Definition of Terms

This section defines the most important terms used in describing the Windows 95 printer subsystem.

Print job 	The print spooler organizes print requests from clients by creating a queue of print jobs. Each print job is destined for a particular printer. A print job may be spooled (written to a file on disk and printed later) or printed directly to the printer.

Printer spool files 	Print jobs that are not printed directly are stored in spool files on disk. Two types of spool file formats are supported by the default Windows 95 spooler: the enhanced metafile (EMF) format, which is device-independent, and raw format, which is device dependent.

Enhanced metafile spool files 	Enhanced metafiles (EMFs) are one type of spool file used by the default Windows 95 print spooler (raw files are the other type). EMFs are also the native graphics file format for Windows 95. EMF spool files are used to greatly reduce the amount of time between the time the application user initiates a print request and when control is returned back to the operating system. This is done by storing only the GDI function calls that produce the graphics object the application wants printed, allowing the much more time-consuming execution of the function calls to be carried out later, in the background, when the spool file is "played back." The way EMF spool files are encoded also provides the advantage of printer device-independence. In other words, a picture measuring 2 inches by 4 inches on a VGA display and stored in an EMF maintains those original dimensions when it is printed on a 300 dpi laser printer or a 75 dpi dot matrix printer.

Raw spool files 	Raw spool files are device-dependent. The spooled data is destined and formatted for a particular device and does not need to be printable on a different device. An example of a raw spool file is an encapsulated PostScript file, which is formatted to be understood by the PostScript printer for which it is destined, but which is just raw data to the Windows 95 spooler.

Port 	The physical hardware through which a printer connects to the computer.

Bi-directional printer 	A printer that supports two-way communication between the printer and code running on the computer to which the printer is connected. This two-way communication is used for two primary purposes: printer configuration and monitoring device status. An example of a bi-directional printer is an HP LaserJet 4Si.

The Operating Environment

The operating environment for Windows 95 consists of a computer's hardware devices and the following software components:

·	Virtual machine manager (VMM32.VXD)

·	Virtual devices (.VXD files)

·	16- and 32-bit protected-mode installable device drivers for peripheral devices

·	16- and 32-bit Windows dynamic-link libraries, such as USER.EXE and USER32.DLL

·	Windows-based and other applications

The virtual machine manager forms the core of this operating environment. It provides the service functions (also called services) needed to create and manage the virtual machines in which applications run. The virtual devices support the device-independent VMM by managing the computer's hardware devices and supporting software. Virtual devices manage software as well as the hardware devices to ensure that no application disrupts the operation of another. The Windows dynamic-link libraries provide the functions and graphical resources that all Windows applications use.

Virtual Machines

A virtual machine is an executable task consisting of an application, supporting software (such as ROM BIOS and MS-DOS), memory, and CPU registers. The VMM can create multiple virtual machines. The first virtual machine created, called the system virtual machine, contains 16-bit Windows-based applications. Other virtual machines are created for Win32-based and MS-DOS-based applications as they are started.

MS-DOS-based applications in a virtual machine run in virtual 8086 mode (also called V86 mode). In V86 mode, applications run as if they were running on an Intel 8086, or compatible microprocessor. V86 mode provides the registers, instructions, and 1 megabyte address space that real-mode applications are designed to use. This means an MS-DOS-based application in a virtual machine will run successfully without modification. V86 mode also permits execution of protected-mode applications in a virtual machine.

Each virtual machine has its own address space, I/O port space, and interrupt-vector table. The VMM also maps ROM BIOS, MS-DOS, device drivers, and TSRs to the address space of the virtual machine so that the application has access to MS-DOS system functions and ROM BIOS routines. Virtual machines with protected-mode applications also have their own local descriptor table (LDT).

Virtual machines provide memory protection, virtual memory, and privilege checking. If an application in a virtual machine reads or writes memory addresses that have not been mapped into its virtual machine or manipulates I/O ports to which it has not been allowed access, an exception (fault) is generated, and the VMM regains control. The VMM and virtual devices can then provide the requested memory, carry out the intended I/O operation, or terminate the application. In a virtual machine, V86-mode applications run at privilege level 3; protected-mode applications run at privilege level 1, 2, or 3.

Virtual Machine Manager

The VMM is a 32-bit protected-mode operating system. Its primary responsibility is to create, run, monitor, and terminate virtual machines. The VMM provides services that manage memory, tasks, interrupts, and protection faults. The VMM works with virtual devices, 32-bit protected-mode dynamic-link libraries, to allow the virtual devices to intercept interrupts and faults in order to control the access an application has to hardware devices and installed software.

Both the VMM and the virtual devices run in a single, 32-bit, flat model address space at privilege level 0 (also called ring 0). The system creates two global descriptor table (GDT) selectors, one for code and the other for data, and uses these selectors in the CS, DS, SS, and ES segment registers. Both selectors have a base address of 0 and a limit of four gigabytes, so all the segment registers point to the same address space. The VMM and virtual devices never change these registers.

The VMM provides single-threaded, pre-emptive multitasking. It runs multiple applications simultaneously by sharing CPU time between the virtual machines in which the applications run. The VMM is also nonre-entrant. This means virtual devices must synchronize access to the VMM services. The VMM provides services, such as semaphores and events, to help virtual devices prevent re-entering the VMM.

The VMM creates and initializes the system virtual machine when it first starts. Initially, the WIN.COM program loads VMM32.VXD which contains the VMM and the default virtual devices. The VMM, loaded into extended memory allocated using an XMS driver, initializes itself and the virtual devices, and switches to protected-mode execution. When initializing, virtual devices typically install callback procedures for interrupts and faults, and allocate memory for resources associated with the system virtual machine. The virtual shell device (SHELL), typically the last virtual device to be initialized, starts Windows in the system virtual machine by loading the Windows kernel, KRNL386.EXE. The kernel loads all other required pieces of Windows which culminates in the starting of Windows 95 Shell.

Virtual Devices

Virtual devices support all hardware devices for a typical computer, including the programmable interrupt controller (PIC), timer, direct-memory-access (DMA) device, disk controller, serial ports, parallel ports, keyboard device, and display adapter. A virtual device is required for any hardware device that has settable operating modes or retains data over any period of time. In other words, if the state of the hardware device can be disrupted by switching between multiple applications, the device must have a corresponding virtual device.

Many hardware devices use interrupts to signal when data is ready or the device is available. Virtual devices rarely intercept these hardware interrupts directly. Instead, a virtual device relies on the virtual programmable interrupt controller device (VPICD) to process hardware interrupts. The virtual device installs a callback procedure which the VPICD calls when a hardware interrupt occurs. The callback procedure typically services the interrupting device, or requests the VPICD to reflect the interrupt into the ROM BIOS or other code that services the device. A virtual device can also register callback procedures to handle other phases of interrupt processing such as the execution of the iret

 instruction. Virtual devices must not modify descriptors in the interrupt descriptor table (IDT).

Most hardware devices provide memory-mapped or I/O-port registers through which applications can set the operating mode of the device and read or write data. Virtual devices typically trap access to these registers to record changes to the state of the device and to simulate the reading or writing of data. If a hardware device uses memory buffers, such as video memory for a display adapter, the virtual device usually takes ownership of the physical memory to prevent the system from attempting to use it. The virtual device also maps the memory to prevent applications that run in the background from overwriting the current contents.

Many hardware devices have corresponding ROM BIOS or installable device driver routines (collectively called the API) that set and record the state of the device. In most cases, applications call these routines by using a software interrupt. Virtual devices usually install callback procedures to intercept these software interrupts. This allows the virtual device to either simulate the requested action, or prepare the parameters in the call for execution in V86 mode. Preparing parameters (called API translation or mapping) is required when a protected-mode application passes an address to a ROM BIOS or device driver routine that runs in V86 mode.

Some virtual devices support software, but no corresponding hardware device. For example, the virtual shell device provides access to the Windows MessageBox function. In general, a virtual device can provide any kind of services for the VMM and other virtual devices. It can also provide API functions for V86 and protected-mode applications. These API functions potentially give 16-bit applications direct access to the features of the virtual device.

Multitasking

The VMM uses a time-slice scheduler and execution priority to carry out pre-emptive multitasking for virtual machines. The VMM grants time slices to the virtual machines that have the highest execution priority. Virtual machines with execution priorities lower than the highest priority do not receive time slices. The VMM assigns an execution priority to a virtual machine when it creates the virtual machine. The VMM and virtual devices can subsequently raise or lower the execution priority to cause task switching between virtual machines. The VMM often raises the execution priority for a virtual machine that needs to service a high-priority device event, such as an interrupt that must be serviced in a timely manner.

The VMM relies on time-slice priorities and flags to determine how much CPU time it grants to the virtual machines. Every virtual machine has a foreground and a background time-slice priority in addition to the virtual machine's execution priority. The virtual machine with the largest time-slice priority receives a greatest share of CPU time. The VMM uses the foreground priority to determine the amount of CPU time to grant a virtual machine if the virtual machine has the execution focus (is the foreground virtual machine). Otherwise, the VMM uses the background priority. If a virtual machine is not the foreground virtual machine, it receives no time slices unless the CB_VM_Status field in its control block specifies the VMStat_Background or VMStat_High_Pri_Back values. If a virtual machine has the VMStat_Exclusive value, no other virtual machine receives time slices while the exclusive virtual machine has the execution focus.

What Is a Virtual Device?

A virtual device is a 32-bit executable that manages a system resource, such as a hardware device or installed software, so that more than one application can use the resource at the same time. Windows uses virtual devices to allow multitasking for Windows-based applications. The virtual devices work in conjunction with Windows to process interrupts, and carry out I/O operations for a given application without disrupting the execution of other applications.

Most virtual devices manage a hardware device, and many also manage or replace corresponding software such as ROM BIOS routines. A virtual device can contain the device-specific code needed to carry out actions on the device, or it can rely on the other software to carry out these operations. In all cases, the virtual device keeps track of the state of the device for each application, and ensures that the device is in the correct state whenever an application continues execution.

Some virtual devices manage only installed software, such as an MS-DOS device driver or a TSR program. Such virtual devices often contain code that either emulates the software or ensures that the software uses data that applies only to the currently running application. Virtual devices are sometimes used to improve the performance of installed software; the Intel-compatible microprocessors can execute the 32-bit code of a virtual device more efficiently than the 16-bit code of an MS-DOS device driver or TSR.

Standard Virtual Devices

Windows includes a wide variety of virtual devices to support common hardware devices and installable software. In some cases, a virtual device may need to be modified to accommodate new features or to support nonstandard hardware.

Windows provides many other virtual devices that are not intended to be modified, but help support other virtual devices. For example, many virtual devices use the services provided by the V86 memory manager (V86MMGR) and the virtual programmable interrupt controller device (VPICD) to reserve V86 mode memory and enable interrupt requests (IRQs) for their hardware.

To help with you develop virtual devices, the Microsoft Windows 95 Device Driver Development Kit includes source code for fully operational virtual devices.

Building a Virtual Device

You build a virtual device by doing the following:

	1	Create the virtual device source files and assemble the sources using MASM.EXE, the 32-bit flat-model assembler.

	2	Create a module definition file (.DEF) and link the object files using LINK.EXE, the 32-bit flat model linker. By convention, the resulting executable file should have the same filename as the virtual device, but with the filename extension .VXD.

	3	Create a debugging symbol file for the executable file using MAPSYM.EXE.

A virtual device is not compatible with Windows dynamic-link libraries. Windows-based applications cannot load and use virtual devices directly. However, Win32-based applications can use the CreateFile and DeviceIoControl functions to load and interact with dynamically-loadable VxDs.

The module definition file for a virtual device has the following form:

LIBRARY VSAMPLED

DESCRIPTION 'VSAMPLED Device (Version 4.0)'

EXETYPE DEV386

SEGMENTS

 _LTEXT PRELOAD NONDISCARDABLE

 _LDATA PRELOAD NONDISCARDABLE

 _ITEXT CLASS 'ICODE' DISCARDABLE

 _IDATA CLASS 'ICODE' DISCARDABLE

 _TEXT CLASS 'PCODE' NONDISCARDABLE

 _DATA CLASS 'PCODE' NONDISCARDABLE

EXPORTS

 VSAMPLED_DDB @1

The LIBRARY statement must specify the name of the virtual device, as given in the device description block (DBB) and the EXPORTS statement must specify the name of the DBB. In all cases, the export ordinal for the DDB is 1.

About Windows-Based Device Drivers

This chapter describes the purpose and function of Windows-based device drivers. You should create a Windows-based device driver for your device if it is not 100 percent compatible with the devices supported by the Windows retail device drivers, or if you want to offer Windows users access to unique features of your device.

A Windows-based device driver is a dynamic-link library (DLL) that Windows uses to interact with a hardware device such as a display or a keyboard. Rather than access devices directly, Windows loads device drivers and calls functions in the drivers to carry out actions on the device. Each device driver exports a set of functions; Windows calls these functions to complete an action, such as drawing a circle or translating a keyboard scan code. The driver functions also contain the device-specific code needed to carry out actions on the device.

Windows requires device drivers for the display, keyboard, communication ports, mouse, and network. Printer, pen, and modem drivers are required if the user adds these optional devices to the system.

Creating a Device Driver

You create a device driver either by adapting a sample driver, or writing a driver from scratch. You can write Windows device drivers in assembly language or in a high-level language such as the C language. Assembly language programmers can use the CMACROS assembly-language macro package.

To create a device driver, you need to:

	1	Read the chapter in this manual that describes the driver for your type of device.

	2	Write the required driver functions.

	3	Create and compile the required resources.

Every device driver must have at least a VERSIONINFO resource that contains the version stamp for the driver. Setup and Control Panel both look for this resource when installing drivers.

	4	Create a module-definition file that identifies the appropriate module name for your driver, and exports the required functions.

	5	Assemble and link your driver.

	6	Test your driver using the debugging version of Windows.

	7	Create an installation file (*.INF) for your driver and related files.

	8	Create your final distribution disk or disks.

Guidelines for Designing and Writing a Driver

When designing and writing your device driver, follow these guidelines:

·	Make every effort to make your device driver as small as possible; reserve system memory for applications.

·	Use multiple, discardable code segments to help reduce the amount of driver code needed in memory at any given time.

·	Use an automatic data segment only if necessary.

·	Make resources discardable, and lock them in memory only when needed.

·	Use the stack sparingly. Because device drivers use the stack of the application that initiated the call to the driver, there is no way for the driver to determine how much available space is on the stack.

·	Check for NULL pointers to avoid a general protection fault from using an invalid selector.

·	Check the segment limits when reading from or writing to allocated segments to avoid a general protection fault from attempting to access data beyond the end of a segment.

·	Use the __ahincr constant when creating selectors for huge memory (allocated memory greater than 64 kilobytes). Other methods of selector arithmetic can create invalid selectors and cause general protection faults.

·	Create code-segment aliases for any code to be executed from data segments. Attempting to call or jump to a data segment address generates a general protection fault.

Windows Calling Conventions

This manual presents the syntax of most functions in C-language notation. All such functions are assumed to be declared as FAR PASCAL functions, and Windows will call these functions as such. In general, exported functions in a device driver must execute the standard Windows prolog on entry and epilog on exit.

The following list highlights the calling conventions:

·	Set the DS register to the selector of the driver's automatic data segment.

·	Save and restore the following registers if used: SS, SP, BP, SI, DI, and DS.

·	Clear the direction flag if it has been set or modified.

·	Place 16-bit return values in the AX register; 32-bit values in the DX:AX register pair.

·	Execute a FAR return.

Windows pushes all parameters on the stack in a left to right order (the last parameter shown in the function syntax is closest to the stack pointer). Windows also passes pointer parameters as 32-bit quantities, pushing the selector first then the offset. This allows exported functions to use the lds or les instructions to retrieve pointers from the stack.

Critical Section Handling

Occasionally, an MS-DOS driver or TSR program may need to run for a period of time that may exceed its regular time slice. In such cases, the driver can create a critical section that prevents Windows from switching the CPU away from the driver or program.

A driver starts a critical section by using Begin Critical Section (Interrupt 2Fh Function 1681h). While the critical section is in effect, only device interrupts can divert execution from the driver. A driver ends the critical section by using End Critical Section (Interrupt 2Fh Function 1682h). In general, a driver should end the critical section as soon as possible to ensure that all drivers and programs in the system receive CPU time. If a driver starts a critical section n times, it must end the critical section n times before the critical section is actually released.

Ordinarily, Windows prevents rescheduling of the current virtual machine if the one-byte, MS-DOS InDOS flag is nonzero. One exception is when a driver or program issues the MS-DOS Idle interrupt (Interrupt 28h). In such cases, Windows may reschedule regardless of the value of the InDOS flag. The only way to prevent this rescheduling is to start a critical section using Begin Critical Section. While in a critical section, Windows disregards Interrupt 28h.

In previous versions of Windows, service functions to support critical sections were not supplied. Drivers and programs achieved a similar effect by incrementing and decrementing the MS-DOS InDOS flag. Although this method was acceptable for previous versions of Windows, drivers should not use this method in versions of Windows that supply Begin Critical Section and End Critical Section (Interrupt 2Fh Function 1682h).

Drivers and programs that use the InDOS flag method retrieve the address of the InDOS flag using Get InDOS Flag Address (Interrupt 21h Function 34h). The function returns the address in the ES:BX register pair. When using this method, drivers and programs check the flag value before decrementing because some error conditions (such as when the user types CTRL+C) set the InDOS flag to zero regardless of its current value. Decrementing the InDOS flag to a number less than zero is a serious error.

Introduction

The Windows® 95 Device Manager is the central component of device installation and configuration. A set of default device installers and Control Panel applets, which work with Device Manager, are supplied with Windows 95. There are several development requirements and opportunities for customizing the installation and configuration of your device. Device developers have the option of creating an installer, creating a Control Panel applet, or extending a default Control Panel applet. Device developers must create a device information (INF) file for their device.

This chapter describes the tools and interfaces you can use to customize the installation and configuration of your device.

Classes and Installers

Windows 95 has a large number of subsystems to control various classes of devices. Classes identify logical device types such as display, keyboard, and network. Because each subsystem has a different driver architecture, different user options, and different compatibility constraints, it is impossible to have a single utility support installation of all possible devices. Instead, each class is responsible for providing its own installer.

A single installer can support installation of both the class and individual devices. However, this depends on the class and in some cases separate device installers are used. Typically, the installer is combined with the control panel applet (.CPL) for the given class, although this is not a requirement. Whether the installer is combined with the applet or is a separate dynamic-link library, the Device Manager controls and directs the action of the installer.

The Device Manager, itself a control panel applet, is responsible for displaying dialog boxes to the user to prompt for information about adding and modifying device drivers. It is also responsible for installing any drivers for any devices enumerated by the configuration manager.

The Device Manager relies on the class and device installers to display the appropriate dialog boxes or carry out appropriate installation tasks. Although the Device Manager gives the installer full control of the installation process, in most cases, the installer simply directs the Device Manager to complete the task for it. The installer can insert additional configuration dialogs, hardware detection, and other features into the process as is appropriate for the class.

Default Classes and Class Installers

Windows 95 defines a set of default device classes and provides corresponding class installers for these classes. The Device Manager uses the default installers to install devices belonging to the default classes. There are these default classes:

Adapter 	Default device install

Printer 	MSPRINT.DLL

CDROM 	Default device install

Disk Drives 	Default device install

Sound video and game controllers mmci.cpl 	Default device install

Keyboard 	Default device install

System Devices 	sysclass.dll

Multi Functions Cards 	Default device install

Modem 	Modem.Cpl

Monitor 	Default device install

Display adapters 	SetupX.Dll

Floppy disk controllers 	Default device install

Hard disk controllers 	Default device install

Mouse 	SetupX.Dll

Ports (COM & LPT) 	Default device install

Network adapters 	netdi.dll

PCMCIA Socket 	PCCard.dll

SCSI controllers 	Default device install

Unknown Hardware 	sysdm.cpl

If your device belongs to a default class but the default installer does not provide the installation support you need for your device, you can create your own installer and direct the Device Manager to use that installer whenever the user installs a device of that class.

By default, the Device Manager adds any new classes to the system if the given INF specifies a [ClassInstall] section, and the class has not been previoulsy installed. You can specify the Class installer for this new class in this section of the INF file, and the Device Manager will load and call this installer when appropriate.

Installer Function

Every installer exports an installer function named ClassInstall. The Device Manager dynamically links to and calls this function whenever it needs the installer to carry out a specific installation task.

ClassInstall receives two arguments: an integer that identifies the installation task to carry out, and the address of a DEVICE_INFO structure that contains information about the device to install. The function either carries out the requested task, using the information in the structure, or directs the Device Manager to carry out the task for it.

To direct the Device Manager to carry out the task, the function must return the ERR_DI_DO_DEFAULT value. The Device Manager has default actions for each request.

If the function carries out its own tasks, it must return the value OK to notify the Device Manager that the task completed successfully. If an error occurs while carrying out a task, the function must return one of the RETERR values given in Constants.

Installer Registration

The Device Manager requires that you register your class or device installers by adding Installer and Icon entries to the registry for the given class. The system maintains a System\CurrentControlSet\Services\Class branch under HKEY_LOCAL_MACHINE for information about each class. The value of the key contains the localized description of the class.

The Installer and Icon entries have this form:

Installer=installer-DLL-name[,Installer Entry Point]

Icon=index [, icon-DLL-name]

The Device Manager uses the icon to represent your installer to the user. If you fail to register include a Installer entry, the Device Manager takes the default actions in all cases.

Custom Property Page Providers

A custom property page provider adds new property pages or replaces default property pages for a specific device or class. A provider can be a separate DLL or it can be combined with the class installer or the control panel applet for the device. If combined with the installer, the provider must be distinct from any properties handling provided by the ClassInstall function of the installer.

Every property page provider exports the property page enumeration function, usually named EnumPropPages. The Device Manager dynamicly links and calls this function just before displaying the default property sheet to give the provider a chance to add pages or replace the default pages.

A provider must export dialog procedures to support the property pages it adds to the default property sheet. The dialog procedures process initialize values and process user input for the property pages when the Device Manager displays the property sheet. The Device Manager uses the PropertySheet function to display the properties sheet, so the dialog procedures for the individual pages must be prepared to process the messages and notifications associated with this function.

Property Page Enumeration Function

When the Device Manager calls EnumPropPages, it passes three arguments: the address of a DEVICE_INFO structure, the address of a AddPropSheetPageProc function, and a 32-bit value. The DEVICE_INFO structure identifies the device or class that the user has requested properties for. The 32-bit value is used by the Device Manager to keep track of internal processing and must not be changed.

You use the AddPropSheetPageProc function to add property pages to the default property sheet. The function requires two parameters: a handle of a valid property sheet page and the supplied 32-bit value. You create a valid property sheet page and retrieve its handle by using the CreatePropertySheetPage function. The AddPropSheetPageProc function returns TRUE if it added the page, FALSE otherwise.

To replace one or both default property pages, you add the replacement pages using AddPropSheetPageProc, then set one or both of these values in the Flags member of the DEVICE_INFO structure:

DI_GENERALPAGE_ADDED 	Replaces the default general property page.

DI_RESOURCEPAGE_ADDED 	Replaces the default resources property page.

If you replace a default page, your replacement page must provide all the basic functions provided by that default page. If you do not replace a default page, the Device Manager uses the default page for the class or device as appropriate.

The EnumPropPages function returns TRUE to direct the Device Manager to display the property sheet or FALSE to prevent display.

About INF Files and the INF File Editor

Device information (INF) files contribute to the goal of providing customers and developers with an easier way to install hardware devices. The information in an INF file brings together one or more devices, device drivers, and the operating system's installation procedure to ensure an easy and complete hardware setup and installation.

If you are providing plug and play or non-plug and play hardware for Windows 95 computers, you must create an INF file that enables your device to be installed and to work in the Windows 95 environment. The Windows 95 DDK contains a tool, Infedit, that enables you to build an INF file by responding to the Infedit user interface. The topic Getting Started Using Infedit contains the requirements for a sample INF file, XSCSI.INF, and walks through the process of using Infedit to turn those requirements into a working INF file.

For more information about how Windows 95 uses INF files, use the Programs command from the Windows 95 Start menu to open the Windows 95 DDK and then select the Plug and Play Reference. Use the Find tab on the displayed property sheet to find instances of the word "INF" in the Plug and Play topics.

Limits of the INF File Editor

Note that several classes of devices -- namely printers and network adapters -- have INF file extensions specific to those devices which are not described in this chapter. For a description of the printer INF extensions, see the topic "Router and Local Print Provider" in the Windows 95 DDK help reference for the print spooler and printer drivers. For a description of the network INF extensions, see the topic "Network Driver Installer" in the Windows 95 DDK help reference for networks.

There are also some special cases of INF files, such as INF files for multifunction boards, that require you to add items to the INF file you create with Infedit.

Introducing INF Files

In order to become immediately productive with Infedit, it helps to have a model of the parts of an INF file in mind. Infedit builds an INF file one section and one item at a time.

An INF file is made up of a set of named sections. To be used by the operating system installer, a section must contain one or more items.

Each section begins with the section name enclosed in square brackets. In this way, INF files are similar to Windows INI files. There can be any number of sections in an INF file, but there are only about two dozen types of sections that can be in an INF file, and about eight of these types of sections appear far more often than other types in INF files.

Each type of section has a particular purpose; for example, to copy files or to add entries to the registry. Each of the items in a section contributes to that section's purpose and the syntax of each type of item that can be used in a particular type of section reflects that.

Three sections from a sample INF file are shown below, so you can more easily visualize an INF file being made up of sections and each section being made up of one or more items. The section named SourceDisksNames contains one item, the section named SourceDisksFiles contains two items, and the section named Strings contains three items.

[SourceDisksNames]

1=CX2590 Windows 95 Installation Disk,Instd1,0000-0000

[SourceDisksFiles]

CX2590.MPD=1

SRSutil.exe=1

[Strings]

String1="Corporation X"

String2="Corporation X"

String3="CX2590 SCSI Adapter"

Types of INF File Sections

All the types of sections that can be in an INF file and the purpose of each type of section is listed in the following table.

Type of INF File Section 	Purpose 	Comment

INF file header. 	The standard header for all INF files. 	The INF file header items are contained in the folder labelled NEWINF.INF in the illustration above. The syntax and meaning of the INF file header items is defined in the "Reference" topic under the section name Version.

ClassInstall section 	Installs a new class for a device in the Class section of the registry on a Windows 95 machine. 	

Disk Names section 	Identifies and names the disk(s) that are the source of files that are copied to the hard disk during installation. Also names the files that are on each of the installation disk(s). 	The syntax and meaning of items that are contained in a Disk Names section are documented in the "Reference" topic under the topics SourceDisksNames section and SourceDisksFiles section.

Manufacturer 	Identifies the manufacturer of one or more devices defined in the INF file, describes the device(s), and identifies the Install section that contains the script for installing each device. 	

Install sections 	Identifies the other sections in the INF file that describe the resource requirements of a device and which add entries to the registry, copy files, etc. 	

CopyFiles sections 	Names the files copied from the source disk(s) to the destination directories during device installation. 	Infedit puts the destination directory information into a DestinationDirs section.

Rename Files sections 	Names the files to be renamed when they are copied from the source disk(s) to the destination directories during device installation. Also gives the new filenames on the destination directories. 	Infedit puts the destination directory information into a DestinationDirs section.

DelFiles sections 	Names the files to be deleted from destination directories during device installation. 	Used, for example, to delete obsolete versions of device drivers. Infedit puts the destination directory information into a DestinationDirs section.

Add Registry sections 	Adds subkeys or value names to the registry, optionally setting values. 	

Delete Registry sections 	Deletes subkeys or value names from the registry. 	

Log Config sections 	Defines device configuration details such as IRQs, memory address ranges, I/O address ranges, and/or DMA channels. 	

Update Autoexec.bat sections 	Manipulates lines in the AUTOEXEC.BAT file. 	

Update Config.sys sections 	Manipulates lines in the CONFIG.SYS file. 	

Ini File to Registry sections 	Moves lines or sections from an INI file to the registry, creating or replacing an entry under a specific key in the registry. 	

Update Ini File sections 	Replaces, adds, and deletes entries in an INI file. 	

Update Ini Fields sections 	Replaces, adds, and deletes fields in the value of a given entry in an INI file. 	

Strings section 	Defines one or more names that represent a string of displayable characters. 	

HW section 	A special case of an Install section. The only type of section that allows entries to be made to the Hardware branch of the registry. 	Build an HW section using the Miscellaneous Sections folder of the Infedit user interface. See the "Reference" section for the items that appear in an HW section and their syntax.

NoResDup section 	Provides a method for the installing devices that use no resources. 	If needed, can be built as part of a Device subsection of a Manufacturer section.

PosDup section 	Provides a method for identifying devices that may appear to be separate devices but are in fact the same device. 	If needed, can be built as part of a Device subsection of a Manufacturer section.

Using the Printer-Specific Windows 95 INF File Extensions

Your monitor or print processor DLLs can be installed using statements in the INF file Windows 95 uses to install your printer driver. Printer extension statements for INF files are defined for Windows 95 and this section describes how these printer extension statements are used and provides reference material for each statement. This section also describes how these INF file printer extensions statements are used in the context of Windows 95 device Plug and Play.

Under Windows 3.1x, the Control Panel Printers applet has some limitations on installing printer drivers. This caused some printer vendors to develop their own installation utilities to work around these limitations.

Under Windows 95, the mechanism for installing printer drivers is different, removing the Windows 3.1x limitations. A new user interface is also provided in Windows 95 that corrects the problems users have reported with the Windows 3.1x Control Panel Printers applet.

In order to support the automatic Plug and Play printer installation described in the section "Plug and Play Printer Installation" and to support the manual printer installation method for non-Plug and Play printers that is described in this section, the printer INF file format for Windows 95 differs from the INF file format used with Windows 3.1x. This section defines the printer-specific changes to the INF file format and content. If you are developing a Windows 95 INF file for your printer installation, you must read the chapter "Windows 95 INF Files" in addition to this section to get all the information you need to do the job.

Note that the OEMSETUP.INF file format for printer drivers from Windows 3.1x will continue to be supported in Windows 95 for backwards compatibility, but all printer vendors are strongly encouraged to use the new INF file format described here and in the chapter "Windows 95 INF Files."

For Plug and Play printer installation and to use any of the new options for manual printer installation using the Add Printer icon, you will have to use the new INF file format and statements.

All of the printer-specific Windows 95 INF file extensions are individual lines that can be added to the simple text INF file. Each line has the form key=value. There are just over a dozen printer-specific keys that can be used and you only need to use a key to override the default. The table below lists the keys and defaults.

Key 	Description 	Default Value

ConfigFile 	Names the DLL to call to configure the printer. 	The file named in the DriverFile statement.

DataFile 	Names a file that contains printer-specific information. For example, this may be the mini driver data file or, for Post Script printers, the .SPD file. 	Install section name.

DataSection 	Names another section of the INF file that contains printer-specific key=value statements that can be used by more than one Install section in the INF file. 	There does not have to be a Data section in an INF file or any DataSection statements in any of the INF file installer sections. See the section "Printer INF File Data Section" for an example of how to use a Data section to reduce typing and clerical errors while you are developing a printer INF file.

DefaultDataType 	Default datatype used by the printer and print processor associated with the printer. 	Raw

DriverFile 	Names the printer driver (.DRV) file to install. 	Install section name.

HelpFile 	Names the help file associated with the printer model. 	No help file.

LanguageMonitor 	User-displayable name and DLL filename of language monitor used by the printer model. 	No language monitor.

NoTestPage 	Instructs the Windows 95 printer installation process to not prompt the user with a test page printing option as the last step of a successful printer installation. 	The user is prompted with a test page printing option, unless a VendorInstaller or VendorSetup statement is used in the INF file.

NotSelectedTimeOut 	Not-selected timeout value for the printer, measured in seconds. 	45 seconds.

PortMonitor 	User-displayable name and DLL filename of port monitor used by the printer model. 	Default port monitor, which is provided by Microsoft as part of SPOOLSS.DLL..

PrintProcessor 	User-displayable name and DLL filename of the print processor used by the printer model. 	Default print processor, which is provided by Microsoft as part of SPOOLSS.DLL.

RetryTimeout 	Retry timeout value for the printer, measured in seconds. 	15 seconds.

VendorInstaller 	Names a vendor-provided Win32 DLL that performs the entire printer installation process, and the exported entry-point to call in that DLL. Can only be used for Plug and Play devices. 	No vendor installer DLL.

VendorSetup 	Names a vendor-provided Win32 DLL to be run after normal printer installation is accomplished, and the exported entry-point to call in the DLL. 	No vendor setup DLL.

Windows 95 Real Mode Loader (Phase 2)

The final step before initializing the protected-mode Configuration Manager is to load static VxDs. For compatibility reasons, the real-mode loader will first load devices specified in SYSTEM.INI. This is the first phase of configuration management in which automated device enumeration takes place, and access to the registry is available, but there is still no automated resource assignment.

Based on the type of bus hardware detected by the real-mode Configuration Manager driver, the system loads the appropriate enumerator VxD. For example, the ISA enumerator will be loaded during this phase if an ISA bus exists on the system. If the machine has a Plug and Play BIOS, the BIOS enumerator loads. In all cases, the root enumerator loads during this phase.

Operating System in Control in Protected Mode (Phase 3)

Once VMM32.VXD has initialized, the full-featured protected-mode Configuration Manager is initialized. Configuration Manager imports device identifier information from the real-mode loader.

Drivers are loaded and initialized at this phase in exactly the same manner as with dynamic enumeration and device loading. Enumerators create device nodes, Configuration Manager calls the appropriate device loader, and the process continues.

Example Boot Sequence

This section describes the boot process for an ideal configuration: a computer with a new BIOS and new Plug and Play cards, but no non-Plug and Play hardware or real-mode device drivers.

Phase 0: BIOS Initialization

The BIOS configures all motherboard devices. Next it executes the ISA Plug and Play isolation algorithm and assigns configurations to all devices required for booting. It then checks the expansion card ROMs during the power-on self test and boot loads the operating system (phase 1).

Phase 1: Real Mode MS-DOS Driver Loading

CONFIG.SYS and AUTOEXEC.BAT are processed in the standard manner.

Phase 2: Real Mode VxD Loader

The system loads VxDs specified in SYSTEM.INI. The real mode loader loads the PnPBIOS enumerator if appropriate, as determined by detection at Windows 95 install time. If there is no PnPBIOS in the machine, the appropriate bus drivers are loaded based on what was detected at install time. In PnPBIOS machines, the BIOS is responsible for telling the operating system which busses are on the machine, which in turn drives the decision as to which bus drivers need to be loaded. The ISA enumerator, for example, is now loaded and enumerates all ISA devices, which, in turn, could have static VxDs that enumerate their children, and so on. Once all static VxDs have loaded, the system enters phase 3 of the boot process.

Phase 3: Protected Mode Operating System Initialization

Some VxDs are loaded during phase 2 of configuration management, but they initialize in protected mode during phase 3. Devices such as VPICD and VDMAD are passed a handle to the device node that caused them to load.

Resource arbitrators need to register with Configuration Manager during Sys_Critical_Init so that devices that register later in the boot process can allocate these resources.

Enumerators, such as the ISA bus enumerator, may add new device nodes to the in-memory devnode tree. Some of these nodes may also have children.

When all devices have been enumerated, all conflicts have been resolved, and all devices have been initialized, the system is ready to be used. The devnode tree will contain a complete description of every device connected to the machine as well as the resource requirements of those devices.

Plug and Play Device Drivers

An ideal Plug and Play driver has the following capabilities:

·	Retrieves configuration information from Configuration Manager.

·	Is dynamically loadable.

·	Is dynamically reconfigurable.

·	Requires minimal user interaction to select the proper driver.

·	Reacts to system messages about the insertion or removal of new devices.

·	May need to understand state information; that is, the settings for the device may need to change based on which user is logged in, whether the machine is docked or undocked (in the case of a docking station architecture) or both.

Most of the Plug and Play work required for device drivers is producing a callback entry point that the system uses to assign a configuration. For information about this entry point, see Driver Callback Entry Point. For a sample Plug and Play device driver, see Sample Plug and Play Driver.

Many Plug and Play system components, such as enumerators and arbitrators, will not be written by the majority of device driver writers. However, a basic understanding of what each of these components does is important for a complete understanding of how they interact.

Drivers for different architectures will interact with Plug and Play in different ways. Many VxDs will interact directly with Configuration Manager, but drivers that are a part of a layered driver model may get configuration information through another layer. For example, Windows 95 network drivers are based on the NDIS driver model, with extensions for Plug and Play capabilities. The net wrapper interacts with the Windows 95 configuration manager and routes the appropriate configuration information to the extended NDIS drivers. Windows 95 disk and SCSI drivers are based on the Windows® NT™ SCSI mini-port model, with extensions for Plug and Play. IOS routes configuration information to these drivers. VxDs such as Virtual Display Devices can interact directly with Configuration Manager. For each of these driver models, the interface with Configuration Manager is different. However, the basic requirements are the same.

Components of Plug and Play Architecture

All configuration management in the Plug and Play system is directed by the Configuration Manager, which is implemented as a VxD. Configuration Manager manipulates three major data stores:

·	Device nodes

·	Devnode tree

·	Registry

Configuration Manager works with four major software components:

·	Enumerators

·	Arbitrators

·	Device loaders

·	Device drivers

Device Nodes

A device node is the basic in-memory representation of a device that is physically present on the system. This data structure contains information relating to the device and its drivers. The major information stored in a device node is:

·	Device ID

·	Currently assigned configuration

·	Possible logical configurations

·	Status information

·	Device driver entry point

·	Enumerator entry point (optional)

·	Arbitrator entry point(s) (optional)

Device nodes are created only by enumerators. The creation of a device node causes the appropriate driver to be loaded. Driver writers typically need not concern themselves with creating device nodes or device IDs.

Device ID

A device ID is a unique ASCII string. This string can be used to cross-reference data about the device stored in the registry. Examples of device IDs are:

·	Root*PNP0000\0

·	ISAPNP\ADP1522_DEV0000\E8124123

·	BIOS*PNP0100\0

·	PCMCIA\MEGAHERTZ-XJ124FM-936B

For more information about device IDs, see Assigned Configuration

Drivers examine this portion of the device node to determine which resources have been allocated for the device. For Plug and Play cards, the assigned resources for a given device may change from one boot to the next, or even while the computer is running (dynamically).

Logical Configurations

Logical configurations describe the various configurations that are valid for a given piece of hardware. Most driver writers will not need to examine or modify the logical configuration list for a given device node. Enumerators are responsible for creating the appropriate logical configurations when they create a device node.

Status Information

Information about the state of a device, such as whether it is disabled or configured, is maintained by Configuration Manager in each device node. Drivers can query this information.

Device Driver Entry Point

When a driver is loaded for a specific device node, it registers with Configuration Manager, passing an entry point that will be called to assign or change hardware configurations.

Enumerator Entry Point

Device nodes that have child nodes will have enumerators. Enumerators are the components of Plug and Play that identify installed hardware and create device nodes. Most driver writers will not need to write an enumerator.

Arbitrator Entry Point(s)

Arbitrators are the components of Plug and Play that assign ownership of various resources, such as IRQs and I/O ports. Most driver writers will not need to write an arbitrator.

Devnode Tree

The devnode tree is a hierarchical tree of device nodes. Any device node that has an enumerator can create new child device nodes. Any of these child device nodes can have an enumerator that creates further children of that device node. Normally, drivers do not know or care about their exact location within the tree. Drivers typically are only concerned with their own hardware device or device node, and are oblivious to the layers above or below them in the tree.

The devnode tree has two purposes:

	1	Describe all hardware that is present in the system.

	2	Provide a mechanism for enumerators to configure their children's hardware, allowing bus-independent drivers.

The distinction between the devnode tree and the registry is important. In a fully Plug and Play system, the devnode tree will be an accurate hierarchical representation of the currently installed devices. By contrast, the registry contains information for all devices ever installed (even if they are not currently present) and the location of a device in the registry does not fully reflect the hierarchical structure described in the devnode tree. (In the registry, devices are located beneath their enumerator but all enumerators are kept in a flat list.) The devnode tree exists in memory only, whereas the registry is saved on disk.

Sample Devnode Tree

The following sample devnode tree shows the device IDs of some typical devices and where in the hierarchy one might expect to find them. The actual contents of each device node other than the device ID are not shown.

Htree\Root\0 - Root node of devnode tree

 \Root*PNP0801\0 - Old-style Sound Blaster compatible sound device

 \Root*PNP0C00\0 - Plug and Play BIOS

 \BIOS*PNP0901\0 - Super VGA compatible display adapter

 \BIOS*PNP0000\0 - AT Interrupt Controller

 \BIOS*PNP0100\0 - AT Timer

 \BIOS*PNP0200\0 - AT DMA Controller

 \BIOS*PNP0301\0 - PS/2 Style Keyboard Contoller

 \BIOS*PNP0400\0 - Standard LPT printer port

 \BIOS*PNP0400\1 - Standard LPT printer port

 \BIOS*PNP0501\0 - 16550 COM port

 \BIOS*PNP0501\1 - 16550 COM port

 \BIOS*PNP0700\0 - PC standard floppy disk controller

 \BIOS*PNP0800\0 - AT style speaker sound

 \BIOS*PNP0901\0 - SVGA compatible display adapter

 \BIOS*PNP0B00\0 - AT Real Time Clock

 \BIOS*PNP0C01\0 - System memory

 \BIOS*PNP0E00\0 - PCMCIA Controller

 \PCMCIA\3C08AF\0 - Network adapter

Registry

The registry is a system-wide database, accessed in both Windows 95 and Windows NT through the Microsoft Win32® API set. Additionally, Windows 95 provides real-mode access to the registry to allow its use during boot-up prior to the switch to protected mode.

The registry stores a hierarchical tree of "Keys" and "Values," similar to entries in Windows 3.1-format .INI files (except that Windows 3.1 .INI files have a flat structure, as opposed to the tree structure of the registry.) Windows 95 Plug and Play uses the registry to store information about which drivers should be loaded when a particular device is enumerated, as well as such information as the driver revision number, manufacturer, and potential logical configurations of the device.

Most Plug and Play registry entries are stored in the ENUM tree. (That is, \\HKEY_LOCAL_MACHINE\ENUM.) Under ENUM, each enumerator gets its own branch, with one child under the enumerator for each device it has ever enumerated and set up. There is one special enumerator branch called ENUM\ROOT which contains the registry entries for old-style, non-Plug and Play hardware for which there is no enumerator but which can be detected using other means. The Device Installer creates new registry entries when an enumerator detects a device for which there is no registry entry. Most of the information is provided either by the .INF file provided with the device or directly by the device's setup module.

The registry also stores configuration-specific information (that is, information which is relevant to whether a capable portable computer is docked or undocked) as well as user-specific information. For any particular setting, the application or device driver must determine whether it is configuration-aware or user-aware, and write the entries to the registry in the proper location.

General configuration-specific information is stored in the \\HKEY_LOCAL_MACHINE\CONFIG\

configname branch of the registry. The rules for storing information in these configuration specific branches should be the same as the rules for their grandparents. Typically, creators and consumers of config- and user-specific information read and write to the predefined keys HKEY_CURRENT_CONFIG\ and HKEY_CURRENT_USER which automatically selects the appropriate subbranch of the CONFIG and HKEY_USERS trees.

Since information about static devices (that is, non-Plug and Play hardware) is stored in \\HKEY_LOCAL_MACHINE\ENUM\ROOT*, information about static devices that only applies to a particular configuration is stored in: \\HKEY_LOCAL_MACHINE\CONFIG\xxxx\ENUM\ROOT.

Full Drivers and Minidrivers

There are two subsets within each category of graphics driver: old-model drivers and minidrivers. Microsoft supports and strongly encourages the development of minidrivers for graphics devices. A display minidriver is a graphics driver that uses the Microsoft device independent bitmap (DIB) engine to accomplish most or all of actual drawing. For display minidrivers, most of the thirty or so required functions call directly into the DIB engine. For printer minidrivers, even less coding is required. Printer-driver developers use the Microsoft Windows UniTool application to initialize required structures and rely on a second Microsoft-supplied DLL, UNIDRV.DLL, to make calls into the DIB engine.

For specific details about creating a display driver, see Part 5, "Display Drivers"; for specific details about creating a printer driver, see Part 6, "Printer Drivers".

Initialization

Windows loads a graphics driver when it calls the kernel LoadLibrary function. After loading the driver, Windows initializes the DLL by calling the driver's Enable function. Windows calls this function twice: the first time with a pointer to a GDIINFO structure; the second time with a pointer to a PDEVICE structure. The first structure, GDIINFO, describes the device's capabilities and related metrics (such as the dimension of the display or printable region). The second structure, PDEVICE, contains driver-dependent data (unless the driver is a minidriver).

The overview of display drivers describes a special PDEVICE structure that is required for minidrivers. It is called a DIBENGINE structure. A minidriver must initialize this structure (instead of a private PDEVICE structure) when it processes the second call to the Enable function.

Windows disables a graphics driver when it is no longer needed by the system, when an application deletes a corresponding device or information context, or when it saves a display DC in preparation for switching to a full-screen application. Windows disables the driver by calling the driver's Disable function.

See also Disable, Enable, GDIINFO, PDEVICE

What's New for Printer Drivers in Windows 95

With few exceptions, any printer driver that ran under Windows 3.1 should be able to run under Windows 95 without modifications. Exceptions are printer drivers that go beyond supporting the standard DDI interface to deliver functionality beyond a straight translation of DDI calls to printer commands.

Major differences in Windows 95 printer support are in the areas of

·	User interface for installing, configuring, and controlling printers is different than Windows 3.1. For more information, see User Interface Changes.

·	The printer subsystem API has changed from Windows 3.1 and the printer subsystem spooling efficiency and flexibility have been improved. For more information, see Print Subsystem Changes.

·	Printer installation has changed significantly from the way it was handled in Windows 3.1. For more information, see Printer Installation Changes.

·	For color printers, Windows 95 supports matching colors from the screen with colors on the printed page; this is called image color matching. For more information, see Image Color Matching Support.

There are also a number of changes in the printer driver DDI from Windows 3.1. For example,

·	Some DDI support that was recommended under Windows 3.1 is required in Windows 95.

·	Changes have been made to the DDI under Windows 95 to expand functionality.

For more information about changes in the printer driver DDI, see Printer Driver DDI Changes.

User Interface Changes

At the user interface level, the Windows 3.1 Print Manager and Control Panel Printers applet no longer exist. A Printer icon in the Windows 95 Control Panel launches the Printers folder and all the user interface for installing, configuring, and controlling printers is in the Printers folder.

Print Subsystem Changes

Windows 95 has a new print subsystem which supports the same Win32 APIs as are documented in the Windows NT SDK and DDK, with the exception of forms support which is not in Windows 95.

The new print subsystem supports spooling enhanced metafiles (EMFs) which enables the print subsystem to return control to the application more quickly after the application spools a document. The new printer subsystem also supports other spooling formats for printer vendors who are willing to develop alternate subsystem components.

For detailed information about the new print subsystem features in Windows 95, see About the Print Spooler and the topics that are referred to there.

Printer Installation Changes

Installing printers by adding data to WIN.INI is no longer recommended.

Through its Plug and Play components, Windows 95 supports automatically identifying and installing printers that report device IDs as described in the IEEE 1284 specification, or prompting the user for an installation diskette if needed). Printer extensions have been added to the Windows 95 INF file format to promote Plug and Play printer installation. The OEMSETUP.INF format for printer driver installation used in Windows 3.1 is supported in Windows 95, but all vendors are encouraged to use the new Windows 95 INF file format and the new printer extensions.

Win32 API support for installing printers is part of Windows 95.

Printers can be installed over a network by using the Windows 95 Point and Print feature.

For detailed information about all of these Windows 95 printer installation changes, see About the Router and the Local Print Provider.

Printer Driver DDI Changes

There is a required set of DDIs that a Windows 95 printer driver must support in order to function in the Windows 95 environment. For information about these DDIs, DDIs That Must Be Supported.

There is another set of DDIs that is required of a printer driver if it wants to take full advantage of the new Windows 95 capabilities. For information about these DDIs, DDIs That Expand Functionality.

About Printer Minidrivers

A printer minidriver is an executable file that provides device-driver support for a particular type or class of printer. It contains data that describes the capabilities, commands, and resident fonts of the printer. A printer minidriver also includes a set of required entry points that the Microsoft Windows® graphic device interface GDI calls to retrieve information about the printer and to send information to the printer.

Although it contains the required entry points, a minidriver does not actually carry out the actions requested by GDI. Instead, the minidriver calls the Universal Printer Driver (Unidriver), providing the information that the Unidriver needs to carry out the requested actions on the device (such as printing text, rendering bitmaps, or advancing a page).

The Unidriver greatly simplifies the task of developing a Windows printer driver. Instead of developing code to support all of the functions that GDI requires, a driver developer need only create a minidriver that provides the information about the printer. By using the Unidriver, a driver developer who understands the hardware and command set for a printer can develop a driver with comparatively little effort.

Note The Windows 95 Unidriver does not support color Desk jet printers, plotters, Adobe PostScript® printers, and printers that use printer-control languages which are similar to PostScript. For these devices, a vendor may use the Microsoft-provided drivers (see About Windows 95 Printer Drivers for a list of the names of these drivers). You may need to create a Windows printer driver that fully implements all of the functions required by GDI for these three types of printers, see About Windows 95 Printer Drivers for more information.

The UniTool Application

A minidriver contains a collection of data structures that are referred to as the printer's data table. A data table contains data such as the printer's resolution, color capabilities, metrics for device fonts, and so on. A data table also contains the strings that correspond to various printer commands.

A developer creates a minidriver by using the UniTool application (UNITOOL.EXE), which provides an organized means of entering printer data and command strings that become part of a minidriver's data table. Using this application, its menus, and its dialog boxes, a driver developer specifies data such as the supported text resolutions, graphics resolutions, paper sizes, font metrics, and so on. In addition, a developer specifies the printer commands that begin a document, end a document, select a paper size, select a paper source, reset the printer to its default state, and so on. A developer can also use UniTool to create device-font files and character-translation tables.

The UniTool help file, UNITOOL.HLP, contains the documentation for the UniTool application. It is a Windows Help file that describes each of dialog boxes and control windows in the UniTool application, and provides examples based on the development of minidrivers for the Kodak Diconix 150 Plus, the Hewlett-Packard PaintJet, and the Hewlett-Packard LaserJet IIP printers. The Kodak Diconix printer is an ink-jet printer that uses a command set similar to that of Epson and IBM dot-matrix printers.. The HP PaintJet printer is a color ink-jet printer. The HP LaserJet IIP printer is a laser printer that uses the Hewlett-Packard printer-control language (PCL). Most of the examples in the help file are based on the Kodak Diconix minidriver and the HP LaserJet printers; however, the examples in the topics that describe color support are based solely on the HP PaintJet.

Minidriver Data Table

Most of the structures in the printer's data table correspond to one or more of the dialog boxes that appear in the UniTool application. By setting the controls in the dialog boxes, you actually initialize the members of these structures. The driver data table consists of the following data structures:

Structure 	Description

BRUSHINFO 	Describes a collection of creation and selection commands for brushes and fills.

CAROUSEL 	Describes the characteristics of a carousel on a plotter.

COMPRESSMODE 	Identifies a data-compression mode and specifies the printer-command strings that select this mode. This structure also contains the printer-command strings that select the specified compression mode.

CURSORMOVE 	Specifies the limitations of the printer's cursor-movement commands. This structure also contains the command strings that move the printer's cursor.

DEVCOLOR 	Specifies the printer's color capabilities. This structure also contains the command strings that enable color output.

DOWNLOADINFO 	Specifies the printer-command strings that download fonts.

FONTCART 	Identifies a font cartridge. This structure also contains the printer-command strings that select the specified cartridge and identifies the fonts on that cartridge.

FONTSIMULATION 	Specifies the printer-command strings that enable and disable bold, italic, underline, and strike through font simulations.

LINEINFO 	Describes a collection of creation and selection commands for lines.

MODELDATA 	Specifies the characteristics of a single printer model. (A single minidriver may support several models of a manufacturer's printer.)

PAGECONTROL 	Specifies the printer-command strings that initialize the printer, select the paper orientation, and so on.

PAPERDEST 	Identifies a paper output bin that collects pages. This structure also contains the printer command strings that select the specified bin.

PAPERQUALITY 	Specifies a media type (that is, plain paper, coated paper, or transparency) on which the printer is capable of printing. This structure also contains the printer-command strings that configure the printer for printing on a particular medium.

PAPERSIZE 	Specifies the dimensions of a piece of paper on which the printer is capable of printing. This structure also contains the printer-command strings that configure the printer for the specified paper size.

PAPERSOURCE 	Identifies a paper bin or feeding mechanism. This structure also contains the printer-command strings that select the specified paper bin or feeding mechanism.

PENINFO 	Describes the characteristics of an available pen.

POLYVECTOUTPUT 	Describes a set of graphic output drawing commands and ordering information for them.

RECTFILL 	Specifies the printer's rectangle-fill capabilities. This structure also contains the command strings that fill rectangular regions.

RESOLUTION 	Specifies a horizontal and vertical raster-graphics resolution that the printer supports. This structure also contains the printer-command strings that select the specified resolution.

TEXTQUALITY 	Identifies a text quality that the printer supports (that is, draft, near letter, or letter). This structure also contains the printer-command strings that select the specified text quality.

VECTOUTPUT 	Describes a set of graphic output drawing commands and ordering information for them.

VECTPAGE 	Describes information about the vector page and vector capabilities of the printer.

VECTSUPPORT 	Describes a set of graphic output support drawing commands.

Minidriver Resources

The minidriver contains four types of resources:

·	Printer-data resources

·	Font-data resources

·	CTT-data resources

·	String-table resources

The first three resource types correspond to the Printer Data, Fonts, and CTT command that appear in the UniTool application's main menu - when you enter values or printer commands in one of the application's dialog boxes, you're actually initializing or altering the data in one of these resources. The fourth resource type, string-table, contains strings that were specified in a number of the dialog boxes.

Note These resources are interrelated - when you alter one resource, it is likely that you will also need to alter another. For example, when you create a new font file using the Fonts menu and associated dialog boxes, you will also need to identify that font in the Model Data dialog box to indicate that it is supported by the model. From the Printer Data menu, choose the ModelData command to display the associated dialog box.

About Printer Drivers

Windows 95 printer drivers manage all printer output for applications. For an overview of Windows 95 printer drivers, see About Windows 95 Printer Drivers .

Note You should develop a Windows printer driver only if the Unidriver does not support your printing device. If the Unidriver does support your device, you should use the UniTool application to develop a printer minidriver. For more information about the Unidriver, the UniTool application, and printer minidrivers, see About Printer Minidrivers.

If you are developing an advanced, next-generation printer, which is incompatible with the Windows 95 Unidriver or PSCRIPT.DRV, DESKJETC.DRV, or HPPLOT.DRV, then you will have to create a printer driver that fully implements all of the functions required by GDI. Documentation for doing this will be provided on the MSDN CD-ROM after initial shipment of the Windows 95 DDK. Some guidelines for developing a complete printer driver (instead of developing a minidriver that works with the Windows 95 Unidriver) are given in About Windows 95 Printer Drivers .

The printer driver functions and structures that are new for Windows 95, or are significantly modified, are listed in the table below.

Function or Structure 	Description 	Comment

DeviceCapabilties 	Retrieves the capabilities of the printer device driver. 	Windows 3.x drivers running under Windows 95 are strongly encouraged to export the DeviceCapabilities function. Printer drivers written to take advantage of the new Windows 95 printer support must export the DeviceCapabilities function. See the Windows 3.1 DDK "Device Driver Adaptation Guide" for a definition of the DeviceCapabilities function.

DEVMODE structure 	Structure that contains information about the device initialization and environment of a printer. Applications pass this structure to ExtDeviceMode and DeviceCapabilities functions exported by a printer driver. 	About a dozen new members have been added to the DEVMODE structure to support the new Windows 95 printer support. See New Function and Structure Reference for more information.

DrvGetPrinterData 	Retrieves printer driver information from the registry. Typically used to initialize the DEVMODE structure. 	See New Function and Structure Reference for more information.

DrvSetPrinterData 	Stores data from the extended DEVMODE structure in the registry. 	See New Function and Structure Reference for more information.

ExtDeviceMode 	Retrieves or changes device-initialization information for a given driver, or displays a driver-supplied dialog box for configuring the driver. Applications call ExtDeviceMode when the user requests setting up the printer as part of preparing for a print job. 	Windows 3.x drivers running under Windows 95 are strongly encouraged to export the ExtDeviceMode function. Printer drivers written to take advantage of the new Windows 95 printer support must export the ExtDeviceMode function.

ExtDeviceModePropSheet 	Presents a property sheet to the user for controlling the attributes of a printer. 	See New Function and Structure Reference for more information.

ExtTextOut 	Writes text strings by converting characters in a given string into raster, vector, or outline glyphs and copies the glyphs to the given device or bit map. 	For Windows 95, changes have been made to the 16-bit ExtTextOut function exported by GDI. These changes enable printer drivers to more easily support True Type fonts non-Windows ANSI character sets and True Type fonts using character sets with more than 256 characters.

About the Print Spooler

The Windows 95 spooler is the component of the Windows 95 printer subsystem that enables print jobs to be routed to local and network printers. The spooler itself has numerous components, so it is also referred to as the printer system. Some of the printer system components can be written or modified by printer vendors (IHVs) and some are provided by Microsoft in binary form.

Printer System Components

The print spooler accepts a data stream prepared by GDI and/or a printer driver for output on a particular type of printer.

The spooler has two main functions:

·	To deliver data to printers for printing, either directly or by playing back spooled files. The spooler manages the events and format conversions that result in the data being output on an application-designated printer.

·	To manage a dynamic environment made up of printers, printer drivers, print providers, monitors, ports, and print jobs. The spooler maintains Registry information from which it can derive how many of these components are in the printer subsystem at any time and the unique name of each component. The spooler also keeps track of the current status of each component.

Spooler Components and IHV Development Opportunities

The components of the Windows 95 spooler are:

·	The Print Request Router (PRR)

·	The local print provider.

·	Network print providers.

·	Print processors.

·	Port monitors.

·	Print job language monitors for bi-directional printers.

Microsoft provides executables for the router and local print provider which a printer manufacturer cannot replace. For the other four spooler components, Microsoft provides default executables, but printer manufacturers may need to develop another version of one or more of these components to meet special needs.

The primary function of each spooler component is described in the following table, along with a general description of the printer vendor's development responsibilities for each component:

Component/Description 	Development Requirement for Printer Manufacturer

Print Request Router (PRR): Routes a data stream to the local print provider or to a network print provider. 	None. Microsoft provides the executable PRR and documents the functions it exports. The PRR cannot be replaced by an IHV.

Local print provider: Puts print jobs into spool files, manages despooling, and performs administrative tasks. In short, the local print provider is in charge of all local playback of spooled print jobs. 	None. Microsoft provides the local print provider executable and documents the functions it exports. The local print provider cannot be replaced by an IHV.

Network print providers: Manage communication between a network and the Win32 printing API. A network print provider is basically a translation layer that converts print requests from the generic Win32 format to a vendor-specific form that can be used by the network. 	Printer IHVs typically do not need to develop a network print provider. Network IHVs must develop a network print provider. Microsoft does not provide sample code for a network print provider in the Windows 95 DDK. For guidelines on how to develop a network print provider, see About Net Print Providers.

Print processors: Perform despooling (the conversion of spooled device-independent records into device-specific records). 	Print processors and printer drivers work together. Microsoft provides a print processor executable that is the default, "WinPrint," and which handles two spool file formats: raw and EMF. Printer vendors may wish to develop another print processor if the vendor supports a spool file format different than the formats supported by the Microsoft-provided print processor. IHVs may also want to develop a print processor that provides filter functions.

Port monitors: Control the I/O port a physical printer is connected to. Typically communicates with VCOMM for device I/O, but may also call different interfaces such as Windows Sockets, SCSI, etc.). 	None for printers that use parallel or serial ports because Microsoft supplies a port monitor that communicates with VCOMM to enable multiple monitors to share a device. IHVs with printers that connect to other types of ports (such as SCSI or Ethernet LAN cards) will have to develop a port monitor.

Language monitors: Control a bi-directional physical printer. Each language monitor is printer description language-specific. Communicates special printer events to the print provider beyond what parallel port status codes return. 	If the printer manufacturer's device is bi-directional, the vendor may develop a language monitor for their printer. Microsoft provides sample source code for a PJL language monitor as a starting point. Note that a language monitor is not typically required for non-bi-directional devices.

Typical Printing Process Scenario Using a Raw Spool File

This section illustrates the major relationships between the spooler components during the printing process by walking through the sequence of calls between components during the spooling of a raw format spool file and subsequent playback (despooling) of the file to a bi-directional printer.

The following illustration shows the sequence of calls that start with an application initiating a print request by calling GDI (labeled step 1 in the illustration) and end with the local print provider writing a spool file to the disk (step 8) and starting a background thread that will eventually initiate the despooling process (step 9). The sequence of steps in the despooling process are shown in a separate illustration.

Each of the following paragraphs describes one of the calls in the spooling process.

	1	The application creates a DC and draws an object to the DC, for example a circle, and then calls GDI with a print request to a particular printer using that DC.

	2	GDI calls the printer driver with a request for instructions on how to render the circle on that particular printer.

	3	The printer driver returns the instructions on how to render the circle on the printer the driver is associated with. Note that all Windows 95 printer drivers are 16-bit code and communicate with 16-bit GDI.

	4	GDI passes the print request to 32-bit GDI because the Windows 95 spooler process is 32-bit code.

	5	GDI32 makes an interprocess call to the spooler process.

	6	SPOOL32.EXE calls the router to route the print job to the printer specified by the application. In this example, the router sends the print job to the local print provider. Note that the router could send the job to a printer on the network through the network print provider (which is not shown in the illustration). The default Windows 95 spooler spools the network jobs locally, so they show up on the local spooler queue, even those jobs bound for a Windows NT servers. A network print job is spooled and despooled on the client machine, not the server. It is only in the relatively late step of despooling that the remote print server is actually contacted. The way Windows 95 handles network print jobs contrasts with the way they are handled by Windows NT client machines, which use RPC to call the necessary printing APIs on the print server. This way, the print job never shows up on the local spooler queue and the spooling and despooling is handled by the print spooler on the print server. On Windows 95 RPC is not used by the default print spooler. A print spooler that does use RPC is available as an option for Windows 95 client machines.

	7	The router calls the local print provider with the print job.

	8	If the type of print job is not direct, the local print provider spools the print job to the disk as a raw-format spool file. Note that steps 1 through 8 can be repeated many times to build a complete spool file. In step 8, the local print provider appends each piece of the print job to the spool file until the application signals that the job is complete by issuing an EndDoc function. The difference between a direct print job and a spooled print job to the local print provider is apparent in the next illustration which shows the playback of this spooled file. When the local print provider is called by the print processor (through the router) with this same print job, the job type is direct instead of spooled. That results in the job going to the printer instead of being rewritten as another spool file.

	9	The local print provider starts a background thread that will determine the best time to start playing back the spool file to the printer. The next illustration shows the sequence of steps involved in playing back the raw spool file.

The following illustration shows the sequence of calls that start with the background thread application initiating the playback of a spooled file by calling a print processor (labeled step 10 in the illustration) and end with the local port monitor sending the print job through a port it controls to a connected printer (step 17).

Each of the following paragraphs describes each of the calls in the despooling process.

	1	The main thread determines a good time to initiate the playback of a spooled file, based on the changing state of spooler subsystem resources monitors. When it is a good time, the main thread uses a StartDoc function call to start a new thread in the print processor to playback the spooled file.

	2	Because it is a StartDoc case, the print processor thread invokes the local print provider with a ReadPrinter function call to read part of the spool file off the disk. (Note that in this example case of a raw spool file, the print processor does not call GDI32. In the EMF spool file case, which are played back by the default print processor supplied by Microsoft, the print processor calls GDI32 to playback the metafile.)

	3	Because it is a StartDoc case, the print processor thread invokes the language monitor (through the local print provider) with a WritePrinter function call to send the data through the physical port connected with the bi-directional printer originally specified in step 1 of this whole process. For a raw spool file, the default print processor simply passes the data through, without changing or interpreting any of the information. Note that a language monitor is invoked in this example scenario because the destination printer is a bi-directional printer. For non-bi-directional printers, a port monitor would be invoked instead of a language monitor. Note also that although this example scenario shows the language monitor and port monitor as separate components, they can be integrated into one monitor.

	4	The language monitor calls the port monitor to send the data to the printer.

	5	The port monitor sends the raw data through the physical port to the connected printer. Note that steps 11 through 14 are repeated until the end-of-file is reached on the spool file (or the print job is canceled). Then the playback thread is terminated.

Typical Printing Process Scenario Using an EMF Spool File

This section illustrates the major relationships between the print spooler components, the printer driver, and GDI during the printing process using an EMF spool file. The presented scenario walks through the sequence of calls between components during the spooling of an EMF spool file and subsequent playback (despooling) of the file on a bi-directional printer.

The spooling and despooling of a raw file is a simpler scenario to walk through than the spooling and despooling of an EMF file, so you may want to read the raw file spooling and despooling scenario before you read this one. The raw spool handling scenario is described in Typical Printing Process Scenario Using a Raw Spool File.

If the raw spool file scenario is simpler, you might ask the question, "Why would an application want to use EMF spool files instead of raw spool files?" A set of EMF files (each EMF file is a logical representation of a printed page) are

·	More portable than raw files -- the same EMF file can be printed on any number of printers whereas a particular raw spool file can only be printed to one printer model.

·	The set of EMF files that represent all the pages in a print job are typically smaller in size, all together, than a raw file that contains the same print job.

Note that an application may not want to request EMF spooling if it is sending a print job to a PostScript printer because a PostScript raw print job is already condensed compared to a raw print sent to a raster printer.

Also, an EMF file is not always smaller than the comparable raw print file. This may especially be true for pages that are heavily-laden with shaded graphics. An application may want to use EMF spool files even in this case, because the return of the print spooler subsystem to the application will still be quicker in the EMF spool file case than the raw spool file case.

Spooling EMF Files

The following illustration shows the sequence of calls that start with an application initiating an EMF spooling request by calling GDI (labeled step 1 in the illustration) and the local print provider writing a print job description file to the disk and calling spooler process with an EndPage or EndDoc function call which signals the availability of an EMF file to despool (these two steps are labeled 8 and 9 in the illustration).

Note one major difference between the EMF spooling scenario shown in the following illustration and the raw print file spooling scenario. In the raw spooling scenario, the local print provider writes the raw spool file to the disk; in the EMF spooling scenario, the GDI writes the EMF spool file to disk and in the EMF despooling scenario it is GDI that reads the EMF spool file and generates the file that is actually printed.

Each of the following paragraphs describes one of the calls in the EMF file spooling process.

	1	The application creates a printer DC and draws an object to the DC, for example a circle, and then calls GDI with an EMF spooling request for a particular printer.

	2	GDI queries the printer driver to find out if the driver supports EMF spooling.

	3	If the driver supports EMF spooling, GDI changes the printer DC to an EMF DC and writes the instructions for rendering the circle to the DC (to the EMF file).

	4	GDI passes the print request to 32-bit GDI because the Windows 95 spooler process is 32-bit code.

	5	GDI32 makes an interprocess call to the spooler subsystem with a description of the print job.

	6	SPOOL32.EXE calls the router to pass the print job description to the print provider that can reach the printer specified by the application. In this example, the router sends the print job to the local print provider but it could send the job to a printer on the network through a network print provider (which is not shown in this picture). Note that the router could send the job to a printer on the network through the network print provider (which is not shown in the illustration). The default Windows 95 spooler spools the network jobs locally, so they show up on the local spooler queue, even those jobs bound for a Windows NT servers. A network print job is spooled and despooled on the client machine, not the server. It is only in the relatively late step of despooling that the remote print server is actually contacted. The way Windows 95 handles network print jobs contrasts with the way they are handled by Windows NT client machines, which use RPC to call the necessary printing APIs on the print server. This way, the print job never shows up on the local spooler queue and the spooling and despooling is handled by the print spooler on the print server. On Windows 95 RPC is not used by the default print spooler. A print spooler that does use RPC is available as an option for Windows 95 client machines.

	7	The router calls the local print provider.

	8	The local print provider creates a job description file and adds a record to the job description file each time it is called for the job, until all the EMF page files have been spooled and each EMF filename and location is recorded in the job description file.

	9	When the local print provider records the information about the last EMF file in the job, it calls the spooler process with an EndDoc function call. This signals the spooler process that a complete job is spooled and ready for despooling. Note that for a multipage job, steps 1 through 8 are repeated once for every page in the job.

Despooling EMF Files

The following illustration shows the sequence of calls and events that start with the spooler process initiating an event that signals the port thread that a spooled job, made up of one or more EMF files, is available for despooling and printing. This step is labeled 10 in the following illustration and the final step, where the print job is sent through the hardware port to the printer is labeled 24.

Each of the following paragraphs describes one of the steps in the EMF despooling process.

	1	At the end of the EMF file spooling scenario, the spooler process sets the ReadyToPrint attribute on the print job and initiates an event that signals to the port thread that a job is available for printing.

	2	The port thread of the spooler process responds to the event by determining the best time to start despooling process and then, at that time, loads the print processor .

	3	When the print processor determines that the spooled file(s) have an EMF format, it calls GDI32 with the new Windows 95 gdiPlaySpoolStream function call.

	4	The GDI32 gdiPlaySpoolStream function reads a record from the job description file , which provides the fully-qualified path to an EMF spool file. Note here that through the job description file, which is essentially a list of path names to EMF files (one path per print job page), GDI32 knows about all the pages in the print job.

	5	The GDI32 gdiPlaySpoolStream function calls GDI, using a thunk built into GDI32, with the path to the EMF spool file (the list of rendering instructions for a page of the print job) to render the page. GDI knows about only one page in the print job at any point in time -- the page that is being rendered and printed. Note that all the thunking necessary to go from the 32-bit programming environment to the 16-bit programming environment is handled by the Microsoft-provided GDI32 and GDI components, the 16-bit printer driver is isolated from calls to and from the 32-bit environment.

	6	GDI calls the printer driver associated with the printer the application wants to use and obtains a DC for the printer.

	7	GDI reads page-rendering instructions from the spooled EMF file and passes them one at a time to the printer driver, which uses as many instructions as are necessary to render the first part of the page.

	8	When the 16-bit printer driver renders a part of the page, it passes the printer-specific raw page data back to 16-bit GDI.

	9	GDI passes the raw data to GDI32. Once again, the 16-bit printer driver is isolated from the transition from 16-bit to 32-bit programming environments. GDI32 passes the raw page data to the 32-bit print spooler process.

Steps 19 through 24, within the spooler process, are the same as the comparable steps described in the raw despooling scenario and result in part of the page appearing on the printer.

Steps 16 through 24 are repeated until an entire page is printed (all the rendering instructions in an EMF spool file have been used). The GDI32 gets the path to the EMF spool file for the next page of the print job and calls GDI to use the instructions in that EMF file to render the next page in the print job. When GDI32 has used up all the paths to EMF spool files in the job description file, the print job is finished.

Typical Direct Printing Process Scenario

This section illustrates the major relationships between the print spooler components, the printer driver, and GDI during the direct printing process -- when no spooling takes place. This scenario illustrates what happens when a direct printing job is carried out because the user has employed Details tab on the Printer Properties property sheet to set the Spool Settings to "Print directly to printer."

The presented scenario walks through the sequence of calls between printer system components between the time a direct print job is started by an application and the job's delivery to a bi-directional printer. Note that the application may not be aware of the fact that this is a direct print job, because the application does not know whether the user has set the "Print directly to printer" option or not.

The following illustration shows the sequence of calls and events that start with the application initiating a print job when the "Print directly to printer" option is set for the printer specified by the application to do the printing. This step is labeled 1 in the following illustration and the final step, where the print job is sent through the hardware port to the printer is labeled step 18. The direct print option of printing to a file instead of a printer is also shown in the illustration.

Important points to notice in this scenario are:

·	If the print job destination is a file, the spooler part of the printer system is not involved in fulfilling the direct print request. See steps 2, 3, and 4 of the scenario, which are dedicated to printing directly to a file specified by the application that initiated the print request.

·	In this example scenario, which starts with the application initiating a print job when the "Print directly to printer" option is set for the application-specified printer, if the print job destination is not a file, then the determination of whether the print request is a direct request is made by the local print provider StartDoc function (inside the spooler). That determination is based on the current setting of the printer specified in the print request, not on an attribute set in the print request itself. A print job is "direct" because the printer it is destined for is set to "Print directly to printer" when the print job is initiated (when the printing application executes a StartDoc function).

Each of the following paragraphs describes one of the calls between printer system components during the process of direct printing, either to a file or to a printer.

	1	The application has a graphics object, for example a circle, to send to a printer. The application creates a DC and calls the GDI StartDoc function to initiate a print request for the printer. This request may also contain a filename if the application wants to print directly to a file.

	2	If the GDI StartDoc function determines that there is an output filename in the print request, then GDI returns success to the application and the application makes the call to draw the circle. GDI calls the printer driver associated with the specified printer to render the circle.

	3	In the case of printing directly to a file, the 16-bit printer driver returns the rendered circle to 16-bit GDI.

	4	Continuing with the case of printing directly to a file, GDI writes the rendered circle to the output file specified in the print request. GDI is the appropriate printer system component to write results of the direct print job to a file because it has the same current directory as the application, and the current directory information may be needed to generate a full path to the destination file. The printer subsystem (the spooler) does not know the application's current directory. So, in the case of a direct print job to a file, the 32-bit side of the printer system is not involved at all.

	5	If the GDI StartDoc function finds no output filename in the print request, then the destination must be the printer. GDI passes the print request to 32-bit GDI instead of returning to the application (and steps 3 and 4 of the scenario are skipped).

	6	GDI32 makes an interprocess call to the spooler process.

	7	SPOOL32.EXE calls the router to route the print job to the printer specified by the application.

	8	The router calls the local print provider with the print job request. The StartDocPrinter function within the local print provider checks whether the current configuration of the printer is "Print directly to printer." If the printer specified in the print request is currently set to "Print directly to printer," then the local print provider checks to see if the port associated with the requested printer is busy or not. If the port is busy with another print job on any printer attached to that port, for example despooling a previously spooled print job, then the local print provider returns an error condition to the application. If the port is not busy, the local print provider reserves the port exclusively for the direct print job and returns success to the application.

	9	When success is returned from the local print provider, the application makes the call to render the circle.

	10	GDI calls the printer driver associated with the specified printer to render the circle.

	11	The 16-bit printer driver returns the rendered circle to 16-bit GDI.

	12	GDI passes the print request to 32-bit GDI.

	13	GDI32 makes an interprocess call to the spooler process.

	14	SPOOL32.EXE calls the router to route the print job to the printer specified by the application.

	15	The router calls the local print provider WritePrinter function with the print job request. The local print provider recognizes the job as a direct print job for which it has reserved a port.

	16	The local print provider sends the print request to the language monitor associated with the requested printer (note that in this example, a bi-directional printer is being used). Note that the local print provider dedicates the use of the port to outputting the direct print job until the job is ended.

	17	The language monitor calls the port monitor to send data to the printer.

	18	The port monitor sends data through the physical port to the connected printer. Steps 10 through 18 are repeated until all the print job data is printed or the print job is canceled.

Spooler Compatibility Considerations

The Windows 95 spooler and Windows NT spooler are similar in many ways. One important difference is that in Windows NT the router, local print provider (local spooler), default print processor and default monitor components were each packaged in a separate DLL. In Windows 95, for performance reasons, the default router, local print provider, and port monitor are packaged in one DLL (SPOOLSS.DLL). If you decide to add a print processor, port monitor, or language monitor to the Windows 95 spooler subsystem, you will have to build a separate DLL that is callable by the spooler DLL. Guidelines on how to do this for print processors and port monitors are given in About Print Processors, About Port Monitors, and About Language Monitors. Instructions on how to install these DLLs, either by calling Win32 APIs or adding extensions to printer .INF files are given in Installing Printer Support. Sample source code for a print processor, port monitor, and language monitor are in the SAMPLES directory of the DDK.

Highlights of other similarities and differences between the Windows NT and Windows 95 spooler include:

·	The Windows 95 and Windows NT spooler APIs are compatible. However, there are some variations in data structures.

·	Language monitors are extensions to printer drivers in Windows 95. For more information, see About Language Monitors.

·	Windows 95 offers better bi-directional printer support than Windows NT. For more information, see About Language Monitors.

·	Windows 95 has some print processor and monitor extensions. Print processor extensions are described in About Print Processors.

·	Windows 95 uses an enhanced metafiles (EMF) spool file format instead of the journal spool file format used by NT.

Definition of Terms

This section defines the most important terms used in describing the Windows 95 printer subsystem.

Print job 	The print spooler organizes print requests from clients by creating a queue of print jobs. Each print job is destined for a particular printer. A print job may be spooled (written to a file on disk and printed later) or printed directly to the printer.

Printer spool files 	Print jobs that are not printed directly are stored in spool files on disk. Two types of spool file formats are supported by the default Windows 95 spooler: the enhanced metafile (EMF) format, which is device-independent, and raw format, which is device dependent.

Enhanced metafile spool files 	Enhanced metafiles (EMFs) are one type of spool file used by the default Windows 95 print spooler (raw files are the other type). EMFs are also the native graphics file format for Windows 95. EMF spool files are used to greatly reduce the amount of time between the time the application user initiates a print request and when control is returned back to the operating system. This is done by storing only the GDI function calls that produce the graphics object the application wants printed, allowing the much more time-consuming execution of the function calls to be carried out later, in the background, when the spool file is "played back." The way EMF spool files are encoded also provides the advantage of printer device-independence. In other words, a picture measuring 2 inches by 4 inches on a VGA display and stored in an EMF maintains those original dimensions when it is printed on a 300 dpi laser printer or a 75 dpi dot matrix printer.

Raw spool files 	Raw spool files are device-dependent. The spooled data is destined and formatted for a particular device and does not need to be printable on a different device. An example of a raw spool file is an encapsulated PostScript file, which is formatted to be understood by the PostScript printer for which it is destined, but which is just raw data to the Windows 95 spooler.

Port 	The physical hardware through which a printer connects to the computer.

Bi-directional printer 	A printer that supports two-way communication between the printer and code running on the computer to which the printer is connected. This two-way communication is used for two primary purposes: printer configuration and monitoring device status. An example of a bi-directional printer is an HP LaserJet 4Si.

About the Router and the Local Print Provider

The Print Request Router (PPR) routes a data stream to the local print provider or to a network print provider. All printing tasks initiated by an application or a Windows 95 system component go through the PRR as the first step towards getting the job done in the spooler process. For an example of how the PRR is involved in both the process of spooling a print job and in the process of playing back (despooling) a print job, see Typical Printing Process Scenario Using a Raw Spool File and Typical Printing Process Scenario Using an EMF Spool File.

Microsoft provides the executable Print Request Router, which cannot be replaced by an IHV.

The local print provider puts jobs into spool files, manages despooling (playback of spooled files), and administers print jobs and open printers. For an example of how the local print provider puts jobs into spool files and manages the playback of spooled files, see Typical Printing Process Scenario Using a Raw Spool File and Typical Printing Process Scenario Using an EMF Spool File.

Microsoft provides the local print provider, which cannot be replaced by an IHV.

This section lists the APIs exported by the Microsoft-provided local print provider and then gives more details about how the router and local print provider administer print jobs and open printers.

Installing Printer Support

Windows 95 supplies a default port monitor, language monitor, and print processor. See Spooler Components and IHV Development Opportunities for reasons you may want to develop one or more of these components for your device and package each component as a separate DLL. Once you have developed such a DLL, there are two methods of installing the component so it will be part of the spooler's environment:

·	Use Win32 APIs such as AddPrintProcessor and AddMonitor.

·	Use the printer-specific extensions to INF files provided by the Windows 95 printer installer.

For information about how to use the printer-specific extensions to INF files, as well as information about using the AddPrintProcessor and AddMonitor APIs, see Printer INF File Extensions.

Design and Implementation Notes

A Windows 95 Network Print Provider is implemented as a 32-bit dynamic link library (DLL) which is specific to its underlying networking software. At startup, the PRR enumerates installed print providers from the Registry and attempts to load each one. During the DLL load process, an NPP should verify that its associated network software is running and refuse to load if it is not.

Upon the successful loading of a Print Provider, the PRR calls its InitializePrintProvidor function by ordinal to obtain a table of entry points corresponding to the Win32 print APIs. Since all calls to the provider are made through the table, it is not necessary for the DLL to export any of the functions in the table by name.

Each table entry must point to a valid function. Print Providers are required to provide stubs for functions that they do not implement. For more information see Functions Implemented as Stubs.

The functions represented in the entry-point table fall into three different groups:

·	Functions that must be implemented for printing to take place.

·	Functions that must be implemented in order for the user to employ the Point and Print feature of the Windows 95 Shell.

·	Functions for which a network print provider must supply a stub.

The following sections list the functions in each of these categories.

About Print Processors

A print processor works in conjunction with a printer driver to despool data types for the spooler during print spool file playback. For more information about the relationship between print processors and printer drivers, as well as information about the spool file playback process, see the sections that describe the playback of spooled raw files and the playback of spooled EMF files in About the Print Spooler.

Microsoft provides a print processor executable that works with the printer driver shipped with Windows 95. Printer vendors may have to develop another print processor if

·	The vendor develops their own driver or

·	The vendor supports a data type different than the data types supported by the Microsoft print processor.

IHVs may also want to develop a print processor that provides filter functions.

A print processor developed by a printer vendor is a 32-bit dynamic-link library (DLL) that is called by the local print provider. A print processor must export certain functions to the local print provider and also shares certain global data structures with the local print provider.

After the Windows 95 DDK is installed, sample print processor source code is provided in the Windows 95 DDK sub directory \%DDKROOT%\PRINTER\SAMPLES\SPOOLER\WINPRINT.

Print Processor Design and Implementation Notes

The Microsoft-provided print processor recognizes two printer object data types:

·	Raw

·	Enhanced metafiles (EMFs)

Raw data streams can be printed directly or put into spool files. Raw spool files are device-dependent. The spooled data is destined and formatted for a particular device and does not need to be printable on a device that is different than that. An example of a raw spool file is an encapsulated PostScript file, which is formatted to be understood by the PostScript printer for which it is destined, but which is just raw data to the Windows 95 spooler subsystem.

Enhanced metafiles (EMF) spool files are used to greatly reduce the amount of time between the time the application user initiates a print request and when control is returned back to application by the operating system. This is done by recording the GDI function calls that produce the application's graphic object on the specified printer in an EMF-format file, called a print spool file. The spool file can be built quickly this way and then control is returned to the application. Later, using a background thread, the Windows 95 print spooler performs the more time-consuming task of executing the GDI calls so the graphic object comes out on the printer.

Use of EMF spool files has another advantage besides the speed with which a print request returns to the application: device-independence. The bulk of an EMF is an array of variable-sized records that encode the GDI function calls necessary to reproduce the picture when the EMF is "played back." EMF spool files encode graphics information in such a way as to maintain device independence. In other words, a picture measuring 2 inches by 4 inches on a VGA display and stored in an EMF maintains those original dimensions when it is printed on a 300 dpi laser printer or a 75 dpi dot matrix printer. The key to achieving this device independence is the storage of a reference device context, that is, the context of the device on which the picture was created. For an excellent introduction to the use of EMFs in the Win32 API, see the article "Enhanced Metafiles in Win32" by Dennis Crain on the Microsoft Developer's Network.

Note that the Microsoft-provided default print processor, which is part of SPOOL32.DLL, can perform EMF to raw conversion.

As shown in Typical Printing Process Scenario Using an EMF Spool File, GDI manages the EMF files, not the print processor. It is not noted in that section but it is important to realize that GDI deletes each EMF file as soon as it is finished with it (after each page of rendered print data is sent to the printer). This means that a print job cannot be repeated at the print spooler level. In this release of the Windows 95 print spooler, there is no way for the print processor to manage EMF files to enable a print job to be repeated at the print spooler level. In order to repeat a print job, applications send the data multiple times, which, for example, gives the application the opportunity to manage collating.

Compatibility with Windows NT

Unlike the Windows NT print processor, the Windows 95 print processor has direct access to the spool file. This may be used in a print processor to look ahead in the spool file and optimize the playback of the spool file.

As shown in Typical Printing Process Scenario Using a Raw Spool File, during playback of a spooled raw file the print processor reads the spooled file a block at a time. Although the default print processor does not do this, a print processor can accumulate the entire spool file before passing it on to the port monitor for printing. (Depending upon the size of the spool file, the accumulation could take place either in a memory buffer or in a temporary file created by the print processor). Once the print processor has the entire spool file, it can randomly access any part of the spool file for information that would help in optimizing the printing of the information.

Required Functions

The following table describes the entry points that a print processor must export to the local spooler and the data structures that are shared between the print processor and local spooler.

Entry Point 	Description

ClosePrintProcessor 	Closes an instance of the specified print processor.

ControlPrintProcessor 	Provides control over printing the document.

EnumPrintProcessorDataTypes 	Returns the data types supported by the print processor.

InitializePrintProcessor 	Sets up the function pointer table that registers with the spooler all the other entry points provided by the print processor (OpenPrintProcessor, ClosePrintProcessor, ControlPrintProcessor, EnumDatatypes, and PrintDocumentOnPrintProcessor).

OpenPrintProcessor 	Opens an instance of the print processor for printing.

PrintDocumentOnPrintProcessor 	Prints the document.

In the default print processor, this is the function that actually plays back the spooled file. The ReadPrinter function call gets a block of data from the spool file and the WritePrinter function call sends the block of data to the printer.

One data structure is also defined, PRINTPROCESSORDOCUMENTDATA. This is a global data structure defined in WINSPLP.H that is used to share information between the print processor component and other components of the spooler subsystem.

About Port Monitors

A port monitor controls the I/O port to which the physical printer is connected. For more information about the role of port monitors in the Windows 95 print spooler subsystem, see Typical Printing Process Scenario Using a Raw Spool File.

The local print monitor executable supplied by Microsoft controls parallel and serial I/O ports that may have a printer connected to them. A printer vendor needs to develop a port monitor if their printer connects to a different type of I/O port, such as a SCSI port or an Ethernet port on a network card in the local computer.

If your printer is connected to a parallel (or serial) port and you want to add data, such as printer control information, to the print stream going to the printer then develop a language monitor to do this and use the Microsoft-provided default port monitor instead of developing a port monitor of your own. When a language monitor is associated with a printer driver at printer installation time, all print data that flows from the printer driver to the printer goes through the language monitor before it goes through the port monitor and out to the printer. For information on how to use INF files to associate your custom language monitor with a printer driver at printer installation time, see Printer INF File Extensions.

Sample source code for a port monitor is provided in the Windows 95 DDK. After the Windows 95 DDK is installed, the sample port monitor source code is in the directory \%DDKROOT%\PRINTER\SAMPLES\SPOOLER\LOCALMON.

Local Port Monitor Design and Implementation Notes

A local port monitor isolates the spooler from printer port characteristics by presenting idealized printer ports to the spooler. The local port monitor supplied by Microsoft is the spooler system component that monitors the flow of print job data through physical parallel or serial ports. The local print monitor presents idealized ports to the spooler by masking the difference between parallel and serial ports, serializing I/O, and providing automatic buffering services. The local port monitor can also be used to multiplex one physical port to multiple virtual ports, each having a separate name and behavior.

A Windows 95 port monitor must offer half a dozen entry points to monitor printers connected to ports and send print job data through ports. The local monitor's OpenPort function is called at spooler startup for all ports with assigned printers and, if necessary, when another printer is added to the spooler's environment. The ClosePort function is called at spooler shutdown and may be called when a printer is removed form the spooler's environment. The ReadPort function is called to read status information from connected bi-directional printers.

The StartDocPort function is called to setup the port to send print job data to the printer, a sequence of one or more WritePort function calls provide the print job data the port monitor sends to the printer, and an EndDocPort function call is called when there is no more data to send for the print job.

The local port monitor must also provide four entry points that perform port management. The AddPort function is called when the spooler wants to add a port to its environment and the DeletePort function is called when the spooler wants to remove a port from its environment. The spooler calls the ConfigurePort function to configure a port and may offer a user interface to get some of the necessary configuration information. The spooler calls the EnumPorts function to get a list of ports currently maintained by the port monitor.

About Language Monitors

There are two types of print monitors: language monitors and port monitors. Port monitors are described in About Port Monitors. For overview information about the relationship between a language monitor and a port monitor during the printing process, see Typical Printing Process Scenario Using a Raw Spool File.

Note The illustrations in Typical Printing Process Scenario Using a Raw Spool File show the language monitor and port monitor as separate components (each packaged in a separate DLL). However, if your language monitor calls only one particular port monitor, it may be to your advantage to build one component (one DLL) that integrates the language monitor and port monitor functionality. If your language monitor might call more than one port monitor, package the language monitor in a DLL separate from any of the port monitors.

Language monitors are typically necessary only for bi-directional printer devices. A bi-directional printer supports two-way communication between the printer and code running on the computer to which the printer is connected.

The two-way communication between computer and printer is used to configure the printer and to monitor printer status. The code running on the computer can request configuration and status information from the printer and/or the printer can send unsolicited status information to the computer whenever certain events occur on the printer. For the printer to understand the requests from the computer and for the computer to understand either solicited or unsolicited responses from the printer, a language has to be defined. For example, an HP LaserJet 4Si is an example of a bi-directional printer device and the printer job language (PJL) is a language that implements all the bi-directional communication functionality mentioned in this paragraph.

A language monitor can also be used to add data, such as printer control information, to the print stream going to the printer. When a language monitor is associated with a printer driver at printer installation time, all print data that flows from the printer driver to the printer goes through the language monitor before it goes through the port monitor and out to the printer. For information on how to use INF files to associate your custom language monitor with a printer driver at printer installation time, see Printer INF File Extensions.

An important implementation detail is that when the language monitor returns to the printer driver after adding bytes (such as printer control information) to the print stream, the language monitor must not increment the byte count of data sent to printer. For example, if the printer driver sends 1K bytes to the printer and the language monitor adds .25K bytes of information to the data stream before it goes to the port monitor and out to the printer, then when the language monitor returns to the printer driver, it must report that 1K bytes were sent to the printer, not 1.25K bytes.

Sample source code for a language monitor is provided in the Windows 95 DDK. After the Windows 95 DDK is installed, the sample language monitor source code is in the \%DDKROOT%\PRINTER\SAMPLES\SPOOLER\PJLMON directory.

Language Monitor and Port Monitor Relationships

In general, port monitor components deal with the relatively low-level communications protocol between the printer and computer. Language monitors deal with a higher-level communications exchange between printer and computer, as described in the section above.

Fundamental ideas about monitor components in the Windows 95 spooler architecture are:

·	At least one port monitor component is required for the spooler to output print jobs, while language monitors are completely optional.

·	Only port monitors send and receive signals through the hardware port a printer is connected to.

·	Only language monitors are able to parse the strings of data read from a port with a bi-directional printer attached. The language monitor calls the port monitor ReadPort or GetPrinterDataFromPort functions to get data from a bi-directional printer. The port monitor ReadPort and GetPrinterDataFromPort functions read any data available from the printer and pass that data back to the language monitor without changing it in any way and it is up to the language monitor to interpret the meaning of the data from the printer. The language monitor should use a GetPrinterDataFromPort function call if the bi-directional printer supports the IEEE 1284 standard; otherwise, it should use a ReadPort call. The language monitor can call either of these port monitor functions from a background thread on a periodic basis (say every few seconds), using a timer, to read unsolicited status information from a bi-directional printer. The source code for the sample language monitor supplied with the DDK, PJLMON, contains code that implements reading unsolicited printer status information in this way.

The spooler architecture diagram in Typical Printing Process Scenario Using a Raw Spool File illustrates these principles. It shows a spooler with one port monitor and one language monitor, and only the port monitor sends and receives through the hardware port. A diagram that showed the relationship between spooler components when the only local target printer is non-bi-directional would probably not show a language monitor component.

Note that it is possible to integrate the language monitor functionality and port monitor functionality into one component.

Device Drivers

Each layered block device driver is a dynamically-loadable virtual device. The drivers work in conjunction with the IOS to carry out I/O operations for a given device. Although the drivers are VxDs, they do not use the standard virtual device services and APIs. The IOS provides the services and functions the device drivers need to complete their tasks.

Each driver belongs to at least one layer. Windows 95 permits a maximum of thirty-two layers, but a typical configuration will have at most 3 to 5 layers. Each layer is numbered, with layer zero at the top and layer thirty-one at the bottom. Every device driver sets one or more bits in a 32-bit flag to indicate within which layer(s) the driver belongs to.

Each layer has a specified level of functionality. A driver that belongs in a given layer must have this functionality. Drivers at higher layers generally deal with logical I/O operations on volumes. Drivers at lower layers carry out physical I/O to adapters. Drivers at other layers carry out transitions from a volume orientation to a logical device orientation; from logical device to physical device orientation; and from physical to adapter orientation. Drivers at these layers also carry out transitions from a volume relative logical I/O request to a device relative physical I/O request. Some layers are reserved.

Driver Loading

The IOS loads device drivers using the services of the VxD loader device, VXDLDR. The configuration manager directs the IOS to load given port and miniport drivers. The IOS automatically loads any "valued-added" drivers, such a the volume tracker and vendor-supplied drivers. In all cases, the files for these drivers must be in the SYSTEM\IOSUBSYS durectory.

Note Some drivers are loaded by making specific entries in the SYSTEM.INI file.

Driver Initialization

The IOS initializes device drivers from the bottom up, from layer 31 to layer 0. Hence, the IOS initializes port drivers before a vendor-supplied drivers, vendor-supplied drivers before type-specific drivers, and so on.

The IOS initializes value-added drivers in groups, layer by layer. All drivers in a given layer are initialized before drivers in the next layer. The initialization order within a layer is not defined. This means you cannot depend on the drivers in a group being initialized in a given order or even that the order will remain the same from one boot operation to another.

A driver can belong to more than one layer. In such cases, the driver receives multiple initializations calls but will only be loaded once.

Driver Registration

When the IOS first loads a device driver, whether at boot time or later, it sends a SYS_DYNAMIC_DEVICE_INIT message to the driver. In response to this message, the driver is expected to register with the I/O supervisor. Registered device drivers receive notifications of certain events and configuration changes.

During registration, every driver must provide an entry point which the IOS can call to report asynchronous events. Asynchronous events include such things as device arrival, device departure, and time-out requests. If a driver also wishes to process I/O requests for a given device, it must also provide an I/O request entry point.

Safe Drivers and the Safe Driver List

A real mode driver is safe if its functionality does not exceed the functionality of the corresponding Windows 95 protect mode driver. If a real mode driver is safe, the protect mode driver can take over all I/O operations for the corresponding device. Otherwise, Windows 95 routes all I/O operations through the real mode driver.

An example of an unsafe driver is a real mode IDE/ESDI driver that uses dynamic encryption for security reasons. In this case, Windows 95 does not provide encryption, so Windows 95 should not allow the protect mode IDE/ESDI driver to take over the real mode driver. Any real mode driver that has the following functionality (not supported by Windows 95) is considered unsafe:

·	Data compression that is not compatible with DoubleSpace

·	Data encryption

·	Disk mirroring

·	Bad sector mapping

·	Fault tolerance, for example, maintenance of ECC correction on a separate disk

·	Vendor-specific IOCTLs

·	Microsoft-defined IOCTLs with vendor-extended features

The safe driver list is a Windows 95-maintained list of safe drivers. Each entry in the list identifies a driver or TSR that Windows 95 can take over with the corresponding protect mode driver. The list includes the following information:

·	Name of the driver or TSR. This should be same as the name present in the CONFIG.SYS or AUTOEXEC.BAT file.

·	Driver requirements

·	Whether it hooks INT 13h

·	Whether it needs to monitor INT 13h (regardless of whether the I/O is controlled by a protect mode driver)

·	Whether it accesses the hardware directly

Windows 95 does not store the version number of the driver or TSR in the list, so it is the responsibility of the vendor to change the name of the driver if a future version of the driver is enhanced in a manner that makes the driver safe or unsafe.

By default, the following drivers are considered safe:

·	MS-DOS 5-compatible real mode block device drivers

·	INT 13 monitors (hooks INT 13h for monitoring INT 13h I/O but does not access the hardware directly or modify the I/O buffer)

·	INT 13h hooker (hooks INT 13h for altering INT 13h I/O but does not access the hardware directly)

·	INT 13h driver (provides INT 13h functionality and directly accesses the hardware)

·	ASPI Manager (implements ASPI for MS-DOS specification)

·	CAM Manager (implements MS-DOS CAM specification)

If your real mode driver has higher performance or provides some functions that may not be present in the Windows 95 protect mode driver, you should remove the driver from the safe driver list. The system will use real mode to access your driver. Similarly, if your real mode driver that can be safely taken over by the protect mode drivers, add that driver to the safe driver list.

Note By default, Windows 95 assumes that a Master Boot Record (MBR) that contains code that hooks INT 13h is unsafe. You can override this default behavior and provide protected mode support is a VSD by using safe MBR INT13h hook routines. For more information, see About Vendor-Supplied Drivers.

Safe Drivers and the Safe Driver List

A real mode driver is safe if its functionality does not exceed the functionality of the corresponding Windows 95 protect mode driver. If a real mode driver is safe, the protect mode driver can take over all I/O operations for the corresponding device. Otherwise, Windows 95 routes all I/O operations through the real mode driver.

An example of an unsafe driver is a real mode IDE/ESDI driver that uses dynamic encryption for security reasons. In this case, Windows 95 does not provide encryption, so Windows 95 should not allow the protect mode IDE/ESDI driver to take over the real mode driver. Any real mode driver that has the following functionality (not supported by Windows 95) is considered unsafe:

·	Data compression that is not compatible with DoubleSpace

·	Data encryption

·	Disk mirroring

·	Bad sector mapping

·	Fault tolerance, for example, maintenance of ECC correction on a separate disk

·	Vendor-specific IOCTLs

·	Microsoft-defined IOCTLs with vendor-extended features

The safe driver list is a Windows 95-maintained list of safe drivers. Each entry in the list identifies a driver or TSR that Windows 95 can take over with the corresponding protect mode driver. The list includes the following information:

·	Name of the driver or TSR. This should be same as the name present in the CONFIG.SYS or AUTOEXEC.BAT file.

·	Driver requirements

·	Whether it hooks INT 13h

·	Whether it needs to monitor INT 13h (regardless of whether the I/O is controlled by a protect mode driver)

·	Whether it accesses the hardware directly

Windows 95 does not store the version number of the driver or TSR in the list, so it is the responsibility of the vendor to change the name of the driver if a future version of the driver is enhanced in a manner that makes the driver safe or unsafe.

By default, the following drivers are considered safe:

·	MS-DOS 5-compatible real mode block device drivers

·	INT 13 monitors (hooks INT 13h for monitoring INT 13h I/O but does not access the hardware directly or modify the I/O buffer)

·	INT 13h hooker (hooks INT 13h for altering INT 13h I/O but does not access the hardware directly)

·	INT 13h driver (provides INT 13h functionality and directly accesses the hardware)

·	ASPI Manager (implements ASPI for MS-DOS specification)

·	CAM Manager (implements MS-DOS CAM specification)

If your real mode driver has higher performance or provides some functions that may not be present in the Windows 95 protect mode driver, you should remove the driver from the safe driver list. The system will use real mode to access your driver. Similarly, if your real mode driver that can be safely taken over by the protect mode drivers, add that driver to the safe driver list.

Note By default, Windows 95 assumes that a Master Boot Record (MBR) that contains code that hooks INT 13h is unsafe. You can override this default behavior and provide protected mode support is a VSD by using safe MBR INT13h hook routines. For more information, see About Vendor-Supplied Drivers.

Terms

The following terms are related to the time-slice scheduler:

Term 	Definition

background priority 	The time-slice priority of a virtual machine that does not have the execution focus.

background virtual machine 	A virtual machine that does not have the execution focus.

base priority 	The unboosted time-slice priority of a thread. A thread's base priority depends on its priority class.

block 	The temporary halting of the execution of a thread or virtual machine while it waits for a needed resource to be freed.

boost 	An increase or decrease in the time-slice priority of a thread.

dynamic boost 	An temporary increase or decrease in the time-slice priority of a thread, brought about by either the VMM or a virtual device.

exclusive execution 	The execution of a virtual machine to the exclusion of all other non-system virtual machines. When a virtual machine has the execution focus and is executing exclusively, the VMM suspends all other non-system virtual machines. The VMM never suspends the system virtual machine.

execution focus 	A property of the virtual machine with which the user is currently working. The virtual machine with the execution focus runs in the foreground and its priority is boosted.

foreground priority 	The time-slice priority assigned to a virtual machine that has the execution focus.

foreground virtual machine 	The virtual machine that has the execution focus.

high priority class 	A group of time-slice priority values associated with high priority threads.

idle 	The state of a thread or virtual machine that is runnable but needs input before continuing.

idle priority class 	A group of time-slice priority values associated with idle threads.

idle thread 	A thread that runs only when there are no higher priority threads to run.

initial thread 	The first thread created in a virtual machine. The system virtual machine can have many thread, non-system virtual machines have only one thread.

inversion boost 	An increase in the time-slice priority of a thread that owns a resource so that the priority matches that of the highest-priority thread that blocks on the resource.

inversion priority 	In priority inversion prevention, the time-slice priority to which the owner thread is raised. Also see priority inversion prevention.

normal priority class 	A group of time-slice priority values associated with threads that are not idle, high priority, or real time.

priority class 	A group of priority values associated with threads of a particular type. Also see idle priority class, normal priority class, high priority class, and real-time priority class.

priority inversion list 	A list, maintained internally by the VMM, that contains information used to raise the priority of threads that own resources on which other threads block. Also see priority inversion prevention.

priority inversion prevention 	A technique the VMM uses to prevent a form of deadlock in which a low priority thread that owns a resource is unable to run because of its low priority, and a higher priority thread that also needs the resource remains blocked while waiting for the resource to be freed.

real-time priority class 	A group of priority values associated with threads that perform time-critical tasks.

round robin 	The sequential, cyclical allocation of processor time to all threads of the same priority.

schedule 	Allocating processor time to a virtual machine or thread.

static boost 	Raising or lowering a thread's time-slice priority with no time decay.

suspend 	To halt a process temporarily.

system idle priority 	A priority of 0, which is reserved for system use.

system thread 	The first thread created in the system virtual machine.

thread 	The basic entity to which the VMM allocates processor time. A thread can execute any part of the application's code, including a part currently being executed by another thread. All threads of a process share the virtual address space, global variables, and operating system resources of the process.

thread group 	Two or more threads whose priorities are boosted at the same time.

thread starvation 	A situation in which a thread does not receive adequate processor time because its time-slice priority is too low.

time-slice 	A brief period of time during which a thread receives control of the processor.

time-slice execution flags 	A set of flags, defined in the VMM include files, that can be set in the control block of a virtual machine or thread and control aspects of how the thread is scheduled.

time-slice granularity 	The duration of a time-slice.

time-slice list 	A list of the threads that the VMM is currently scheduling.

time-slice priority 	A number associated with a thread and used by the VMM to determine the amount of processor time to grant to the thread.

time-slice quantum 	The average duration of all time slices.

time-decayed boost 	Raising or lowering of a thread's time-slice priority, followed by a return to the base priority over several subsequent time slices.

Thread Starvation

If a thread's priority remains low for too long, it can be starved for processor time. The time slicer includes an algorithm that prevents thread starvation by temporarily boosting threads that have not been scheduled within a reasonable amount of time. Reasonable is defined as a number of milliseconds calculated by multiplying the size of the time-slice quantum by the number of executable threads, then multiplying the result by an internal threshold value.

The system cannot dynamically change the priority of a thread that belongs to the real-time priority class. Real-time threads are excluded from the thread starvation algorithm; moreover, real-time threads can starve threads of other priority classes in spite of the starvation algorithm.

An idle thread is one that runs only when there are no higher priority threads to run. All priorities in the idle priority class except the system reserved 0 priority are included in the thread starvation algorithm.

Idle, normal, and high priority class threads are normally not starved. Within these priority classes, the system dynamically boosts the priorities of starving threads using time decayed boost functions. During every starvation detection interval (which varies depending on the number of runnable threads) the system recalculates the dynamic priorities of all idle, normal, and high priority threads based on the recent processor usage. When the system finds a thread that has not run for an extended period, the system gives it a timed decayed boost to the highest priority possible for threads of the normal priority class. By adjusting both the period of time between checks and the acceptable starvation level of threads, the system prevents starvation while efficiently setting the priorities of threads.

	

