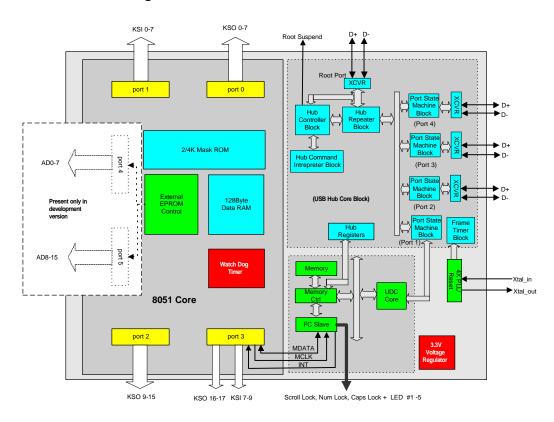
USB Keyboard Controller with 3-Port Hub

MSE9751

Introduction

The MSE9751 is a single chip keyboard controller with integrated 3-port Universal Serial Bus (USB) Hub. The MSE9751 USB Keyboard controller with Hub is highly integrated device requiring a minimum of external parts. The MSE9751 contains built-in transceivers, a 4X PLL clock generator with 12Mhz oscillator (requires external 12Mhz crystal), power-on reset, per-port over current detection, per-port power switching an on-board 3.3v regulator and internal key scan pullup resistors.

The USB portion of MSE9751 is implemented all in hardware and is fully compliant with *The Device Class Definition for Human Device Interface Device, Version 1.0.* Because the USB logic in the chip is implemented in hardware, the firmware programmer needs to write a very little code for USB functionality in the firmware.


The 8051 core in the chip shares the same instruction set as the standard 8051 microcontroller and provides the same internal registers and I/O interface, 4K mask ROM, multiple timers, 128 byte RAM and an additional watch dog timer. The four internal I/O ports are mapped to pre-assigned 18 scan-out pins and 10 scan-in pins. MSE9751 is the only USB keyboard controller in the industry that supports 18x10 scan matrix. MSE9751 provides five extra LED pins in addition to the standard three LED pins - Num Lock, Caps Lock and Scroll Lock. MSE9751 is again the only low-cost USB keyboard controller with integrated Hub that provides up to eight LED pins in total.

One major advantage of the MSE9751 is the fact that the USB descriptors which includes the standard descriptors and class-specific descriptors are not hard-coded in the chip. All descriptors are stored in the 8051 side and the 8051 gives descriptor contents to the USB logic when requested. This feature enables the firmware programmer to have a complete control over the makeup of the contents of all descriptors while developing a firmware. This flexibility is specially useful during the development of a report descriptor since finalizing a report descriptor usually requires an iterative process.

MSE9751 Features

- Compliant with USB Protocol Revision 1.0
- Firmware required only for keyboard control
- 8051 Core with 4K Mask ROM and 128 byte RAM
- Three downstream ports
- Supports 18 scan-out lines, 10 scan-in lines
- Up to 8 Direct Drive LED's
- No external resistors required for key scan lines
- Full speed USB HID device
- Power management by supporting USB suspend/resume control
- Support for both low and full speed devices on the downstream ports
- Clock and data recovery from USB
- Bitstripping and Bitstuffing functions when the packets are addressed to the Hub
- CRC5 checking, CRC16 generation and checking for the packets addressed to the Hub
- Maintenance of the data toggle bits for the supported endpoints
- Output pin per port for port power switching mode and input pin per port for over-current detection
- Built-in transceivers for upstream and downstream ports
- Built-in voltage regulator
- Built-in 4X PLL clock generator
- Available in 64-pin PQFP package

MSE9751 Block Diagram

Pin Information

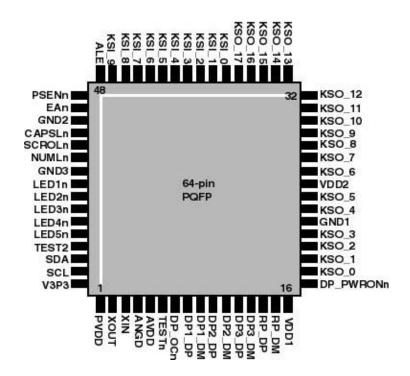
The following table shows pin descriptions for both 80-pin and 64-pin packages. The 80-pin package has 16 additional pins for accessing an external EPROM. The 80-pin package is the development version that allows the programmer to develop firmware using an in-circuit emulator. The pins whose numbers are in parenthesis are for the production version which contains the firmware in the internal ROM.

Pin No.		Pin Name	I/O Type	Description
1	(1)	PVDD	POWER	Analog Power for PLL ONLY.
2	(2)	XOUT	OUT	Oscillator Output.
3	(3)	XIN	IN	Oscillator Input.
4	(4)	AGND	POWER	Analog Ground for PLL ONLY. Analog Ground for Analog Blocks except PLL.
	(F)	11100	DOWED	0 0
5	(5)	AVDD	POWER	5V Analog Power.
6		AD_0	IN/OUT	EPROM Address[0]/Data[0].
7	(6)	TEST1n	IN	For Test.
8		AD_1	IN/OUT	EPROM Address[1]/Data[1].
9	(7)	DP_OCn	IN	Over-current Indication Signal.

USB Keyboard Controller with 3-Port Hub

MSE9751

10	(8)	DP1_DP	IN/OUT	D+ for Downstream Port1.
11	(9)	DP1_DM	IN/OUT	D- for Downstream Port1.
12		AD_2	IN/OUT	EPROM Address[2]/Data[2].
13	(10)	DP2_DP	IN/OUT	D+ for Downstream Port2.
14	(11)	DP2_DM	IN/OUT	D- for Downstream Port2.
15		AD_3	IN/OUT	EPROM Address[3]/Data[3].
16	(12)	DP3_DP	IN/OUT	D+ for Downstream Port3.
17	(13)	DP3_DM	IN/OUT	D- for Downstream Port4.
18	(14)	RP_DP	IN/OUT	D+ for Upstream Port.
19	(15)	RP_DM	IN/OUT	D- for Upstream Port.
20	(16)	VDD1	POWER	5V Power for Digital Core.
20	(16)	VDD1		5V Power for I/O PAD.
21	(17)	DP_PWRONn	OUT	Power Control Signal for Downstream Ports.
22	(18)	KSO_0	IN/OUT	Key Scan Out_0. 200K Pull-down. P0[0]
23	(19)	KSO_1	IN/OUT	Key Scan Out_1. 200K Pull-down. P0[1]
24		AD_4	IN/OUT	EPROM Address[4]/Data[4].
25	(20)	KSO_2	IN/OUT	Key Scan Out_2. 200K Pull-down. P0[2]
26	(21)	KSO_3	IN/OUT	Key Scan Out_3. 200K Pull-down. P0[3]
27	(22)	GND1	POWER	Ground for I/O PAD.
21				Ground for Digital Core.
28		AD_5	IN/OUT	EPROM Address[5]/Data[5].
29	(23)	KSO_4	IN/OUT	Key Scan Out_4. 200K Pull-down. P0[4]
30	(24)	KSO_5	IN/OUT	Key Scan Out_5. 200K Pull-down. P0[5]
31	(25)	VDD2	POWER	Power for I/O PAD.
31				Power for Digital Core.
32	(26)	KSO_6	IN/OUT	Key Scan Out_6. 200K Pull-down. P0[6]
33	(27)	KSO_7	IN/OUT	Key Scan Out_7. 200K Pull-down. P0[7]
34		AD_6	IN/OUT	EPROM Address[6]/Data[6].
35	(28)	KSO_8	IN/OUT	Key Scan Out_8. 200K Pull-down. P2[0]
36	(29)	KSO_9	IN/OUT	Key Scan Out_9. 200K Pull-down. P2[1]
37	(30)	KSO_10	IN/OUT	Key Scan Out_10. 200K Pull-down. P2[2]
38		AD_7	IN/OUT	EPROM Address[7]/Data[7].
39	(31)	KSO_11	IN/OUT	Key Scan Out_11. 200K Pull-down. P2[3]
40	(32)	KSO_12	IN/OUT	Key Scan Out_12. 200K Pull-down. P2[4]
41	(33)	KSO_13	IN/OUT	Key Scan Out_13. 200K Pull-down. P2[5]
42	(34)	KSO_14	IN/OUT	Key Scan Out_14. 200K Pull-down. P2[6]
•		I	l	1 ·


USB Keyboard Controller with 3-Port Hub

MSE9751

43		AD_8	IN/OUT	EPROM Address[8]/Data[8].
44	(35)	KSO_15	IN/OUT	Key Scan Out_15. 200K Pull-down. P2[7]
45	(36)	KSO_16	IN/OUT	Key Scan Out_16. 200K Pull-down. P3[6]
46	(37)	KSO_17	IN/OUT	Key Scan Out_17. 200K Pull-down. P3[7]
47		AD_9	IN/OUT	EPROM Address[9]/Data[9].
48	(38)	KSI_0	IN/OUT	Key Scan In_0. 8K Pull-up. P1[0]
49	(39)	KSI_1	IN/OUT	Key Scan In_1. 8K Pull-up. P1[1]
50	(40)	KSI_2	IN/OUT	Key Scan In_2. 8K Pull-up. P1[2]
51	(41)	KSI_3	IN/OUT	Key Scan In_3. 8K Pull-up. P1[3]
52		AD_10	IN/OUT	EPROM Address[10]/Data[10].
53	(42)	KSI_4	IN/OUT	Key Scan In_4. 8K Pull-up. P1[4]
54	(43)	KSI_5	IN/OUT	Key Scan In_5. 8K Pull-up. P1[5]
55	(44)	KSI_6	IN/OUT	Key Scan In_6. 8K Pull-up. P1[6]
56	(45)	KSI_7	IN/OUT	Key Scan In_7. 8K Pull-up. P1[7]
57		AD_11	IN/OUT	EPROM Address[11]/Data[11].
58	(46)	KSI_8	IN/OUT	Key Scan In_8. 8K Pull-up. P3[4]
59	(47)	KSI_9	IN/OUT	Key Scan In_9. 8K Pull-up. P3[5]
60	(48)	ALE	IN/OUT	Address Latch Enable Signal for M80C51.
61	(49)	PSENn	IN/OUT	Program Strobe Enable Signal for M80C51.
62	(50)	EAn	IN	External Access Enable Signal.
	(30)	E/ III	111	"H": Internal ROM. "L": External ROM.
63	(51)	GND2	POWER	Ground for I/O PAD.
64		AD_12	IN/OUT	EPROM Address[12]/Data[12].
65	(52)	CAPSLn	OUT	Caps Lock LED.
66	(53)	SCROLn	OUT	Scroll Lock LED.
				When TEST1n is low, this pin will be used for PLL output.
	(54)	NUMLn	OUT	Num Lock LED.
67				When TEST1n is low, this pin will be used for TX_SDA
				output of the USB.
68		AD_13	IN/OUT	EPROM Address[13]/Data[13].
69	(55)	GND3	POWER	Ground for I/O PAD.
				Ground for Digital Core.
	(5.6)	I ED4	DUCUT	LED1.
70	(56)	LED1n	IN/OUT	When TEST1n is low, this pin will be used for p3[2] input to
71	(57)	LEDO	INI/OLITE	the M80C51.
71	(57)	LED2n	IN/OUT	LED2.

			When TEST1n is low, this pin will be used for SCL input to
			the USB.
			LED3.
72 (58)	LED3n	IN/OUT	When TEST1n is low, this pin will be used for SDA input to
			the USB.
73	AD_14	IN/OUT	EPROM Address[14]/Data[14].
			LED4.
74 (59)	LED4n	IN/OUT	When TEST1n is low, this pin will be used for MC_intr
			(<i>p3</i> [<i>3</i>]) input to the M80C51
			LED5.
75 (60)	LED5n	OUT	When TEST1n is low or TEST2 is high, this pin will be used
			for MC_intr output of the USB.
			M80C51 Select.
76 (61)	TEST2	IN	"H": Use the Internal M80C51.
			"L": Use the External M80C51.
77	AD_15	IN/OUT	EPROM Address[15]/Data[15].
78 (62)	SDA	IN/OUT	Serial Data for the external M80C51.
79 (63)	SCL	IN	Serial Clock for the external M80C51.
80 (64)	V3P3	OUT	3.3V Voltage Regulator Output.

*note: Pin numbers in () are for 64-pin QPFP package

