB can be used as general purpose 16 bit embedded processor. It includes USB interface (Universal Serial Interface Bus), up to 32 bit GPIO in support of variety of functions and modes. Also, the SL11P2USB contains a UART, Serial flash EEPROM interface, two Timers, one WDT, internal mask BIOS ROM (3kx16) and Internal RAM (3Kx8). The SL11P2USB is optimized to offer maximum flexibility in the implementation of variety of applications such as; Embedded Digital Video USB controller, USB scanner Controller, USB cable modems, Printers, external Storage Devices, MFU, and etc.

The SL11P2USB contains a specialized instruction set (RISC) that are highly optimized to provide efficient coding for variety of applications such as video processing algorithms, Network data packets translation and USB transaction processing. The SL11P2USB support simple software interface for all the USB transaction processing, which support bulk mode up to 64 Bytes/packet, Isochronous mode up to 1024 Bytes/packet, Interrupt and control modes.

1.5 3Kx16 Mask ROM and BIOS

The SL11P2USB has a built in 3Kx16 Mask ROM, which contains the SL11P2USB BIOS ROM. This BIOS ROM provides software interface for USB and boot-up option for I2C or external 8/16 EEPROM.

1.6 Internal RAM

The SL11P2USB contains a 3K x 8 internal buffer memory, RAM. The RAM can be used for code/program, variables, buffer I/O, DMA data (i.e. Video data), and USB packets. The memory can be accessed by the 16 Bit processor for data manipulation or by the SIE (Serial Interface Engine), which receive or send USB host data.

1.7 Clock Generator

The 48 MHz external Crystal may be used with the SL11P2USB (or 12MHz). Two pins, X1 and X2, are provided to connect a lower cost crystal circuit to the device. Circuitry is provided to generate the internal clocks requirements of the device. If an external 48 MHz clock is available in the application, it may be used in lieu of the crystal circuit by connecting directly to the X1 input pin.

The 12 MHz external crystal may be used with the SL11P2USB Controller. Two pins, X1 and CLK, are provided to connect a lower cost crystal circuit to the device. The PLL circuitry is provided to generate the internal 48 MHz clock requirements of the device. If an external 12 MHz clock is available, it may be used in lieu of the crystal circuit by connecting directly to the CLK input pin. The selection of the 12MHz is controlled under software setup.

1.8 USB Interface

The SL11P2USB has a built in SIE and USB transceiver, which meets the USB (Universal Serial Bus) specification v1.0. The transceiver is capable or transmitting or receiving serial data at the USB maximum data rate, 12 Mbits/sec. The SL11P2USB Controller supports four endpoints. Endpoint 0 is the default pipe, and is used to initialize and manipulate the peripheral device. It also provides access to the peripheral device's configuration information, and supports control transfers. Endpoint 1, 2, and Endpoint 3 support interrupt transfers, bulk transfers up to 64 Bytes/packet, or Isochronous transfers up to 1024 Bytes/packet size.

1.9 Processor Control Registers

The SL11P2USB provides software control registers that can be used to setup the chip mode, clock control, read software version and software breakpoint control.

1.10 Interrupts

The SL11P2USB provides 127 interrupt vectors for SL11P2USB BIOS software interface (see [Ref. 1] **SL11R_BIOS**).

1.11 UART Interface

The SL11P2USB has a built-in UART interface, which supports 7,200 to 115.2KBaud. It can be utilized as a development port or for other interface requirements. Our development environment for the SL11P2USB chip includes "C" compiler, debugger and assembler. One can download modified code to internal SRAM and debug it utilizing build in Breakpoint register and Breakpoint Interrupt to break on any specified address location.

1.12 Serial flash EEPROM Interface (I2C)

The SL11P2USB provides interface to external serial flash EEPROM. The interface is implemented using General Purpose I/O signals. Variety of serial EEPROM formats can be supported, currently the BIOS ROM supports twowire serial flash EEPROM type. Serial EEPROM can be used to store specific Peripheral USB configuration and add on value functions. Also, it can be used for field product upgrades.

1.13 General Timers and Watch Dog Timer

The SL11P2USB has two built in programmable timers that can provide an interrupt to the SL11P2USB Engine. The timers decrement on every microsecond Clock tick. Interrupt occurs on timer reaching zero. A separate Watchdog timer is also provided for monitoring certain activities. The Watchdog timer can also interrupt the SL11P2USB processor.

1.14 Special GPIO function for Suspend, Resume and Low Power modes

The SL11P2USB CPU supports suspend, resume and set the CPU running at low power mode. The SL11P2USB BIOS assigns GPIO18 for the USB DATA+ line pull-up (This pin can simulate the USB cable remove or insert while the USB power is still applied to the board) and the GPIO20 for controlling power off function and can be configured under software control

1.14.1 General Purpose IO mode (GPIO)

The SL11P2USB has up to 32 general purpose IO signals are available. However there are 4 pins, which are used by the UART and the I2C that can not be used as the GPIO. A typical application for this GPIO is the SL11P2USB (i.e. Parallel Port to USB). The SL11P2USB executes at 48MHz, which is fast enough to generate any Parallel Port timing. The SL11P2USB also include a special mode for the EPP timing designed for special device that has no delay on the EPP mode. On any other available General purpose programmable I/O pins can be programmed for peripheral control and or status etc.

2. DEFINITIONS

USB

Universal Serial Bus

SL11P2USB

	The SL11P2USB is a Scanlogic USB Controller, which has a 32 GPIO pins on a single chip. The families of these chips are SL11R, SL11P2USB and SL16.
QT	Quick stream data Transfer engine, which contain a small set of RISC instructions designed for USB SL11P2USB controller.
QTS	Name Convention that represent utility tools, for example 'QTS' indicate all tools, which
QTU	interface with the RS232 serial interface port.
R/W	Name Convention that represent utility tools, for example ' QTU ' indicate all tools, which interface with the USB port.
PLL	Read/Write
PWM	Phase Lock Loop.
DVC	Pulse Width Modulation Digital Video Camera
MFU	Multi Function Units
WDT	Watch Dog Timer
RAM EPP	Random Access Memory
EFF	Enhanced Parallel Port: An asynchronous, byte-wide, bi-directional channel controlled by the host device. This mode provides separate address and data cycles over the eight data lines of the interface.
I2C	2-wire Serial flash EEPROM interface.
R0-R15	

SL11P2USB Registers:

R0-R7 Data registers or general-purpose registers. R8-R14 Address/Data registers, or general-purpose registers. R15 Stack pointer register.

SL11R BIOS

A simulation model similar to 80x86 BIOS

SL11P2USB BIOS

The SL11P2USB BIOS functional design is equivalent with the SL11R BIOS functional design. See the SL11R_BIOS documentation for more in details.

3. REFERENCES

[Ref. 1] SL11R_BIOS

[Ref. 2] SL11R_TOOLS

[Ref. 3] Universal Serial Bus Specification 1.0

4. INTERFACE

4.1 Internal Masked ROM: 0xE800-0xFFFF

The SL11P2USB has a built-in a 3Kx16 internal masked ROM that contained software bootstrap to allow program from I2C or external 8/16-bit ROM can be downloaded or executed. In addition, the internal masked ROM contains SL11P2USB-BIOS interrupt calls function (see [Ref. 1] **SL11R_BIOS** for information) that supports all the interface of USB, I2C, UART and Boot-Up options (Boot-up from I2C or External ROM). This SL11P2USB BIOS ROM can help the users to reduce USB software development and other interface supported. The SL11P2USB Chip is ready for all the USB enumeration and download/program code.

The SL11P2USB Internal Masked ROM (i.e. SL11P2USB BIOS) is mapped from address 0xE800 to 0xFFFF. Upon the power-up or hardware reset, the SL11P2USB processor jumps to the address of 0xFFF0, which will contain a long jump to the beginning of the internal ROM of address 0xE800. See table bellows:

Address	Memory Description							
0xE800-0xFFEF	SL11P2USB BIOS code/data space							
0xFFF0-0xFFF3	fump to 0xE800							
0xFFF4-0xFFF9	Reserved for future use.							
0xFFFA-0xFFFB	ROM BIOS Checksum							
0xFFFC-0xFFFD	SL11P2USB BIOS Revision							
0xFFFE-0xFFFE	Peripheral Revision							
0xFFFF-0xFFFF	QT Engine Instruction Revision							

Table 1 Internal Masked ROM (SL11P2USB BIOS)

4.2 Internal RAM: 0x0000-0x0DFF

The SL11P2USB contains a 1.5Kx16 internal buffer memory. The memory is used to buffer video data and USB packets and is accessed by the 16 Bit processor and the SIE (Serial Interface Engine). USB transactions are automatically routed to the memory buffer. The 16-bit processor has the ability to set up pointers and block sizes in buffer memory for USB DMA transactions. For example the video data is read from the camera interface and is sent to the USB port by the internal SL11's USB DMA engine. The SL11P2USB BIOS also use the internal RAM for USB buffers, BIOS's variables and user's data/code. Program executable code or data can reside in multiple locations; in internal masked ROM (6Kx8) or in Internal RAM (3Kx8). Program code or data can also be loaded to either internal or external RAM from the USB port, from the RS232 port, and from the I2C.

The SL11P2USB Internal RAM is mapped from 0x0000 to 0x0DFF. See the internal RAM memory usage as shown below:

Address	Memory Description
0x0000 - 0x00FF	Hardware/Software Interrupts
0x0100 - 0x01FF	Register Banks/USB Control/Software Stack
0x0200 - 0x021F	Hardware Interrupts stack
0x0220- 0x0343 ¹	SL11P2USB BIOS internal buffers &
	variables
0x0334 - 0x0DFF	User's
	Programming
	Space

Table 2 Internal RAM memory usage

¹ This address may be changed due to the new SL11P2USB BIOS revision updated. The new SL11P2USB BIOS may require more internal memory for its variable usage in any new SL11P2USB BIOS.

^{©1996 - 1999} ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 11

- The addresses from 0x0000 to 0x00FF are reserved for hardware and software interrupt vectors (see [Ref. 1] **SL11R_BIOS** for more information).
- The addresses from 0x0100 to 0x01FF are reserved for Internal Register Banks (i.e. SL11P2USB register R0-R15 bank0 and R0-R15 bank1) and software stack. Others are reserved for USB Control registers and other read/write control registers.
- The addresses from 0x0200 to 0x021F are reserved for hardware interrupt stack.
- The addresses from 0x0220 to 0x0343 are the available internal RAM that can be used for user's code. The user's code can be download via the USB port or UART interface (see [Ref. 1] **SL11R_BIOS** for more information).

4.3 Clock Generator

The SL11P2USB as an option to use either a 48 MHz or 12MHz external crystal or oscillator as its clock source. SL11P2USB includes an internal PLL that can be configured by software. At power-up stage, the SL11P2USB BIOS default configuration sets the clock processor at 2/3 of X1 (of the external provided clock)) and the SL11P2USB processor Speed at ½ of the external clock. See the Speed Control Register (0xC008: R/W) and the Configuration Register (0xC006: R/W) for more information.

Example 1 Changing SL11P2USB CPU Speed

Default of the SL11P2USB BIOS assumes to use 48MHz input clock, then the SL11P2USB processor clock is (2/3)*48MHz/2 = 16MHz. See example below:

mov	[0xC006],0x10	; clock = $2/3*X1$
mov	[0xC008],1	;at 24MHz

If the X1 input clock is 48MHz, then the maximum speed of the SL11P2USB processor can be set at follows:

mov	[0xC006],0	;clock = set up at X1 clock input
mov	[0xC008],0	;at 48MHz

If the X1 input clock is 12MHz, then the maximum speed of the SL11P2USB processor can be set to: **mov** [0xC006],0x40 ;clock = 4*X1 **mov** [0xC008],0 ;at 48MHz

4.4 USB Interface

The SL11P2USB has a built in transceiver that meets the USB (Universal Serial Bus) specification v1.0. The transceivers are connecting directly to the physical layer of the USB engine. The transceiver is capable or transmitting or receiving serial data at the USB maximum data rate, 12 Mbits/sec. The SL11P2USB has four USB-DMA engines for four USB end points. Each of the USB-DMA engines is independently responsible for each USB transaction that is automatically transferred the data from the memory to/from USB port. The 16-bit processor has the ability to set up pointers and block sizes in buffer memory for USB transactions.

The SL11P2USB Controller contains a number of Registers which provide overall control and status functions for USB transactions. The first sets of registers are for overall control and status functions, while the second groups are dedicated to specific endpoint functions. Communication and data flow on the USB is implemented using endpoints. These uniquely identifiable entities are the terminals of communication flow between a USB host and USB devices. Each USB device is composed of a collection of independently operating endpoints. Each endpoint has a unique identifier: the endpoint number. See USB specification v1.0. Sec 5.3.1

The SL11P2USB also include the SL11P2USB BIOS that provides a set of subroutines via interrupt calls for all USB interface functions required to communicate to/from an USB host (refer to [Ref. 1] **SL11R_BIOS** for more information). The SL11P2USB BIOS will simplified and reduce the firmware software development.

4.4.1 USB Global Control & Status Register (0xC080: R/W)

The USB Global Control & Status Register allow to enable/disable and read the current status of the USB-DMA engines. The Global Control & Status register bits are defined as follows:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	0	0	0	0	UA	US	UR	UE	
	D15-D5 Reserved															
D0				UE USB Enable = '1', Overall USB enable/disa								able t	oit.			
	D1			JR		US	USB Reset = '1', USB received Reset command.									
	D2			JS		US	USB SOF = '1', USB received SOF command.									
D3				JA		US	SB Ac	tivity	= '1',	Activ	ity Se	en.				

Notes:

- Suspend state should be entered if after 3mS there is no activity (UA).
- The US and UA bits are cleared after they are read by the SL11P2USB processor.
- D15-D4 are the reserved bits, should be written with zeros.
- The SL11P2USB BIOS will set the UE=1 upon the power-up.

4.4.2 USB Frame Number Register (0xC082: Read Only)

The Frame Number Register contains the 11 bit ID Number of last SOF received by the device from the USB Host.

D15	D15 D14 D13			D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	S10	S9	S 8	S 7	S6	S5	S4	S 3	S2	S 1	S 0
D15-D11]	Reserve	ed	set	t to al	l zero:	s.						
D10-D0				S10-S0		SOF ID Number of last SOF Received.									

Note:

• The SL11P2USB BIOS use this register to detect USB activity for internal BIOS software idle task.

4.4.3 USB Address Register (0xC084: R/W)

Address Register holds the USB address of the device assigned by the Host. Initialized to address 0x0000 upon Power up.

D15	D14	D13	D12	D11	D10	D10 D9 D8 D7 D6 D5 D4 D3							D2	D1	D0
0	0	0	0	0	0	0	0	0	A6	A5	A4	A3	A2	A1	A0
D15-D		set to all zeros													
D6-D()	Ae	5-A0		USB	Addre	ess of	devic	e after	r assig	nmen	t by F	Host		

Note:

• The SL11P2USB BIOS modify this register upon receiving the SET_ADDRESS (see [Ref. 3] **Universal Serial Bus Specification 1.0** on Chapter 9 for more information) from the host.

4.4.4 USB Command Done Register (0xC086: Write Only)

This is the USB command done register that is only used by the control point i.e. end point 0.

D15	D14	D13	D12	D11	D10	D10 D9 D8 D7 D6 D5 D4 D3 D2 D								D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	E
D15-D1 Reserved set to all zeros.															
D0		E	Set E=0 for Successful Command Completion. Set E=1 for Error Command Completion.												

Note:

• The SL11P2USB BIOS modify this register upon the command completion on end point 0.

4.4.5 USB Endpoint 0 Control & Status Register (0xC090: R/W)

See the USB Endpoint 3 Control & Status Register for more information.

4.4.6 USB Endpoint 1 Control & Status Register (0xC092: R/W)

See the USB Endpoint 3 Control & Status Register for more information.

4.4.7 USB Endpoint 2 Control & Status Register (0xC094: R/W)

See the USB Endpoint 3 Control & Status Register for more information.

4.4.8 USB Endpoint 3 Control & Status Register (0xC096: R/W)

General description for all endpoint from Endpoint 0 to Endpoint 3:

The SL11P2USB Controller supports four endpoints. Endpoint 0 is the default pipe, and is used to initialize and manipulate the peripheral device. It also provides access to the peripheral device's configuration information, and supports control transfers. Endpoint 1, 2, and Endpoint 3 support interrupt transfers, bulk transfers up to 64 Bytes/packet, or Isochronous transfers up to 1024 Bytes/packet size.

USB Endpoints Control (For Writing)

Each of the endpoint Control Register, when written has the following functions assigned:

BIT	BIT NAME	FUNCTION
POSITION		
D0	ARM	Allows enabled transfers when set = '1'. Cleared to '0' when transfer is complete.
D1	Enable	When set = '1' allows transfers to this endpoint. When set $=$ '0' USB transactions
		are ignored. If enable = $1'$ and Arm = $0'$
		End point will return NAK to USB transmissions.
D2	DIR	When set = '1' transmit to Host (IN). When '0' receive from Host (OUT).
D3	ISO	When set = '1' allows isochronous mode for this endpoint.
D4	Stall	When set = '1' sends Stall in response to next request on this endpoint.
D5	Zero Length	When set = '1' sends a zero length packet.
D6-D15	Not Defined	Set to logic '0's

USB Endpoints Status (For Reading)

Reading the Endpoint Status Register provides Status information relative to the packet that has been received or transmitted. The register is defined as follows:

BIT	BIT	FUNCTION				
POSITION	NAME					
D0	Arm	If set $=$ '1' indicates the endpoint is armed.				
D1	Enable	If set = $'1'$ indicates the endpoint is enabled.				
D2	DIR	Direction bit. If = '1' set to transmit to Host (IN). $0'$ = set receive from Host (OUT).				
D3	ISO	f set = '1' isochronous mode selected for this endpoint.				
D4	Stall	f set = '1' endpoint will send stall on USB when requested.				
D5-D12	Not used	Read return logic '0's				
D13	Setup	If set = '1' indicates a Setup packet received.				
D14	Error	If set = '1', indicates an error condition occurred on last transaction for this endpoint.				
D15	Done	If set = '1', Done indicates transaction completed. Arm Bit is cleared to '0' when Done Set				

Note:

- Endpoint 0 is set up as a control endpoint. The **DIR** bit is read-only, and indicates the direction of the last completed transaction. If the direction is incorrect, it is the firmware's responsibility to handle the error. On other endpoints, **DIR** is written, and if the direction of the transfer does not match DIR, then the transaction is ignored (as if not enabled).
- At the end of any transfer to an armed and enabled endpoint (with the correct DIR bit), an interrupt occurs, and vectors to a different location depending upon whether an error occurred or not. At the end of this transfer, the corresponding endpoint is disarmed (Arm bit is cleared), and the DATA0/DATA1 toggle bit is advanced if no error occurred. If a packet is received with an incorrect toggle state, it is ignored (so that if the host misses an **ACK** and resends data, we only see the data once).
- The DATA0/DATA1 toggle bit is automatic done by the hardware. To reset this DATA0/DATA1 toggle bit to DATA0, the **Enable** on the **D1** bit should be toggle (i.e. set to '0' and set to '1').
- When the Zero Length on the **D5** is set, the host will receive the zero length USB packet, regardless of the number of bytes in the USB Count register.
- The SL11P2USB BIOS has full control on the USB end point 0. The SL11P2USB BIOS responses all the numeration from host. On other end points, the SL11P2USB BIOS can be used to control under BIOS interrupt calls (see [Ref. 1] SL11R_BIOS)
- The SL11P2USB BIOS will set all the USB Control & Status register of end point 1 to end point 3 to zero upon receiving the SET_CONFIG (see [Ref. 3] Universal Serial Bus Specification 1.0 on Chapter 9 for more information) command from host.

4.4.9 USB Endpoint 0 Address Register (0x0120: R/W)

This is the pointer to memory buffer location for USB reads and writes to this Endpoint. At the end of any transfer, this USB endpoint is incremented to the number of byte that has been setup to the USB Endpoint Count Register.

4.4.10 USB Endpoint 1 Address Register (0x0124: R/W)

See USB Endpoint 0 Address Register (0x0120: R/W)

4.4.11 USB Endpoint 2 Address Register (0x0128: R/W)

See USB Endpoint 0 Address Register (0x0120: R/W)

4.4.12 USB Endpoint 3 Address Register (0x012C: R/W)

See USB Endpoint 0 Address Register (0x0120: R/W)

4.4.13 USB Endpoint 0 Count Register (0x0122: R/W)

This register is used to set the maximum packet size for the USB transfer. At the end of any transfer, the USB endpoint Count Register is decrement to zero upon the success of the USB transfer.

4.4.14 USB Endpoint 1 Count Register (0x0126: R/W)

See USB Endpoint 0 Count Register (0x0122: R/W)

4.4.15 USB Endpoint 2 Count Register (0x012A: R/W)

See USB Endpoint 0 Count Register (0x0122: R/W)

4.4.16 USB Endpoint 3 Count Register (0x012E: R/W)

See USB Endpoint 0 Count Register (0x0122: R/W)

4.5 Processor Control Registers

The SL11P2USB provides software control registers that can be used to setup the chip mode, clock control, read software version and software breakpoint control.

4.5.1 Version Address Register (0xC004: Read Only)

The Version Address Register stores the current version of the SL11P2USB. This register is reserved and not used. The new Version Address Register is located in the SL11P2USB ROM BIOS at address 0xFFFC.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
N7	N6	N5	N4	N3	N2	N1	N0	D7	D6	D5	D4	D3	D2	D1	D0

D15-D8 N7-N0 Version Number left of Decimal Point.

D7-D0 D7-D0 Version Number right of Decimal Point.

Example

Revision 0.4 => N(7-0) = 00000000, D(7-0) = 00000100

4.5.2 Configuration Register (0xC006: R/W)

The Configuration Register is used to configure the SL11P2USB into the appropriate mode, and to select clock multiplier.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	C2	C1	C0	CD	M1	M0	MD

D6-4 C2-0

Clock Configuration bits. These bits select clock source. The clock may come from an outside pin like X1 or X_PCLK or it may come from the PLL multiplier indicated in the table.

C2	C1	C0	PCLK	RCLK	OE
0	0	0	X1	X1	0
0	0	1	2/3*X1	X1	0
0	1	0	X_PCLK	X1	0
0	1	1	2/3*X1	X1	1
1	0	0	4*X1	4*X1	0
1	0	1	8/3*X1	4*X1	0
1	1	0	4*X1	4*X1	1
1	1	1	8/3*X1	4*X1	1

D3 CD

If Clock Disable bit = '1', this Clock Configuration register can no longer be modified through software writes. It is a "sticky bit" used to lock the configuration through a write to this bit in the boot prom code.

D2,D1 M1,0: SL11P2USB mode selected that defined as shown:

M1	M0	Mode
0	0	SL11P2USB
0	1	Reserved
1	0	Reserved
1	1	Reserved

<u>Note</u>:

On the default, these bits will be set to zero by the SL11P2USB BIOS.

D0 MD

If Mode Disable bit = '1', this Configuration register can no longer be modified through software writes. It is a "sticky bit" used to lock the configuration through a write to this bit in the boot prom code.

Note:

On the default, this bit will be set to zero by the SL11P2USB BIOS.

D15-D7 Reserved should be set to all zeros.

Where:

PCLK is connected to the SL11P2USB processor clock.

RCLK is the resulting clock that connects to other modules (i.e. PWM, USB engine).

OE when **OE**=1, the **X_PCLK** (pin 59) will become an output pin of the **PCLK** value.

^{©1996 - 1999} ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 18

Notes:

- When using the PLL, the X1 input pin clock should be 12 MHz and the software should set the C2=1 to allow the multiply by four.
- **X_PCLK** is a bi-direction pin allowing an additional clock input for PCLK when selected or an observation pin for PCLK when OE = '1'.
- The **X_PCLK** can be used as the input clock like X1, which is only on the mode C2=0, C1=1, C0=0.
- After the power-up, the SL11P2USB BIOS will set this register equal to 0x0010 (i.e. C2=0, C1=0, C0=1, PCLK=X1, RCLK=X1, OE=0, M1-M0=0=GPIO Mode).

4.5.3 Speed Control Register (0xC008: R/W)

The Speed Control Register allows the operation of the SL11P2USB processor at a number of speed selections. A four bit divider (SPD3-0 + 1) selects the speed as shown below. Note speed will also depend on clock multiplier, see Configuration Register (0xC006: R/W) for more information.

D15-D4	D3	D2	D1	D0
0	SPD3	SPD2	SPD1	SPD0

SPD3-0	SL11P2USB SPEED
0000	48.00 MHz.
0001	24.00 MHz.
0010	16.00 MHz.
0011	12.00 MHz.
0100	09.60 MHz.
0101	08.00 MHz.
0110	06.86 MHz.
0111	06.00 MHz.
1000	05.33 MHz.
1001	04.80 MHz.
1010	04.36 MHz.
1011	04.00 MHz.
1100	03.69 MHz.
1101	03.42 MHz.
1110	03.20 MHz.
1111	03.00 MHz.

D3-D0

D15-D4

Reserved

should be set to all zeros.

Note:

On power up, lowest speed is selected for lower power operation. The SL11P2USB BIOS will re-setup this clock to 24MHz after the power-up.

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 19

4.5.4 Power Down Control Register (0xC00A: R/W)

During Power down mode, the peripherals are put in a "**pause**" state. All the counters and timers stop incrementing and the PWM stop.

D15-D6	D5	D4	D3	D2	D1	D0
0	USB	GPIO	PUD1	PUD0	SUSPEND	HALT

There are two ways to enter to power down mode:

Suspend or Ha	<u>alt.</u>							
D5	USB	Enable restarts on USB t	ransition. Will res	sult in device power up.				
D4	GPIO		Enable restarts on GPIO transition. Will result in device power up (See GPIO Interrupt Control Register (0xC01C:R/W)).					
D3-D2	PUD1-PUD0	Power up delay selection these select bits. This is t executing allows clock to	ime from power	provided and selected using up until processor starts				
		PUD1	PUD0	Power up delay				
		0	0	0 milliseconds				
		0	1	1 milliseconds				
		1	0	8 milliseconds				
		1	1	64 milliseconds				
Dl	SUSPEND	Suspend mode stops all clocks in the SL11P2USB to save power. This mode ends with a transition on either USB or any Interrupt. It is followed by a delay set in the Power-up delay bit fields.						
D0	HALT	ends with an interrupt.						
D15-D6	Reserved	should be set to all zeros.						

4.5.5 Breakpoint Register (0xC014: R/W)

The Breakpoint Register holds the breakpoint address. When an access to this address is done an INT127 occurs.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

D15-0 A15-0 Breakpoint address.

4.6 Interrupts

The SL11P2USB provides 127 interrupt vectors. The first 64 vectors are the hardware interrupts and the next 64 interrupt vectors are the software interrupts (see the [Ref. 1] **SL11R_BIOS** for more information).

4.6.1 Hardware Interrupts

The SL11P2USB allocates address from 0x0000 to 0x003E for hardware interrupts. The hardware interrupt vectors are shown below:

Interrupt	Vector	Interrupt
Number	Address	Туре
0	0x0000	Timer0 🌲
1	0x0002	Timer1 ♦
2	0x0004	GP IRQ0 ♦
3	0x0006	GP IRQ1 ♦
4	0x0008	UART Tx 🌲
5	0x000A	UART Rx 🌲
6	0x000C	Fast DMA Done ♦
7	0x000E	USB Reset
8	0x0010	USB SOF **
9	0x0012	USB Endpoint0 No Error 🌲
10	0x0014	USB Endpoint0 Error 🌲
11	0x0016	USB Endpoint1 No Error
12	0x0018	USB Endpoint1 Error
13	0x001A	USB Endpoint2 No Error
14	0x001C	USB Endpoint2 Error
15	0x001E	USB Endpoint3 No Error
16	0x0020	USB Endpoint3 Error
17-63	0x0026- 0x003E	Reserved ♦

Table 3 Hardware Interrupt Table

- <u>Note</u>: A These hardware interrupt vectors are reserved for internal SL11P2USB-BIOS usage. User should not attempt to overwrite these functions.
 - ****** The SOF interrupt is generated when there is an incoming SOF on the USB.
 - These hardware interrupt vectors are initialized to return on the interrupt.

All these vector interrupts are read/write accessible. User can overwrite these default software interrupt vectors by replacing the user's interrupt service subroutine.

The addresses from 0x0000 to 0x003E are read/write accessible that can be used for variables.

4.6.2 Interrupt Enable Register (0xC00E: R/W)

This is a global hardware interrupt enable register that allows controlling these previous hardware interrupt vectors. The SL11P2USB BIOS default setup of this register is 0x28 (i.e. USB and UART bits are set).

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	0	0	USB	0	UART	GP	T1	T0	
		D5		τ	JSB		U	SB In	iterrupt e	nable.						
		D3		τ	JART		U	ART	Interrup	t enable						
									-							
		D2		C	βP		General Purpose I/O pins Interrupt enables (see GPIO Interrupt Control Register (0xC01C: R/W))									
		D1		Т	'1		Timer1 Interrupt Enable.									
		D0		Т	0		Timer0 Interrupt Enable.									

4.6.3 GPIO Interrupt Control Register (0xC01C: R/W)

This register defines the polarity of the GPIO interrupt on the IRQ1 (GPIO26) and IRQ0 (GPIO25). The **GPIO** bit on the Interrupt Enable Register must be set to allows these below setting:

D15	5 D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	P1	E1	P0	E0
		D3		Р	1	IRQ1	polarit	y is ris	ing edg	ge if "1	", falli	ng edg	e if "0'	,	
	D2 E1 Enable IRQ1 if set to "1".														
	D1 P0 IRQ0 polarity is rising edge if "1", falling edge if "0".														
D0 E0 Enable IRQ0 if set to "1".															

Note:

The interrupts can be enabled for "Suspend mode" by the power down Register or enabled for interrupts by the Interrupt Enable Register.

4.6.4 Software Interrupts

The SL11P2USB allocates address from 0x0040 to 0x00FE for software interrupts. The software interrupt vectors are shown below:

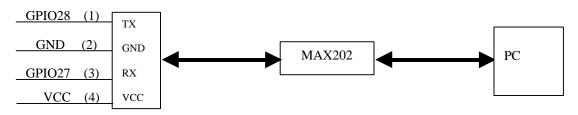
Number Address Type 64 (0x40) 0x0080 I2C INT \bullet 65 (0x41) 0x0082 Reserve for future extension of other Serial EEPROM 66 (0x42) 0x0084 UART_INT \bullet 67 (0x43) 0x0086 SCAN_INT \bullet 68 (0x44) 0x0088 ALLOC_INT \bullet 69 (0x45) 0x008A Data: start of free memory. Default=0x200 $\bullet \bullet$ 70 (0x46) 0x008E IDLER_INT 71 (0x47) 0x008E IDLET_INT 72 (0x48) 0x0090 INSERT_IDLE_INT 73 (0x49) 0x0092 PUSHALL_INT \bullet 74 (0x4a) 0x0096 FREE_INT \bullet 75 (0x4b) 0x0098 REDO_ARENA \bullet 77 (0x4d) 0x0092 HW REST_REG \bullet 79 (0x4f) 0x0098 REDO_ARENA \bullet 79 (0x4f) 0x0092 HW REST_REG \bullet 79 (0x4f) 0x0092 USB_RECEIVE_INT \bullet 81 (0x50) 0x00A0 USB_SEND_INT \bullet 81 (0x51) 0x00A2 USB_RECEIVE_INT \bullet 82 (0x52) 0x0	Interrupt	Vector	Interrupt
$65(0x41)$ $0x0082$ Reserve for future extension of other Serial EEPROM $66(0x42)$ $0x0084$ UART_INT + $67(0x43)$ $0x0086$ SCAN_INT + $68(0x44)$ $0x0088$ ALLOC_INT + $69(0x45)$ $0x008A$ Data: start of free memory. Default= $0x200 \bullet \bullet$ $70(0x46)$ $0x008C$ IDLE_INT $71(0x47)$ $0x008E$ IDLE_INT $72(0x48)$ $0x0090$ INSERT_IDLE_INT $73(0x49)$ $0x0094$ POPALL_INT \bullet $74(0x4a)$ $0x0094$ POPALL_INT \bullet $76(0x4c)$ $0x0096$ FREE_INT \bullet $76(0x4c)$ $0x0096$ FREE_INT \bullet $77(0x4d)$ $0x0096$ HW_SWAP_REG \bullet $78(0x4c)$ $0x0096$ HW_SENT_REG \bullet $79(0x4d)$ $0x0096$ USB_SEND_INT \bullet $81(0x51)$ $0x00A2$ USB_SEND_INT \bullet $81(0x51)$ $0x00A2$ USB_STANDARD_INT $84(0x54)$ $0x00A6$ USB_VENDOR_INT $86(0x55)$ $0x00A4$ Data: USB_CLASS_INT	Number	Address	Туре
$66(0x42)$ $0x0084$ $UART_INT +$ $67(0x43)$ $0x0086$ $SCAN_INT +$ $68(0x44)$ $0x0088$ $ALLOC_INT +$ $69(0x45)$ $0x008A$ $Data: start of free memory. Default=0x200 + +$ $70(0x45)$ $0x008C$ $IDLE_INT$ $71(0x47)$ $0x008E$ $IDLE_INT$ $71(0x47)$ $0x0092$ $PUSHALL_INT +$ $74(0x4a)$ $0x0090$ $INSERT_IDLE_INT +$ $73(0x49)$ $0x0094$ $POPALL_INT +$ $75(0x4b)$ $0x0094$ $POPAL_INT +$ $75(0x4b)$ $0x0096$ $REEDO_ARENA +$ $77(0x4d)$ $0x0090$ $HW_SWAP_REG +$ $78(0x4e)$ $0x0092$ $HW_REST_REG +$ $79(0x4f)$ $0x0092$ $USB_SEND_INT +$ $81(0x51)$ $0x00A2$ $USB_SEND_INT +$ $81(0x51)$ $0x00A2$ $USB_STANDARD_INT +$ $82(0x52)$ $0x00A4$ Reserved $83(0x53)$ $0x00A4$ $CSS_SINT +$ $85(0x55)$ $0x00A4$ $USB_CLASS_INT +$	64 (0x40)	0x0080	I2C_INT ♣
67 (0x43) 0x0086 SCAN_INT \bullet 68 (0x44) 0x0088 ALLOC_INT \bullet 69 (0x45) 0x008A Data: start of free memory. Default=0x200 $\bullet \bullet$ 70 (0x46) 0x008C IDLE_INT 71 (0x47) 0x008E IDLE_INT 72 (0x48) 0x0090 INSERT_IDLE_INT 73 (0x49) 0x0092 PUSHALL_INT \bullet 74 (0x4a) 0x0096 FREE_INT \bullet 75 (0x4b) 0x0096 REDO_ARENA \bullet 76 (0x4c) 0x0098 REDO_ARENA \bullet 77 (0x4d) 0x0090 USB_SEND_INT \bullet 78 (0x4e) 0x009C HW_REST_REG \bullet 79 (0x4f) 0x009E SCAN_DECODE_INT 81 (0x51) 0x00A2 USB_SEND_INT \bullet 81 (0x52) 0x00A4 Reserved 83 (0x53) 0x00A6 USB_STANDARD_INT 84 (0x54) 0x00A2 USB_VENDOR.INT 86 (0x56) 0x00A4 USB_VENDOR.INT 86 (0x57) 0x00A4 USB_CLASS_INT 89 (0x59) 0x00A5 USB_CLASS_INT<	65 (0x41)	0x0082	Reserve for future extension of other Serial EEPROM
68 (0x44) 0x0088 ALLOC_INT \bigstar 69 (0x45) 0x008A Data: start of free memory. Default=0x200 \bigstar 70 (0x46) 0x008C IDLE_INT 71 (0x47) 0x008E IDLE_INT 72 (0x48) 0x0090 INSERT_IDLE_INT 73 (0x49) 0x0092 PUSHALL_INT \bigstar 74 (0x4a) 0x0094 POPALL_INT \bigstar 75 (0x4b) 0x0096 FREE_INT \bigstar 76 (0x4c) 0x0098 REDO_ARENA \bigstar 77 (0x4d) 0x009A HW_SWAP_REG \bigstar 77 (0x4d) 0x009C HW_REST_REG \bigstar 79 (0x4f) 0x009E SCAN_DECODE_INT 80 (0x50) 0x00A0 USB_SEND_INT \bigstar 81 (0x51) 0x00A2 USB_RECEIVE_INT \bigstar 82 (0x52) 0x00A4 Reserved 83 (0x53) 0x00A6 USB_STANDARD_INT 84 (0x54) 0x00A8 Data: USB_Vendor loader vector. Default= 0 $\bigstar \bigstar$ 85 (0x55) 0x00AA USB_CLASS_INT 86 (0x56) 0x00AC Data: USB_CLASS_INT 87 (0x57)	66 (0x42)	0x0084	UART_INT *
68 (0x44) 0x0088 ALLOC_INT \bullet 69 (0x45) 0x008A Data: start of free memory. Default=0x200 $\bullet \bullet$ 70 (0x46) 0x008C IDLE_INT 71 (0x47) 0x008E IDLER_INT 72 (0x48) 0x0090 INSERT_IDLE_INT 73 (0x49) 0x0092 PUSHALL_INT \bullet 74 (0x4a) 0x0096 FREE_INT \bullet 75 (0x4b) 0x0096 FREE_INT \bullet 76 (0x4c) 0x0098 REDO_ARENA \bullet 77 (0x4d) 0x0090 HW_SWAP_REG \bullet 77 (0x4d) 0x0090 HW_SWAP_REG \bullet 78 (0x4e) 0x009C HW_REST_REG \bullet 79 (0x4f) 0x009E SCAN_DECODE_INT 80 (0x50) 0x00A0 USB_SEND_INT \bullet 81 (0x51) 0x00A2 USB_RECEIVE_INT \bullet 82 (0x52) 0x00A4 Reserved 83 (0x53) 0x00A6 USB_STANDARD_INT 84 (0x54) 0x00A8 Data: USB_Vendor loader vector. Default= $0 \star \bullet$ 87 (0x57) 0x00AE USB_CLASS_INT 88 (0x58) <t< td=""><td>67 (0x43)</td><td>0x0086</td><td>SCAN INT *</td></t<>	67 (0x43)	0x0086	SCAN INT *
69 (0x45) 0x008A Data: start of free memory. Default=0x200 ** 70 (0x46) 0x008C IDLE_INT 71 (0x47) 0x008E IDLER_INT 72 (0x48) 0x0090 INSERT_IDLE_INT 73 (0x49) 0x0092 PUSHALL_INT * 74 (0x4a) 0x0094 POPALL_INT * 75 (0x4b) 0x0096 FREE_INT * 76 (0x4c) 0x0090 HW_SWAP_REG * 77 (0x4d) 0x009C HW_REST_REG * 78 (0x4e) 0x009E SCAN_DECODE_INT 80 (0x50) 0x0040 USB_SEND_INT * 81 (0x51) 0x00A2 USB_STANDARD_INT 82 (0x52) 0x00A4 Reserved 83 (0x53) 0x00A6 USB_VENDOR_INT 84 (0x54) 0x00A8 Data: USB_VENDOR_INT 85 (0x55) 0x00AC Data: USB_VENDOR_INT 87 (0x57) 0x00AC Data: USB_CLASS_INT 88 (0x58) 0x00B0 Data: USB_CLASS_INT 88 (0x58) 0x00B6 Data: Configuration Desc. Default = 0 ** 90 (0x5a)<	68 (0x44)	0x0088	
$70 (0x46)$ $0x008C$ IDLE_INT $71 (0x47)$ $0x008E$ IDLE_INT $72 (0x48)$ $0x0090$ INSERT_IDLE_INT $73 (0x49)$ $0x0092$ PUSHALL_INT \bigstar $74 (0x4a)$ $0x0094$ POPALL_INT \bigstar $75 (0x4b)$ $0x0096$ FREE_INT \bigstar $76 (0x4c)$ $0x0098$ REDO_ARENA \bigstar $77 (0x4d)$ $0x009A$ HW_SWAP_REG \bigstar $77 (0x4d)$ $0x009A$ HW_SWAP_REG \bigstar $77 (0x4d)$ $0x009A$ HW_REST_REG \bigstar $79 (0x4f)$ $0x009C$ HW_REST_REG \bigstar $79 (0x4f)$ $0x009E$ SCAN_DECODE_INT $80 (0x50)$ $0x00A0$ USB_SEND_INT \bigstar $81 (0x51)$ $0x00A2$ USB_RECEIVE_INT \bigstar $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ USB_STANDARD_INT $84 (0x54)$ $0x00A8$ Data: Standard loader vector. Defaut=0 \bigstar $85 (0x55)$ $0x00A4$ USB_VENDOR_INT $86 (0x56)$ $0x00A2$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data: USB_Class_Loader. Default = 0xff \bigstar $87 (0x57)$ $0x00B2$ USB_FINISH_INT $90 (0x5a)$ $0x00B4$ Data: Configuration Desc. Default = 0 \bigstar $91 (0x5b)$ $0x00B6$ Data: Configuration Desc. Default = Scanlogic Device Desc \bigstar $91 (0x5b)$ $0x00B6$ Data: String Descriptor. Default = Scanlogic Configuration \bigstar $92 (0x5c)$ $0x00B6$ Data: String Descriptor. Default = Scanlogic Configuration \bigstar $92 (0x5c)$ $0x00B6$ Data: String Descriptor. Default = Scanlogic C	69 (0x45)	0x008A	
$72 (0x48)$ $0x0090$ INSERT_IDLE_INT $73 (0x49)$ $0x0092$ PUSHALL_INT \bigstar $74 (0x4a)$ $0x0094$ POPALL_INT \bigstar $75 (0x4b)$ $0x0096$ FREE_INT \bigstar $76 (0x4c)$ $0x0098$ REDO_ARENA \bigstar $77 (0x4d)$ $0x0098$ REDO_ARENA \bigstar $77 (0x4d)$ $0x009A$ HW_SWAP_REG \bigstar $77 (0x4d)$ $0x009C$ HW_REST_REG \bigstar $77 (0x4d)$ $0x009C$ HW_REST_REG \bigstar $79 (0x4f)$ $0x009C$ USB_SEND_INT \bigstar $80 (0x50)$ $0x00A0$ USB_SEND_INT \bigstar $81 (0x51)$ $0x00A2$ USB_RECEIVE_INT \bigstar $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ USB_STANDARD_INT $84 (0x54)$ $0x00A8$ Data: Standard loader vector. Defaut=0 \bigstar $85 (0x55)$ $0x00AA$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data: USB_VENDOR_INT $88 (0x58)$ $0x00B0$ Data: USB_CLASS_INT $99 (0x59)$ $0x00B2$ USB_TINISH_INT $90 (0x5a)$ $0x00B4$ Data: Configuration Desc. Default = $0 \bigstar$ $91 (0x5b)$ $0x00B6$ Data: Configuration Desc. Default = scanlogic Configuration \bigstar $91 (0x5b)$ $0x00B6$ Data: Configuration Desc. Default = Scanlogic Configuration \bigstar $92 (0x5c)$ $0x00B6$ USB_PARSE_CONFIG_INT $94 (0x5e)$ $0x00B6$ USB_DELTA_CONFIG_INT $95 (0x5f)$ $0x00B6$ USB_DELTA_CONFIG_INT $96 (0x60)$ $0x00C0$ USB_DELTA_CONFIG_INT $96 (0x60)$ $0x00B6$ US	70 (0x46)	0x008C	
73 (0x49)0x0092PUSHALL_INT \bigstar 74 (0x4a)0x0094POPALL_INT \bigstar 75 (0x4b)0x0096FREE_INT \bigstar 76 (0x4c)0x0098REDO_ARENA \bigstar 77 (0x4d)0x009AHW_SWAP_REG \bigstar 78 (0x4e)0x009CHW_REST_REG \bigstar 79 (0x4f)0x009ESCAN_DECODE_INT80 (0x50)0x00A0USB_SEND_INT \bigstar 81 (0x51)0x00A2USB_RECEIVE_INT \bigstar 82 (0x52)0x00A4Reserved83 (0x53)0x00A6USB_STANDARD_INT84 (0x54)0x00A8Data: Standard loader vector. Defaut=0 \bigstar 85 (0x55)0x00AAUSB_VENDOR_INT86 (0x56)0x00ACData: USB_Vendor Loader. Default = 0xff \bigstar 87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_CLASS_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = 0 \bigstar 91 (0x5b)0x00B6Data: Configuration Desc. Default = 0 \bigstar 92 (0x5c)0x00B6Data: String Descriptor. Default = Scanlogic Configuration \bigstar 93 (0x5d)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration \bigstar 92 (0x5c)0x00B6Data: String Descriptor. Default = Scanlogic String Desc. \bigstar 93 (0x5d)0x00BCUSB_LOADER_INT94 (0x5e)0x00BCUSB_DELTA_CONFIG_INT95 (0x5f)0x00BCUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_DELTA_CONFIG_IN	71 (0x47)	0x008E	IDLER_INT
73 (0x49)0x0092PUSHALL_INT \bigstar 74 (0x4a)0x0094POPALL_INT \bigstar 75 (0x4b)0x0096FREE_INT \bigstar 76 (0x4c)0x0098REDO_ARENA \bigstar 77 (0x4d)0x009AHW_SWAP_REG \bigstar 78 (0x4e)0x009CHW_REST_REG \bigstar 79 (0x4f)0x009ESCAN_DECODE_INT80 (0x50)0x00A0USB_SEND_INT \bigstar 81 (0x51)0x00A2USB_RECEIVE_INT \bigstar 82 (0x52)0x00A4Reserved83 (0x53)0x00A6USB_STANDARD_INT84 (0x54)0x00A8Data: Standard loader vector. Defaut=0 \bigstar 85 (0x55)0x00AAUSB_VENDOR_INT86 (0x56)0x00ACData: USB_Vendor Loader. Default = 0xff \bigstar 87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_CLASS_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = 0 \bigstar 91 (0x5b)0x00B6Data: Configuration Desc. Default = 0 \bigstar 92 (0x5c)0x00B6Data: String Descriptor. Default = Scanlogic Configuration \bigstar 93 (0x5d)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration \bigstar 92 (0x5c)0x00B6Data: String Descriptor. Default = Scanlogic String Desc. \bigstar 93 (0x5d)0x00BCUSB_LOADER_INT94 (0x5e)0x00BCUSB_DELTA_CONFIG_INT95 (0x5f)0x00BCUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_DELTA_CONFIG_IN	72 (0x48)	0x0090	INSERT_IDLE_INT
$74 (0x4a)$ $0x0094$ $POPALL_INT \bigstar$ $75 (0x4b)$ $0x0096$ $FREE_INT \bigstar$ $76 (0x4c)$ $0x0098$ $REDO_ARENA \bigstar$ $77 (0x4d)$ $0x009A$ $HW_SWAP_REG \bigstar$ $77 (0x4d)$ $0x009C$ $HW_REST_REG \bigstar$ $78 (0x4e)$ $0x009C$ $HW_REST_REG \bigstar$ $79 (0x4f)$ $0x009E$ $SCAN_DECODE_INT$ $80 (0x50)$ $0x00A0$ $USB_SEND_INT \bigstar$ $81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \bigstar$ $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ $USB_STANDARD_INT$ $84 (0x54)$ $0x00A6$ USB_VENDOR_INT $85 (0x55)$ $0x00A4$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ $Data: USB_VENDOR_INT$ $86 (0x56)$ $0x00AC$ $Data: USB_CLASS_INT$ $88 (0x58)$ $0x00B0$ $Data: USB_CLASS_INT$ $90 (0x5a)$ $0x00B4$ $Data: Configuration Desc. Default = 0$	73 (0x49)	0x0092	
$75 (0x4b)$ $0x0096$ FREE_INT \bigstar $76 (0x4c)$ $0x0098$ REDO_ARENA \bigstar $77 (0x4d)$ $0x009A$ HW_SWAP_REG \bigstar $77 (0x4d)$ $0x009C$ HW_REST_REG \bigstar $78 (0x4e)$ $0x009C$ HW_REST_REG \bigstar $79 (0x4f)$ $0x009E$ SCAN_DECODE_INT $80 (0x50)$ $0x00A0$ USB_SEND_INT \bigstar $81 (0x51)$ $0x00A2$ USB_RECEIVE_INT \bigstar $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ USB_STANDARD_INT $84 (0x54)$ $0x00A6$ USB_VENDOR_INT $85 (0x55)$ $0x00AA$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data: USB_Vendor loader. Default = 0 \bigstar $87 (0x57)$ $0x00AE$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data: USB_Class_Loader. Default = 0 \bigstar $89 (0x59)$ $0x00B4$ Data: Configuration Desc. Default = 0 \bigstar $91 (0x5b)$ $0x00B6$ Data: Configuration Desc. Default = Scanlogic Configuration \bigstar $92 (0x5c)$ $0x00B6$ Data: String Descriptor. Default = Scanlogic Configuration \bigstar $93 (0x5d)$ $0x00B6$ USB_PARSE_CONFIG_INT $94 (0x5e)$ $0x00BC$ USB_LDADER_INT $95 (0x5f)$ $0x00BC$ USB_DELTA_CONFIG_INT $96 (0x60)$ $0x00C0$ USB_POULUP_INT $97 - 104$ $0xC2-0xD0$ Reserve for future addition secondary USB Port $105 (0x69)$ $0x00D2$ POWER_DOWN_SUBROUTINE	74 (0x4a)	0x0094	
$76 (0x4c)$ $0x0098$ REDO_ARENA * $77 (0x4d)$ $0x009A$ HW_SWAP_REG * $78 (0x4e)$ $0x009C$ HW_REST_REG * $79 (0x4f)$ $0x009E$ SCAN_DECODE_INT $80 (0x50)$ $0x00A0$ USB_SEND_INT * $81 (0x51)$ $0x00A2$ USB_RECEIVE_INT * $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ USB_STANDARD_INT $84 (0x54)$ $0x00A8$ Data: Standard loader vector. Defaut=0 ** $85 (0x55)$ $0x00A4$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data: USB_Vendor loader. Default = 0xff ** $87 (0x57)$ $0x00AE$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data: USB_Class_Loader. Default = 0 ** $89 (0x59)$ $0x00B4$ Data: Device Descriptor. Default = 0 ** $90 (0x5a)$ $0x00B4$ Data: Configuration Desc. Default = 0 configuration ** $91 (0x5b)$ $0x00B6$ Data: Configuration Desc. Default = Scanlogic Configuration ** $92 (0x5c)$ $0x00B6$ Data: String Descriptor. Default = Scanlogic Configuration ** $93 (0x5d)$ $0x00B6$ USB_PARSE_CONFIG_INT $94 (0x5e)$ $0x00B6$ USB_LOADER_INT $95 (0x5f)$ $0x00B6$ USB_DELTA_CONFIG_INT $96 (0x60)$ $0x00C0$ USB_PDELTA_CONFIG_INT $97 \cdot 104$ $0xC2-0xD0$ Reserve for future addition secondary USB Port $105 (0x69)$ $0x00D2$ POWER_DOWN_SUBROUTINE	75 (0x4b)	0x0096	
$77 (0x4d)$ $0x009A$ $HW_SWAP_REG \bigstar$ $78 (0x4e)$ $0x009C$ $HW_REST_REG \bigstar$ $79 (0x4f)$ $0x009E$ $SCAN_DECODE_INT$ $80 (0x50)$ $0x00A0$ $USB_SEND_INT \bigstar$ $81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \bigstar$ $81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \bigstar$ $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ $USB_STANDARD_INT$ $84 (0x54)$ $0x00A8$ Data: Standard loader vector. Defaut=0 * \bigstar $85 (0x55)$ $0x00AA$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data: USB_Vendor loader. Default = 0 * \bigstar $87 (0x57)$ $0x00AE$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data: USB_Class_Loader. Default = 0 * \bigstar $89 (0x59)$ $0x00B2$ USB_FINISH_INT $90 (0x5a)$ $0x00B4$ Data: Configuration Desc. Default = Scanlogic Configuration * \bigstar $91 (0x5b)$ $0x00B6$ Data: String Descriptor. Default = Scanlogic Configuration * \bigstar $92 (0x5c)$ $0x00BA$ $USB_PARSE_CONFIG_INT$ $94 (0x5e)$ $0x00BA$ $USB_PARSE_CONFIG_INT$ $94 (0x5e)$ $0x00BC$ USB_LOADER_INT $95 (0x5f)$ $0x00BC$ $USB_DELTA_CONFIG_INT$ $96 (0x60)$ $0x00C0$ USB_PULLUP_INT $97 - 104$ $0xC2-0xD0$ Reserve for future addition secondary USB Port $105 (0x69)$ $0x00D2$ POWER_DOWN_SUBROUTINE	76 (0x4c)	0x0098	
$78 (0x4e)$ $0x009C$ $HW_REST_REG \clubsuit$ $79 (0x4f)$ $0x009E$ $SCAN_DECODE_INT$ $80 (0x50)$ $0x00A0$ $USB_SEND_INT \clubsuit$ $81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \clubsuit$ $81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \clubsuit$ $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ $USB_STANDARD_INT$ $84 (0x54)$ $0x00A8$ Data : Standard loader vector. Defaut=0 � € € $85 (0x55)$ $0x00A4$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data : USB_Vendor loader. Default = $0xff \bullet €$ $87 (0x57)$ $0x00AE$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data : USB_Class_Loader. Default = 0 $\bullet \bullet$ $89 (0x59)$ $0x00B2$ USB_FINISH_INT $90 (0x5a)$ $0x00B4$ Data : Configuration Desc. Default = Scanlogic Device Desc $\bullet \bullet$ $91 (0x5b)$ $0x00B6$ Data : String Descriptor. Default = Scanlogic Configuration $\bullet \bullet$ $92 (0x5c)$ $0x00B4$ Data : String Descriptor. Default = Scanlogic String Desc. $\bullet \bullet$ $93 (0x5d)$ $0x00BA$ $USB_PARSE_CONFIG_INT$ $94 (0x5e)$ $0x00BC$ USB_LOADER_INT $95 (0x5f)$ $0x00BE$ $USB_DELTA_CONFIG_INT$ $96 (0x60)$ $0x00C0$ USB_PULLUP_INT $97 - 104$ $0xC2-0xD0$ Reserve for future addition secondary USB Port $105 (0x69)$ $0x00D2$ POWER_DOWN_SUBROUTINE	77 (0x4d)	0x009A	
79 ($0x4f$) $0x009E$ SCAN_DECODE_INT80 ($0x50$) $0x00A0$ USB_SEND_INT * 81 ($0x51$) $0x00A2$ USB_RECEIVE_INT * 82 ($0x52$) $0x00A4$ Reserved83 ($0x53$) $0x00A6$ USB_STANDARD_INT84 ($0x54$) $0x00A8$ Data : Standard loader vector. Defaut=0 ** 85 ($0x55$) $0x00AA$ USB_VENDOR_INT86 ($0x56$) $0x00AC$ Data : USB_Vendor loader. Default = $0xff$ ** 87 ($0x57$) $0x00AE$ USB_CLASS_INT88 ($0x58$) $0x00B0$ Data : USB_Class_Loader. Default = 0 ** 89 ($0x59$) $0x00B2$ USB_FINISH_INT90 ($0x5a$) $0x00B4$ Data : Device Descriptor. Default = Scanlogic Device Desc ** 91 ($0x5b$) $0x00B6$ Data : String Descriptor. Default = Scanlogic Configuration ** 92 ($0x5c$) $0x00BA$ USB_PARSE_CONFIG_INT94 ($0x5e$) $0x00BC$ USB_LOADER_INT95 ($0x5f$) $0x00BE$ USB_DELTA_CONFIG_INT96 ($0x60$) $0x00C0$ USB_PULLUP_INT97 - 104 $0xC2-0xD0$ Reserve for future addition secondary USB Port105 ($0x69$) $0x00D2$ POWER_DOWN_SUBROUTINE	78 (0x4e)	0x009C	
$80 (0x50)$ $0x00A0$ $USB_SEND_INT \bigstar$ $81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \bigstar$ $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ $USB_STANDARD_INT$ $84 (0x54)$ $0x00A8$ Data : Standard loader vector. Defaut=0 ♣ ♠ $85 (0x55)$ $0x00AA$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data : USB_Vendor loader. Default = 0xff ♣ ♠ $87 (0x57)$ $0x00AE$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data : USB_Class_Loader. Default = 0 ♣ ♠ $89 (0x59)$ $0x00B2$ USB_FINISH_INT $90 (0x5a)$ $0x00B4$ Data : Device Descriptor. Default = Scanlogic Device Desc ♣ ♠ $91 (0x5b)$ $0x00B6$ Data : Configuration Desc. Default = Scanlogic Configuration ♣ ♠ $92 (0x5c)$ $0x00B8$ Data : String Descriptor. Default = Scanlogic String Desc. ♣ ♠ $93 (0x5d)$ $0x00BC$ $USB_DAETA_CONFIG_INT$ $94 (0x5e)$ $0x00BE$ $USB_DELTA_CONFIG_INT$ $97 - 104$ $0xC2-0xD0$ Reserve for future addition secondary USB Port $105 (0x69)$ $0x00D2$ POWER_DOWN_SUBROUTINE	79 (0x4f)	0x009E	
$81 (0x51)$ $0x00A2$ $USB_RECEIVE_INT \bigstar$ $82 (0x52)$ $0x00A4$ Reserved $83 (0x53)$ $0x00A6$ $USB_STANDARD_INT$ $84 (0x54)$ $0x00A8$ Data : Standard loader vector. Defaut=0 �* $85 (0x55)$ $0x00AA$ USB_VENDOR_INT $86 (0x56)$ $0x00AC$ Data : USB_Vendor loader. Default = 0xff * \bigstar $87 (0x57)$ $0x00AE$ USB_CLASS_INT $88 (0x58)$ $0x00B0$ Data : USB_Class_Loader. Default = 0 * \bigstar $89 (0x59)$ $0x00B2$ USB_FINISH_INT $90 (0x5a)$ $0x00B4$ Data : Device Descriptor. Default = Scanlogic Device Desc * \bigstar $91 (0x5b)$ $0x00B6$ Data : String Descriptor. Default = Scanlogic Configuration * \bigstar $93 (0x5d)$ $0x00BA$ $USB_PARSE_CONFIG_INT$ $94 (0x5e)$ $0x00BC$ $USB_DELTA_CONFIG_INT$ $96 (0x60)$ $0x00C0$ $USB_DELTA_CONFIG_INT$ $97 - 104$ $0xC2-0xD0$ Reserve for future addition secondary USB Port $105 (0x69)$ $0x00D2$ POWER_DOWN_SUBROUTINE	80 (0x50)	0x00A0	
83 (0x53)0x00A6USB_STANDARD_INT84 (0x54)0x00A8Data: Standard loader vector. Defaut=0 **85 (0x55)0x00AAUSB_VENDOR_INT86 (0x56)0x00ACData: USB_Vendor loader. Default = 0xff **87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_Class_Loader. Default = 0 **89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc **91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BEUSB_DELTA_CONFIG_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	81 (0x51)	0x00A2	
84 (0x54)0x00A8Data: Standard loader vector. Defaut=0 **85 (0x55)0x00AAUSB_VENDOR_INT86 (0x56)0x00ACData: USB_Vendor loader. Default = 0xff **87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_Class_Loader. Default = 0 **89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc **91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BEUSB_DELTA_CONFIG_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	82 (0x52)	0x00A4	Reserved
85 (0x55)0x00AAUSB_VENDOR_INT86 (0x56)0x00ACData: USB_Vendor loader. Default = 0xff **87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_Class_Loader. Default = 0 **89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc **91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	83 (0x53)	0x00A6	USB_STANDARD_INT
86 (0x56)0x00ACData: USB_Vendor loader. Default = 0xff ** 87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_Class_Loader. Default = 0 ** 89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc ** 91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration ** 92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. ** 93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	84 (0x54)	0x00A8	Data : Standard loader vector. Defaut=0 **
87 (0x57)0x00AEUSB_CLASS_INT88 (0x58)0x00B0Data: USB_Class_Loader. Default = 0 **89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc **91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	85 (0x55)	0x00AA	USB_VENDOR_INT
88 (0x58)0x00B0Data: USB_Class_Loader. Default = 0 **89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc **91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	86 (0x56)	0x00AC	Data : USB_Vendor loader. Default = $0xff \clubsuit$
89 (0x59)0x00B2USB_FINISH_INT90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc ** 91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration ** 92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. ** 93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	87 (0x57)	0x00AE	USB_CLASS_INT
90 (0x5a)0x00B4Data: Device Descriptor. Default = Scanlogic Device Desc **91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	88 (0x58)	0x00B0	Data : USB_Class_Loader. Default = 0 ♣ ♣
91 (0x5b)0x00B6Data: Configuration Desc. Default = Scanlogic Configuration **92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	89 (0x59)	0x00B2	USB_FINISH_INT
92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	90 (0x5a)	0x00B4	Data : Device Descriptor. Default = Scanlogic Device Desc * *
92 (0x5c)0x00B8Data: String Descriptor. Default = Scanlogic String Desc. **93 (0x5d)0x00BAUSB_PARSE_CONFIG_INT94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	91 (0x5b)	0x00B6	Data : Configuration Desc. Default = Scanlogic Configuration **
94 (0x5e)0x00BCUSB_LOADER_INT95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	92 (0x5c)	0x00B8	
95 (0x5f)0x00BEUSB_DELTA_CONFIG_INT96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	93 (0x5d)	0x00BA	USB_PARSE_CONFIG_INT
96 (0x60)0x00C0USB_PULLUP_INT97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	94 (0x5e)	0x00BC	USB_LOADER_INT
97 - 1040xC2-0xD0Reserve for future addition secondary USB Port105 (0x69)0x00D2POWER_DOWN_SUBROUTINE	95 (0x5f)	0x00BE	USB_DELTA_CONFIG_INT
105 (0x69) 0x00D2 POWER_DOWN_SUBROUTINE			
	106-109	0xD4-0xDA	Reserve for future secondary USB Port
110-1240xDE-0xF8User's ISR or internal peripheral interrupt			
125-127 0xFA-0xFE Reserve for the Debugger Table 4 Software Interrupt Table	125-127		

 Table 4 Software Interrupt Table

<u>Note</u>: **•** These software vectors are reserved for the internal SL11P2USB-BIOS. User should not overwrite these functions.

****** These vectors are used as the data pointers. User should not execute code (i.e. **JMP**or **INT**) to these vectors.

See [Ref. 1] SL11R_BIOS for more information.


All these vector interrupts are read/write accessible. User can overwrite these default software interrupt vectors by replacing the user's interrupt service subroutine.

^{©1996 - 1999} ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 23

4.7 UART Interface.

The SL11P2USB Controller UART port supports a range of baud rates from 7200 Baud up to 115.2K Baud. Baud Rate selection is made in the UART Control Register. Buffer status can be monitored in the UART Status Register. Transmit and receive data is written or read from the UART data register. The UART timers are independent of the general-purpose timers. The UART will cause "edge trigger" type interrupts on receiver buffer transitioning to FULL or transmit transitioning to buffer EMPTY.

The SL11P2USB BIOS uses the UART port for all software debugging process. It is recommended that user should include this interface into their hardware design. For example user can add UART interface via only 4-pin header, which require off board external RS-232 transceiver (i.e. MAX202 RS-232 transceiver can resided on the external serial cable, which use 5V and Ground via the 4 pin header).

Figure 2 UART Port Connection

The SL11P2USB BIOS uses GPIO28 for data transmit (TX) and GPIO27 for data receive (RX). These two pins can not be used for any other purpose.

Note: The SL11P2USB BIOS will setup the default Baud rate for the UART as 14400 baud.

4.7.1 UART Control Register (0xC0E0: R/W)

The SL11P2USB allocates two General Purpose I/O signals for the UART function, they are GPIO28 (UART_TXD) and GPIO27 (UART_RXD). At the power, the SL11P2USB BIOS will default this register to the value of 0x000b (i.e. UART Enable and Baud = 14.4K Baud).

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	DIV8	B2	B1	B0	E
	D1 D4 D3			Reserv DIV8 B2-0	ved bits	Ā		s a pre	e-scale		et to '1'. ART clo		des th	ne cloc	ck by
							BAU RAT		S	ELEC BIT	CTOR S.			ITH /3 SCAL	
							000		11		Baud			K Ba	
							001		5	7.6K	Baud		7.2	K Bau	ıd
							010)	3	8.4K	Baud		4.8	K Bau	ıd
							011		2	8.8K	Baud		3.6	K Bau	ıd
							100)	1	9.2K	Baud		2.4	K Bau	ıd
							101		1	4.4K	Baud		1.8	K Bau	ıd
							110)	9	9.6K I	Baud		1.2	K Bau	ıd
							111		7	7.2K I	Baud		0.9	K Bau	ıd

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 24

4.7.2 UART Status Register (0xC0E2: Read Only)

This register is used by the SL11P2USB BIOS to detect the UART status function via RXF and TXE flags.

	D15-D7 D6	D5 D4	D3	D2	D1	D0				
	0 0	0 0	0	0	RXF	TXE				
D15-D2	Reserved bit	s Set t	o all z	eros.						
D1	RXF		R	leceiv	e Buffe	er Full I	Flag.			
D0	TXE									
			Transmit Buffer Empty Flag. Sets when data n from buffer to output shift register.							

Note:

No error detection for receiving data is supported.

4.7.3 UART Transmit Data Register (0xC0E4: Write Only)

This register is used by the SL11P2USB BIOS to send data to the host.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
	D7-D0 TR7-0						UART Transmit Data								

4.7.4 UART Receive Data Register (0xC0E4: Read Only)

This register is used by the SL11P2USB BIOS to receive data from the host.

				-	20		Do	D9	D10	DII	D1 2	D13	D14	D15
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 $	0 0 0 0 0 RD7 RD6 RD5 RD4 RD3 RD2	.D4 RD3	RD4	RD5	RD6	RD7	0	0	0	0	0	0	0	0

D7-D0 RD7-0

UART Receive Data.

4.8 Serial flash EEPROM Interface (I2C)

The SL11P2USB provides interface to external serial flash EEPROM. The interface is implemented using General Purpose I/O signals. Variety of serial EEPROM formats can be supported, currently the SL11P2USB BIOS supports two-wire serial flash EEPROM type. Serial EEPROM can be used to store specific Peripheral USB configuration and add on value functions. Also, it can be used for field product upgrades.

The SL11P2USB BIOS uses this interrupt to read and write from/to an external serial flash EEPROM. The recommended serial EEPROM device is a 2-Wire Serial CMOS EEPROM (AT24CXX Device Family). Currently, the SL11P2USB BIOS Revision 1.1 allows reading/writing to/from EEPROM, up to 2K Bytes, which is 16K bits I2C device (i.e. AT24C16).

The user's program and USB vendor/device configuration can be programmed and stored into the external EEPROM device. On power up the content of the EEPROM will be downloaded into RAM for either to execute this code or use it as external look up table data source. The advantage of the I2C/EEPROM interface is saving space and cost to compare it with using an external 8-bit PROM/EPROM.

The SL11P2USB BIOS uses two GPIO pins, GPIO31 and GPIO30 to interface to external serial EEPROM (see below figure):

- GPIO31 is connected to the Serial Clock Input (SCL).
- GPIO30 is connected to the Serial Data (SDA).
- It is recommended to add 5K to 15K pull-up resistors on the Data line (i.e. GPIO30).
- Pin 1 (A0), Pin 2 (A1), Pin 3 (A2), Pin 4 (GND) and Pin 7 Write Protect) are connected to Ground.

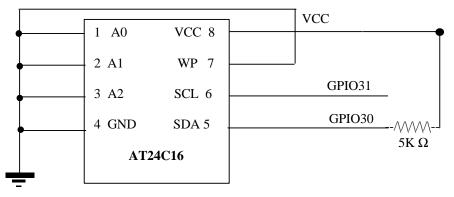


Figure 3 I2C 2K-byte connection

4.8.1 Memory Map

The total memory space allocated by the SL11P2USB is 64K-byte. Program, data, and I/O space are contained within 64K-byte address space. The program code or data can be stored in either internal ROM or internal RAM.

The SL11P2USB Controller memory space is byte addressable and is divided as follows:

FUNCTION	ADDRESS
Internal RAM	0x0000 - 0x0BFF
Reserved Memory Space	0x0C00 – 0xC0FF *
Memory Mapped Registers	0xC000 - 0xC0FF
Internal ROM	0xE800 - 0xFFFF

Table 5 Memory Map

4.9 General Timers and Watch Dog Timer

The SL11P2USB Controller has two built in programmable timers that can provide an interrupt to the SL11P2USB Engine. The timers decrement on every microsecond clock tick. Interrupt occurs on timer reaching zero.

4.9.1 Timer 0 Count Register (0xC010: R/W)

The SL11P2USB BIOS uses the timer 0 for time-outs function and the power down mode. At the end of the power up, the SL11P2USB BIOS disable the timer 0 interrupt. If the user wishes to use the timer 0 for power down function, see the [Ref. 1] **SL11R_BIOS** for more information.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
T15	T14	T13	T12	T11	T10	T9	T8	T7	T6	T5	T4	T3	T2	T1	T0

D15-0 T15-0 Timer Count value.

4.9.2 Timer 1 Count Register (0xC012: R/W)

The SL11P2USB provides timer 1 for user application. The SL11P2USB BIOS does not use this timer.

				D10										
T15 T14	T13	T12	T11	T10	T9	T8	T7	T6	T5	T4	T3	T2	T1	T0

4.9.3 Watchdog Timer Count & Control Register (0xC00C: R/W)

The SL11P2USB provides Watchdog timer to monitor certain activities. The Watchdog timer can also interrupt the SL11P2USB processor. The default value of this register is set to all zero.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	WT	TO1	TO0	ENB	EP	RC
	D	05		WT			Wate	chdog	Time	-out o	ccurred				
	D	04-3		TO1	-0		Time	e-out (Count	: 00		0	1 millis	secon	ds
										01		0	4 millis	secon	ds
										10		1	6 millis	secon	ds
										11		6	4 millis	secon	ds
	D2 EP							Enable Permanent WD timer. If set ='1' WD timer is always enabled. Cleared only on Reset.							
	D1 ENB							Enable WD Timer operation when ='1'.							
	D0 RC							Reset Count. When set = '1'.							

Notes:

- Must send a Reset Count (RC), before time-out occurs to avoid Watchdog going off.
- The Watchdog Timer overflow causes an internal processor reset. The Processor can read the WT bit after exiting reset to determine if the WT bit is set. If it is set, a watch dog timeout occurred.
- The WT value will be cleared on the next external reset.

^{©1996 - 1999} ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 28

4.10 Special GPIO function for Suspend, Resume and Low Power modes

The SL11P2USB CPU supports suspend, resume and set the CPU running at low power mode. The SL11P2USB BIOS assigns GPIO18 for the USB DATA+ line pull-up (This pin can simulate the USB cable remove or insert while the USB power is still applied to the board) and the GPIO20 for controlling power off function. The GPIO20 can be used for device low power mode, it will turn of or disable external powers to the peripheral in suspend mode. Once USB power is resumed, the external power can be enabled again to the peripheral. The SL11P2USB BIOS will execute the pull up interrupt upon the power-up. To use this feature, the GPIO18 pin must be connected to the DATA+ line of the USB connector (see Figure below). For more information about these function, see the [Ref. 1] SL11R_BIOS.

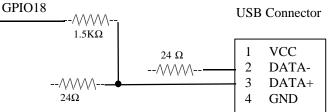


Figure 4 Special GPIO pull up connection example

4.11 General Purpose IO mode (GPIO)

On the SL11P2USB mode, the SL11P2USB has up to 32 general purpose IO signals are available. However there are 4 pins, which are used by the UART and the I2C that can not be used as the GPIO pins. A typical application for this GPIO is the SL11P2USB (i.e. Parallel Port to USB). The SL11P2USB executes at 48MHz, which is fast enough to generate any Parallel Port timing. The SL11P2USB also include a special mode for the EPP timing designed for special device that has no delay on the EPP mode. On any other available General purpose programmable I/O pins can be programmed for peripheral control and or status etc.

When the SL11P2USB interface is in the SL11P2USB mode, A number of General Purpose Digital I/O (GPIO) pins are supported by the SL11P2USB Controller. Some of these pins can be assigned to special functions. However, when not configured as special functions, the pins can be used as GPIO. The special functions for example PWM Output will override the GPIO function.

The following registers are used for all pins configured as GPIO. The outputs are enabled in the I/0 Control registers. Note that the output Data can be read back in the Output Data Register even though the outputs are not enabled.

Note: *The Fast DMA and PWM Interface will not be supported in this mode.*

4.11.1 I/O Control Register 0 (0xC022: R/W)

This register controls the input/output direction of the GPIO data pins from GPIO15 to GPIO0. When any bit of this register set to one, that corresponding GPIO data pin becomes an output pin. When any bit of this register set to zero, that corresponding GPIO data pin becomes an input pin.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
E15	E14	E13	E12	E11	E10	E9	E8	E7	E6	E5	E4	E3	E2	E1	E0

D15-0 E15-0 Enable individual outputs, GPIO 15-0. Logic '1' enables.

4.11.2 I/O Control Register 1 (0xC028: R/W)

This register controls the input/output direction of the GPIO data pins from GPIO31 to GPIO16. When any bit of this register set to one, that corresponding GPIO data pin becomes an output pin. When any bit of this register set to zero, that corresponding GPIO data pin becomes an input pin.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
E31	E30	E29	E28	E27	E26	E25	E24	E23	E22	E21	E20	E19	E18	E17	E16
D15-0		E3	1-16		Enabl	e indi	vidua	l outp	uts, G	PIO 3	31-16.	Logi	c '1' e	nables	3.

4.11.3 Output Data Register 0 (0xC01E: R/W)

This register controls the output data of the GPIO data pins from GPIO15 to GPIO0.

_	D14	-			-	-	-		-	-		-			-
O15	014	O13	012	011	010	09	08	07	06	05	04	03	02	01	00

D15-0 O15-0 Output Pin Data

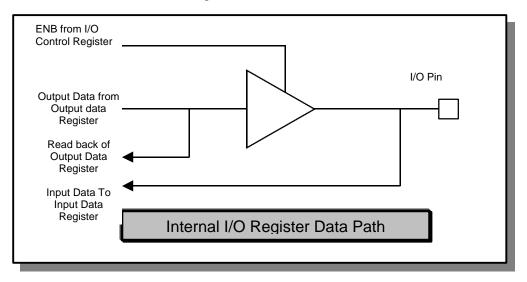
4.11.4 Output Data Register 1 (0xC024: R/W)

This register controls the output data of the GPIO data pins from GPIO31 to GPIO16.

D15		-			-	-	-		-	-		-			-
015	014	013	012	011	010	09	08	07	06	05	04	03	02	01	00

D15-0 O31-16 Output Pin Data

4.11.5 Input Data Register 0 (0xC020: R/W)


This register controls the input data of the GPIO data pins from GPIO15 to GPIO0.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I15	I14	I13	I12	I11	I10	I9	I8	I7	I6	I5	I4	I3	I2	I1	IO
D15-0	D15-0 I15-0					Pin d	ata								

4.11.6 Input Data Register 1 (0xC026: R/W)

This register controls the input data of the GPIO data pins from GPIO31 to GPIO16.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I31	I30	I29	I28	I27	I26	I25	I24	I23	I22	I21	I20	I19	I18	I17	I16
D15-0 I31-16			Inpu	t Pin (data										

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Corporation are subjected by the second second

5. PHYSICAL CONNECTION

5.1 SL11P2USB Package Type

The SL11P2USB is 100 PQFP.

5.2 SL11P2USB Pin Assignment and Description

Pin Name	Pin	SL11P2USB	Pin	SL11P2USB Pin Chip Revision 1.1
	No	GPIO pins	Туре	
VDD	1		Power	+3.3 VDC Supply
NC	2		NC	No Connect pin
NC	3		NC	No Connect pin
NC	4		NC	No Connect pin
NC	5		NC	No Connect pin
NC	6		NC	No Connect pin
NC	7		NC	No Connect pin
NC	8		NC	No Connect pin
NC	9		NC	No Connect pin
NC	10		NC	No Connect pin
NC	11		NC	No Connect pin
NC	12		NC	No Connect pin
NC	13		NC	No Connect pin
GND	14		GND	Digital ground.
X1	15		Input	External 48 MHz Crystal or Clock Input.
X2	16		Output	External crystal output. No connection when X1 is used for clock input
VDD	17		Power	+3.3 VDC Supply
NC	18		NC	No Connect pin
NC	19		NC	No Connect pin
NC	20		NC	No Connect pin
NC	19 20 2 21		NC	No Connect pin
NC	22		NC	No Connect pin
NC	23		NC	No Connect pin
NC	24		NC	No Connect pin
NC	25		NC	No Connect pin
NC	26		NC	No Connect pin
NC	27		NC	No Connect pin
NC	28		NC	No Connect pin
NC	29		NC	No Connect pin
NC	30		NC	No Connect pin
NC	31		NC	No Connect pin
NC	32		NC	No Connect pin
NC	33		NC	No Connect pin
NC	34		NC	No Connect pin
NC	35		NC	No Connect pin
NC	36		NC	No Connect pin
NC	37		NC	No Connect pin
NC	38		NC	No Connect pin
NC	39		NC	No Connect pin
GND	40		GND	Digital ground.
NC	41		NC	No Connect pin
NC	42		NC	No Connect pin

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice.

NC	43		NC	No Connect pin
TEST	44		Input	No Connection, MFG test only
NC	45		NC	No Connect pin
NC	46		NC	No Connect pin
NC	47		NC	No Connect pin
nRESET	48		Input	Master Reset. SL11P2USB Device active low reset input.
NC	49		NC	No Connect pin
VDD	50		Power	+3.3 VDC Supply
VDD	51		Power	+3.3 VDC Supply
NC	52		NC	No Connect pin
NC	53		NC	No Connect pin
NC	54		NC	No Connect pin
NC	55		NC	No Connect pin
NC	56		NC	No Connect pin
NC	57		NC	No Connect pin
NC	58		NC	No Connect pin
X_PCLK	59		Bidir	See register 0xC006 for more information
SECLK	60	GPIO31	Bidir	SECLK, Serial Flash EEPROM clock, or GPIO31
SECLK	61	GPIO31 GPIO30	Bidir	SEDO, Serial flash EPROM Data, or GPIO30
SEDU	01	0F1050	Diuli	This pin requires a 5K Ohm pull-up.
USB_PU	62	GPIO29	Bidir	Turn on/off D+ Pull Up Resistor, or GPIO29
	62			UART Transmit Data (out), or GPIO28
UART_TXD	63	GPIO28	Output	
GND	64		GND	Digital ground.
GND	65	CDIOAE	GND	Digital ground.
UART_RXD	66	GPIO27	Input	UART Receive Data (in), or GPIO27
PWR_OFF	67	GPIO26	Bidir	This signal can be used for device low power mode, it will turn off or
				disable external powers to the peripheral in suspend mode. Once USB
				power is resumed, external power can be enabled again
IRQ1 (in)	68	GPIO25	Bidir	GPIO25, or IRQ1 (in) interrupts the SL11P2USB processor
IRQ0 (in)	69	GPIO24	Bidir	GPIO24, or IRQ1 (in) interrupts the SL11P2USB processor
GPIO23	70	GPIO23	Bidir	GPIO23
GPIO23	71	GPIO22	Bidir	GPIO22
GPIO23	72	GPIO21	Bidir	GPIO21
GPIO20	73	GPIO20	Bidir	GPIO20
GPIO19	74	GPIO19	Bidir	GPIO19
VDD	75		Power	+3.3 VDC Supply
GPIO18	76	GPIO18	Bidir	GPIO18
GPIO17	77	GPIO17	Bidir	GPIO17
GPIO16	78	GPIO16	Bidir	GPIO16
GND	79		GND	Digital ground.
GPIO15	80	GPIO15	Bidir	GPI015
GPIO14				
	81	GPIO14	Bidir	GPIO14
UPIUI3				
GPIO13 GPIO12	82	GPIO13	Bidir	GPIO13
GPIO12	82 83	GPIO13 GPIO12	Bidir Bidir	GPIO13 GPIO12
GPIO12 GPIO11	82 83 84	GPIO13 GPIO12 GPIO11	Bidir Bidir Bidir	GPIO13 GPIO12 GPIO11
GPIO12 GPIO11 GPIO10	82 83 84 85	GPIO13 GPIO12 GPIO11 GPIO10	Bidir Bidir Bidir Bidir	GPIO13 GPIO12 GPIO11 GPIO10
GPIO12 GPIO11 GPIO10 GPIO9	82 83 84 85 86	GPIO13 GPIO12 GPIO11	Bidir Bidir Bidir Bidir Bidir	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9
GPIO12 GPIO11 GPIO10 GPIO9 VDD1	82 83 84 85 86 87	GPIO13 GPIO12 GPIO11 GPIO10	Bidir Bidir Bidir Bidir Bidir Power	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9 USB +3.3 VDC Supply.
GPIO12 GPIO11 GPIO10 GPIO9 VDD1 DATA+	82 83 84 85 86 87 88	GPIO13 GPIO12 GPIO11 GPIO10	Bidir Bidir Bidir Bidir Bidir Power Bidir	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9 USB +3.3 VDC Supply. USB Differential DATA Signal High Side.
GPI012 GPI011 GPI010 GPI09 VDD1 DATA+ DATA-	82 83 84 85 86 87 88 88 89	GPIO13 GPIO12 GPIO11 GPIO10	Bidir Bidir Bidir Bidir Bidir Power Bidir Bidir	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9 USB +3.3 VDC Supply. USB Differential DATA Signal High Side. USB Differential DATA Signal Low Side.
GPI012 GPI011 GPI010 GPI09 VDD1 DATA+ DATA- GND1	82 83 84 85 86 87 88 88 89 90	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9	Bidir Bidir Bidir Bidir Bidir Bidir Bidir GND	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9 USB +3.3 VDC Supply. USB Differential DATA Signal High Side. USB Differential DATA Signal Low Side. USB Digital Ground.
GPI012 GPI011 GPI010 GPI09 VDD1 DATA+ DATA-	82 83 84 85 86 87 88 88 89	GPIO13 GPIO12 GPIO11 GPIO10	Bidir Bidir Bidir Bidir Bidir Power Bidir Bidir	GPIO13 GPIO12 GPIO11 GPIO10 GPIO9 USB +3.3 VDC Supply. USB Differential DATA Signal High Side. USB Differential DATA Signal Low Side.

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 33

GPIO6	93	GPIO6	Bidir	GPIO6
GPIO5	94	GPIO5	Bidir	GPIO5
GPIO4	95	GPIO4	Bidir	GPIO4
GPIO3	96	GPIO3	Bidir	GPIO3
GPIO2	97	GPIO2	Bidir	GPIO2
GPIO1	98	GPIO1	Bidir	GPIO1
GPIO0	99	GPIO0	Bidir	GPIO0
VDD	100		Power	+3.3 VDC Supply

6. SL11P2USB CPU PROGRAMMING GUIDE

This is the preliminary specification for the SL11P2USB Processor Instruction set.

6.1 Instruction Set Overview

This document describes the SL11P2USB CPU Instruction Set, Registers and Addressing modes Instruction format etc. The SL11P2USB PROCESSOR uses a unified program and data memory space; although this RAM is also integrated into the SL11P2USB core, provision has been made for external memory as well.

The SL11P2USB PROCESSOR engine incorporates 38 registers; fifteen general-purpose registers, a stack pointer, sixteen registers mapped into RAM, a program counter, and a REGBANK register whose function will be described in a subsequent section.

The SL11P2USB PROCESSOR engine supports byte and word addressing. Subsequent sections of this document will describe:

- The SL11P2USB PROCESSOR Engine (QT Engine) Register Set
- SL11P2USB PROCESSOR Engine Instruction Format
- SL11P2USB PROCESSOR Engine Addressing Modes
- SL11P2USB PROCESSOR Engine Instruction Set

6.2 Reset Vector

On receiving hardware reset, the SL11P2USB Processor jumps to address 0xFFF0, which is an internal ROM address.

6.3 Register Set

The SL11P2USB Processor incorporates 16-bit general-purpose registers called R0..R15, a REGBANK register, and a program counter, along with various other registers. The function of each register is defined as follows:

Name	Function
R0-R14	General Purpose Registers
R15	Stack Pointer
PC	Program Counter
REGBANK	Forms base address for registers
FLAGS	Contains flags: defined below
INTERRUPT ENABLE	Bit masks to enable/disable various interrupts

6.4 General Purpose Registers

The general-purpose registers are exactly what their name implies. They can be used to store intermediate results, and to pass parameters to and return them from subroutine calls.

6.5 General Purpose/Address Registers

In addition to acting as general-purpose registers, registers R8-R14 can also serve as pointer registers. Instructions can access RAM locations by referring to any of these registers. In normal operation, register R15 is set aside to be used as a stack pointer.

6.6 REGBANK Register (0xC002: R/W)

Registers R0..R15 are mapped into RAM via the REGBANK register. The REGBANK register is loaded with a base address, of which the 11 most significant bits are used. A read from or write to one of the registers will generate a RAM address by:

- Shifting the 4 least significant bits of the register number left by 1.
- OR-ing the shifted bits of the register number with the upper 11 bits of the REGBANK register.
- Forcing the Least Significant Bit to 0.

For example, if the REGBANK register is left at its default value of 100 hex, a read of register R14 would read address 11C hex.

Register	Hex Value	Bir	nary	Valı	ıe												
REGBANK	0100	0	0	0	0	0	0	0	1	0	0	0	Х	Х	Х	Х	Х
R14	000E << 1 = 001C	X	X	х	X	X	X	X	X	х	х	0	1	1	1	0	0
RAM Location	011C	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0

Note:

Regardless of the value loaded into the REGBANK register, bits 0..4 will be ignored.

6.7 Flags Register (0xC000: Read Only)

The SL11P2USB Processor uses these flags:

FLAG																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	Ι	S	0	С	Ζ

- **Z** Zero: instruction execution resulted in a result of 0
- C Carry/Borrow: Arithmetic instruction resulted in a carry (for addition) or a borrow (for subtraction)
- **O Overflow**: Arithmetic result was either larger than the destination operand size (for addition) or smaller than the destination operand should allow for subtraction
- **S Sign**: Set if MS result bit is "1".
- I Global Interrupts Enabled if "1".

Note:

Flag behavior for each instruction will be described in the following section

6.8 Instruction Format

Before discussing addressing modes supported by the SL11P2USB Processor, it is necessary to define the instruction format. In general, the instructions include four bits for the instruction *opcode*, six bits for the source operand, and six bits for the destination operand.

ADD																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		opcode					sou	rce					destin	nation	l	

Some instructions, especially single operand-operator and program control instructions, will not adhere strictly to this format. They will be discussed in detail in turn.

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 36

6.9 Addressing Modes

This section describes in detail the six-operand field bits referred to in the previous section as *source* and *destination*. Bear in mind that although the discussion refers to bits 0 through 5, the same bit definitions apply to the "source" operand field, bits 6 through 11. These are the basic addressing modes in the SL11P2USB Processor.

Mode	5	4	3	2	1	0
Register	0	0	r	r	r	r
Immediate	0	1	1	1	1	1
Direct	1	0	b/w	1	1	1
Indirect	0	1	b/w	r	r	r
Indirect with Auto Increment	1	0	b/w	r	r	r
Indirect with Index	1	1	b/w	r	r	r

Notes:

- The "b/w" bit defined for some addressing modes is set to 1 for byte-wide access, and 0 for word access.
- The definitions for bits 5 and 4 for immediate and direct addressing appear to conflict with the bits defined for Indirect and Indirect with Auto Increment. This conflict is eliminated by disallowing indirect with auto increment and byte-wide Indirect addressing with the stack pointer (R15).

6.10 Register Addressing

In register addressing, any one of registers R0-R15 can be selected using bits 0-3. If register addressing is used, operands are always 16-bit operands, since all registers are 16-bit registers. For example, an instruction using register R7 as an operand would fill the operand field like this:

Bits	5	4	3	2	1	0
Register Operand	0	0	0	1	1	1

6.11 Immediate Addressing

In Immediate Addressing, the instruction word is immediately followed by the source operand. For example, The operand field would be filled with:

Bits	5	4	3	2	1	0
Operand field	0	1	1	1	1	1

Note:

In the immediate addressing, the source operand *must* be 16 bits wide, eliminating the need for a b/w bit.

6.12 Direct Addressing

In Direct Addressing, the word following the instruction word is used as an address into RAM. Again, the operand can be either byte or word sized, depending on the state of bit 3 of the operand field. For example, to do a word-wide read from a direct address, the *source* operand field would be formed like this:

Bits	5	4	3	2	1	0
I/O operand	1	0	0	1	1	1

Note:

For a memory-to-memory move, the instruction word would be followed by two words, the first being the *source* address and the second being the *destination*.

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Date: 07/14/98 Revision: 1.20 Page: 37

6.13 Indirect Addressing

Indirect addressing is accomplished using address registers R8-15. In Indirect addressing, the operand is found at the memory address pointed to by the register. Since only eight address registers exist, only three bits are required to select an address register. For example, register R10 (binary 1010) can be selected by ignoring bit 3, leaving the bits 010. Bit 3 of the operand field is then used as the byte/word bit, set to "0" to select word or "1" to select byte addressing. In this example, a byte-wide operand is selected at the memory location pointed to by register R10:

Bits	5	4	3	2	1	0
Memory operand	0	1	1	0	1	0

Note:

For register R15, byte-wide operands are prohibited. If bit 3 is set high, the instruction is decoded differently, as explained at the top of this section.

6.14 Indirect Addressing with Auto Increment

Indirect Addressing with Auto Increment works identically with Indirect Addressing, except that at the end of the read or write cycle, the register is incremented by 1 or 2 (depending whether it is a byte-wide or word-wide access.) This mode is prohibited for register R15. If bits 0..2 are all high, the instruction is decoded differently, as explained at the top of this section.

6.15 Indirect Addressing with Offset

In Indirect Addressing with Offset, the instruction word is followed by a 16-bit word that is added to the contents of the address register to form the address for the operand. The offset is an unsigned 16-bit word, and will "wrap" to low memory addresses if the register and offset add up to a value greater than the size of the processor's address space.

6.16 Stack Pointer (R15) Special Handling

Register R15 is designated as the Stack Pointer, and has these special behaviors:

- If addressed in indirect mode, the register pre-decrements on a write instruction, and post-increments on a read instruction, emulating Push and Pop instructions.
- Byte-wide reads or writes are prohibited in indirect mode.
- If R15 is addressed in Indirect with Index mode, it does not auto-increment or auto-decrement.
- SL11P2USB CPU Instruction Set

The instruction set can be roughly divided into three classes of instructions:

- **Dual Operand Instructions** (Instructions with two operands, a source and a destination)
- Program Control Instructions (Jump, Call and Return)
- Single Operand Instructions (Instructions with only one operand, a destination)

6.17 Dual Operand Instructions

Instructions with source and destination, for ALL dual operand instructions, byte values are zero extended by default.

MOV																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		00	00		source								destir	nation		

destination := source Flags Affected: none

ADD																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		00	01		source								destir	nation		

destination := destination + source

Flags Affected: Z, C, O, S

ADDC																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		00	10				sou	irce					destir	nation		

destination := destination + source + carry bit Flags Affected: Z, C, O, S

SUB																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		00	11		source								destir	nation		

destination := destination - source

Flags Affected: Z, C, O, S

SUBB																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		01	00				sou	rce					destir	nation		

destination := destination - source - carry bit Flags Affected: Z, C, O, S

CMP																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		01	01		source								destir	nation		

[not saved] = destination - source Flags Affected: Z, C, O, S

AND																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		01	10				sou	rce					destir	nation		

destination := destination & source Flags Affected: Z, S

TEST																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		01	11				sou	rce					destir	nation		

[not saved] := destination & source Flags Affected: Z, S

OR																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		10	00				sou	rce					destir	nation		

destination := destination | source

Flags Affected: Z, S

XOR																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		10	01				sou	irce					destir	nation		

destination := destination ^ source

Flags Affected: Z, S

6.18 **Program Control Instructions**

Jcc JU	JMP I	RELA	TIV	Е <i>сссо</i>	ç											
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		11	.00			сс	сс		0				offset			

PC := PC + (offset*2) (offset is a 7-bit *signed* number from -64..+63)

JccL J	UMP	ABS	OLU	TE ca	ccc											
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		11	00			сс	сс		1	0			destir	nation		

PC := [destination] (destination is computed in the normal fashion for operand fields)

R cc	RET a	ccc														
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		11	00			сс	сс		1	0			010	111		
	* 1															-

PC := [R15] R15++

Ccc CAI	LL cc	cc														
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		10	10			сс	сс		1	0			destir	nation		

R15--

[R15] := PC

PC = [destination]

INT																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			10			00	00		0			in	t vect	or		

[R15] := PC

R15--

PC = [int vector * 2]

This instruction allows the programmer to implement softare interrupts. *Int vector* is multiplied by two, and zero extended to 16 bits.

Note:

Interrupt vectors 0 through 31 may be reserved for hardware interrupts, depending on the application.

Condition	cccc	Description	JUMP	CALL	RET
	Bits		mnemonic	mnemonic	mnemonic
Ζ	0000	Z=1	JZ	CZ	RZ
NZ	0001	Z=0	JNZ	CNZ	RNZ
C / B	0010	C=1	JC	CC	RC
NC / AE	0011	C=0	JNC	RNC	RNC
S	0100	S=1	JS	CS	RS
NS	0101	S=0	JNS	CNS	RNS
0	0110	O=1	JO	CO	RO
NO	0111	O=0	JNO	CNO	RNO
A / NBE	1000	(Z=0 AND C=0)	JA	CA	RA
BE / NA	1001	(Z=1 OR C=1)	JBE	CBE	RBE
G / NLE	1010	(O= S AND Z=0)	JG	CG	RG
GE / NL	1011	(O=S)	JGE	CGE	RGE
L / NGE	1100	(O≠S)	JL	CL	RL
LE / NG	1101	(O≠S OR Z=1)	JLE	CLE	RLE
(not used)	1110				
Unconditional	1111	Unconditional	JMP	CALL	RET

The condition (cccc) bits for all of the above instructions are defined as:

Note: 1) For the JUMP mnemonics, adding an "L" to the end indicates an long or absolute jump. Adding an "S" to the end indicates a short or relative jump. If nothing is added, the assembler will choose "S" or "L".

6.19 Single Operand Operation Instructions

Since Single operand instructions do not require a source field, the format of the Single operand Operation instructions is slightly different.

Instruction																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	101*	**			[param	1]			destir	nation	ı	

Notice that the *opcode* field is expanded to seven bits wide. The four most significant bits for all instructions of this class are "1101."

Also, there is space for an optional three bit immediate value, which is used in a manner appropriate to the instruction. The destination field functions exactly as it does in the dual operand operation instructions. Note:

- For the SHR, SHL, ROR, ROL, ADDI and SUBI instructions, the three-bit *count* or *n* operand is incremented by 1 before it is used. This is possible because an instruction such as SHR [destination],0 is semantically meaningless.
- The SL11P2USB QT assembler takes this into account: .

SHR																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10100)0			0	count-	1			destii	nation	l	

destination := destination >> count

Flags Affected: Z, C, S

Note:

- The SHR instruction shifts in sign bits. •
- The C flag is set with last bit shifted out of LSB.

SHL																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10100)1			С	ount-	1			destir	nation		

destination := destination << count

Flags Affected: Z, C, S

Note: The C flag is set with last bit shifted out of MSB.

ROR																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10101	10			С	ount-	1			destir	nation		

Works identically to the SHR instruction, except that the LSB of *destination* is rotated into the MSB, as opposed to SHR, which discards that bit

Flags Affected: Z, C, S

]	ROL																
1	bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1	10101	1			С	ount-	1			destir	nation		

Works identically to the SHL instruction, except that the MSB of *destination* is rotated into the LSB, as opposed to SHL, which discards that bit

Flags Affected: Z, C, S

ADDI																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1011	00				n-1				destii	nation		

destination := destination + n

Flags Affected: Z, S

SUBI																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10110)1				n-1				desti	nation		

destination := destination - n

Flags Affected: Z, S

NOT																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10111	1				000				desti	nation		

destination := ~destination (bitwise 1's complement negation) Flags Affected: Z, S

NEG																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10111	1				001				desti	nation		

destination := -destination (2's complement negation) Flags Affected: Z, O, C, S

CBW																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10111	1				010				destir	nation		

Sign-extends a byte in the lower eight bits of [destination] to a 16-bit signed word (integer). Flags Affected: Z, S

©1996 - 1999 ScanLogic Corporation. All rights reserved. SL11P2USB is a trademark of ScanLogic Corporation. The information and specifications contained in this document are subject to change without notice. Pa

6.20 Miscellaneous Instructions

STI																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10111	1				111				000	000		

Sets interrupt enable flag

Flags Affected: I

Note: The STI instruction takes effect 1 cycle after it is executed.

CLI																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10111	1				111				000	001		

Clears interrupt enable flag

Flags Affected: I

STC																
bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	10111	1				111				000	010		

Set Carry bit.

Flags Affected: C

CLC																
hit.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			11	10111	1				111				000	011		

Clear Carry bit. Flags Affected: C

6.21 Built-in Macros

For the programmer's convenience, the SL11P2USB QT assembler implements several built-in macros. The table below shows the macros, and the memonics for the code that the assembler will generate for these macros.

Macro	Assembler will Generate
INC X	ADDI X, 1
DEC X	SUBI X, 1
PUSH X	MOV [R15], X
POP X	MOV X, [R15]

7. SL11P2USB - ELECTRICAL SPECIFICATION

7.1 Absolute Maximum Ratings

This section lists the absolute maximum ratings of the SL11P2USB. Stresses above those listed can cause permanent damage to the device. Exposure to maximum rated conditions for extended periods can affect device operation and reliability.

Storage Temperature	-40°C to 125°C
Voltage on any pin with respect to ground	-0.3v to 7.3V
Power Supply Voltage (VDD)	3.3V±10%
Power Supply Voltage (VDD1)	3.3V±10%
Lead Temperature (10 seconds)	180°C

7.2 Recommended Operating Conditions

Parameter	Min.	Typical	Max
Power Supply Voltage, VDD	3.0 V	3.3v	3.6 V
Power Supply Voltage, VDD1	3.0 V		3.6 V
Operating Temperature	0°C		65°C

7.3 Crystal Requirements (XTAL1, XTAL2)

Crystal Requirements, (XTAL1, XTAL2)	Min.	Typical	Мах
Operating Temperature Range	0°C		65°C
Parallel Resonant Frequency		48MHz	
Frequency Drift over Temperature			+/- 20 ppm
Accuracy of Adjustment			+/- 30 ppm
Series Resistance			50 ohms
Shunt Capacitance	3 pf		6 pf

7.4 External Clock Input Characteristics (XTAL1)

Parameter	Min.	Typical	Max
Clock Input Voltage @ XTAL1 (XTAL2 Open)	1.5 V		
Clock Frequency		48MHz	

Symbol	Parameter	Min.	Typical	Max
IL	Input Voltage LOW	-0.5 V		0.8 V
VIH	Input Voltage HIGH	2.0V		VDD+ 0.3V
V _{OL}	Output Voltage LOW(IoL=4ma)			0.4 V
V _{OH}	Output Voltage HIGH(IoH=-4ma)	2.4 V		
ЮН	Output Current HIGH	4 ma		
I _{OL}	Output Current LOW	4 ma		
C _{IN}	Input Capacitance			20 pf
ICC	Supply Current (VDD)			< 100mA
IUSB	Supply Current (VDD1)			< 50mA

7.5 SL11P2USB DC Characteristics

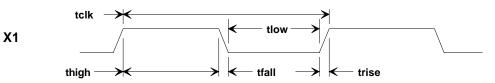
7.6 SL11P2USB USB Transceiver Characteristics

Symbol	Parameter	Min.	Typical	Max
VIHYS	Hysteresis On Input (Data+, Data-)	0.1 V		200 mV
VUSBIH	USB Input Voltage HIGH		1.5 V	2.0 V
VUSBIL	USB Input Voltage LOW	0.8 V	1.3 V	
VUSBOH	USB Output Voltage HIGH	2.2 V		
VUSBOL	USB Output Voltage LOW			0.7 V
ZUSBH	Output Impedance HIGH STATE	28 Ohms		43 Ohms
Z _{USBL}	Output Impedance LOW STATE	28 Ohms		43 Ohms
IUSB	Transceiver Supply p-p Current (3.3V)			< 150mA

Notes:

- All typical values are VDD2 = 3.3 V and $TAMB = 25^{\circ}C$.
- Z_{USBX} Impedance Values includes an external resistor of 24 Ohms $\pm 1\%$

7.7 SL11P2USB RESET TIMING

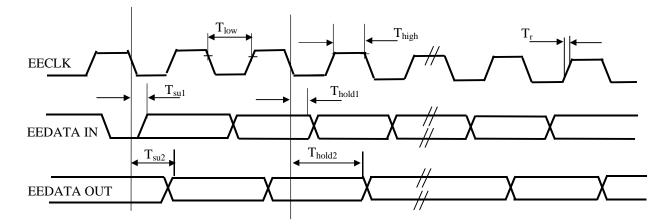


SL11R RESET TIMING

Symbol	Parameter	Min.	Typical	Max
treset	nRESET Pulse width	16 clocks		
tioact	nRESET high to nRD or nWRx active	16 clocks		

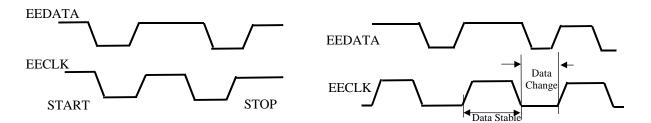
Note: Clock is 48 MHz nominal.

7.8 SL11P2USB Clock Timing Specifications



SL11R CLOCK TIMING

Symbol	Parameter	Min.	Typical	Max
tclk	Clock period (48MHz)	20.0 nsec	20.8 nsec	
thigh	Clock high time	9 nsec		11 nsec
tlow	Clock low time	9 nsec		11 nsec
trise	Clock rise time			5.0 nsec
tfall	Clock fall time			5.0 nsec
	Duty Cycle	-5%		+5%


7.9 I2C Serial flash EEPROM timing

1-EEPROM Bus Timing- Serial I/O

2-Start and Stop Definition

3- Data Validity

Note: Timing will conform to standard as illustrated in ATMEL AT24COX data sheet

Parameter	Min/Max Timing	Notes
T _{low}	4.7 μs min	See ATMEL Data Sheet for
T _{high}	4.0 μs min	Complete Timing Detail
Tr	1.0 μs max	
T _{su1}	200ns max	
T _{hold1}	Ons	
T _{su2}	4.5 μs min	
T _{hold2}	100ns max	